JPS60200839A - Production of optical fiber retaining plane of polarization - Google Patents

Production of optical fiber retaining plane of polarization

Info

Publication number
JPS60200839A
JPS60200839A JP5715184A JP5715184A JPS60200839A JP S60200839 A JPS60200839 A JP S60200839A JP 5715184 A JP5715184 A JP 5715184A JP 5715184 A JP5715184 A JP 5715184A JP S60200839 A JPS60200839 A JP S60200839A
Authority
JP
Japan
Prior art keywords
ellipticity
optical fiber
polarization
glass layer
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5715184A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
徳永 利秀
Tatsuo Teraoka
寺岡 達夫
Masashi Nakamura
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5715184A priority Critical patent/JPS60200839A/en
Publication of JPS60200839A publication Critical patent/JPS60200839A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Abstract

PURPOSE:To produce an optical fiber retaining its plane of polarization and having desired characteristics by setting conditions during the formation of an ellipse so as to control the ellipticity. CONSTITUTION:A jacket glass layer 2 and a clad glass layer 3 are formed successively and concentrically on the inner wall of a quartz glass pipe 1, and one end of the pipe 1 is sealed. The pipe 1 is evacuated to about -15mm.H2O pressure, a core rod 4 is put in the pipe 1, and they are melt-bonded together by moving an oxyhydrogen burner 6 from the bottom to the top to manufacture a base material for an optical fiber retaining its plane of polarization. The quartz glass pipe 1 has 5-15% ellipticity and the jacket glass layer 2 has >=30% ellipticity.

Description

【発明の詳細な説明】 〔発明の背景と目的〕 本発明は、偏波面保存光ファイバの製造方法に関するも
のである・ 偏波面保存光ファイバの製造方法として、光ファイバの
コアあるいはクラッドを楕円化し、コアとクラッド材料
の熱膨張の差を利用して歪を付加する方法が知られてい
る(文献エレクトロニクスレターズ1979年10月号
677頁)。この方法は、真中の光ファイバを作成した
後、一部1μlj面を研磨して制温で線引を行ない楕円
コアの光ファイバを作成するものである。しかし、この
方法は、研磨などの複雑な工程を必要とし、かつ、光フ
ァイバの外径が円形とならない欠点がある。また、ロッ
ドインチューブ法を用いた方法として、加工した石英管
の中央にコアとなるロッドと、それと対称に歪を与える
熱膨張係数の大きなロッドを位置させて製造する方法が
あるが、加工石英管及び各ロッドの作成が困難であるこ
と、また、コアロッドの近傍に歪を与えるロッドが位置
できず、結合長の短かい特性が得られなかった。
[Detailed Description of the Invention] [Background and Objectives of the Invention] The present invention relates to a method for manufacturing a polarization-maintaining optical fiber. As a method for manufacturing a polarization-maintaining optical fiber, the core or cladding of the optical fiber is ovalized. A method of applying strain by utilizing the difference in thermal expansion between the core and cladding materials is known (Reference Electronics Letters, October 1979 issue, p. 677). In this method, after a central optical fiber is created, a portion of the 1 μlj surface is polished and drawn at a controlled temperature to create an optical fiber with an elliptical core. However, this method requires complicated steps such as polishing, and has the disadvantage that the outer diameter of the optical fiber cannot be circular. In addition, as a method using the rod-in-tube method, there is a method in which a core rod is placed in the center of a processed quartz tube, and a rod with a large coefficient of thermal expansion that creates strain symmetrically with the rod is placed in the center of the processed quartz tube. It was difficult to create the tube and each rod, and the rod that would cause strain could not be located near the core rod, making it impossible to achieve a short bond length.

本発明は上記の状況に鑑みなされたものであり、低損失
で各種結合長を有する光フアイバ母材を製造できる偏波
面保存光ファイバの製造方法を提供することを目的とし
たものである。
The present invention was made in view of the above-mentioned situation, and an object of the present invention is to provide a method for manufacturing a polarization-maintaining optical fiber that can manufacture optical fiber preforms having various coupling lengths with low loss.

〔発明の概要〕[Summary of the invention]

本発明の偏波面保存光ファイバの製造方法は、石英ガラ
ス管内壁に同心円状にジャケットガラス層及びクラッド
ガラス層を順次形成し、上記石英ガラス管の一端を封じ
内部を大気圧より低圧にした状態で長手方向に逐次加熱
し楕円化した後、内部にコアロッドを挿入し加熱融着し
中実化する場合に、上記石英ガラス管の楕円率が5襲〜
15チでジャケットガラス管の楕円率を6oチ以上に形
成する方法である。即ち、本発明は、楕円形成における
条件を設定し楕円率の制御ができ所望の特性を有する偏
波面保存光ファイバが製造できる方法である。
The method for manufacturing a polarization-maintaining optical fiber of the present invention includes sequentially forming a jacket glass layer and a cladding glass layer concentrically on the inner wall of a quartz glass tube, sealing one end of the quartz glass tube, and keeping the inside pressure lower than atmospheric pressure. When the silica glass tube is sequentially heated in the longitudinal direction to make it oval, and then a core rod is inserted inside and heated and fused to make it solid, the ellipticity of the quartz glass tube is 5 times ~
This is a method of forming a jacket glass tube with an ellipticity of 6 degrees or more by 15 degrees. That is, the present invention is a method in which the ellipticity can be controlled by setting conditions for ellipse formation, and a polarization-maintaining optical fiber having desired characteristics can be manufactured.

〔実施例〕〔Example〕

以下本発明の偏波面保存光ファイバの製造方法を実施例
を用い第1図により説明する。図において、1は石英ガ
ラス管、2はジャケットガラス層、6はクラッドガラス
層、4はコアロッド、5はガラス旋盤、6は酸水素バー
ナである。縦、横ガス旋盤5に装着された1 6rrr
m96X 1.5mm厚さの石英ガラス管1内には、P
2O5B 20B S i Or2系のジャケットガラ
ス層2が120μm厚さに、また、ジャケットガラス層
2の内周にp 2o 5−8i O2系クラッドガラス
層3が20μm形成し、一端を封止し、内圧を一151
rrIn水柱に減圧し酸水素バーナ6により加熱移動し
石英ガラス菅1を楕円状に形成する。楕円形状は長軸1
2鑓短軸10.5■である。楕円形成された石英ガラス
管1を垂直に図示の如く位置させ1rran96のコア
ロッド4を挿入し、酸水素バーナ6を下方から上方へ移
動させ融着一体化し偏波面保存光ファイバ母材を製造し
た。ここで、石英ガラス管1の楕円率eは、e−(長軸
−短軸)/(長軸+短軸)x100=6.7で、母材で
のジャケット楕円率は40%を侍た。
The method for manufacturing a polarization-maintaining optical fiber according to the present invention will be explained below using an example with reference to FIG. In the figure, 1 is a quartz glass tube, 2 is a jacket glass layer, 6 is a clad glass layer, 4 is a core rod, 5 is a glass lathe, and 6 is an oxyhydrogen burner. 1 6 rrr installed on vertical and horizontal gas lathe 5
Inside the quartz glass tube 1 with m96X 1.5mm thickness, P
A 2O5B 20B S i Or2-based jacket glass layer 2 is formed to a thickness of 120 μm, and a p 2o 5-8i O2-based clad glass layer 3 is formed to a thickness of 20 μm on the inner periphery of the jacket glass layer 2, and one end is sealed to prevent internal pressure. 151
The rrIn water column is depressurized and heated by an oxyhydrogen burner 6 to form a quartz glass tube 1 into an elliptical shape. Elliptical shape has major axis 1
The 2-prong short axis is 10.5 cm. The elliptical silica glass tube 1 was positioned vertically as shown in the figure, the core rod 4 of 1 rran 96 was inserted, and the oxyhydrogen burner 6 was moved from the bottom to the top to fuse and integrate, thereby producing a polarization-maintaining optical fiber preform. Here, the ellipticity e of the quartz glass tube 1 is e - (major axis - short axis) / (major axis + short axis) x 100 = 6.7, and the jacket ellipticity of the base material is 40%. .

結合長は2.5消波長0.66μm測定)であった。The bond length was 2.5 (extinction wavelength measured at 0.66 μm).

第2図は横軸に石英ガラス管1の楕円率g(%)をとり
縦軸にジャケットガラス層の楕円率(チ)をとって示し
ており、第1図の方法により製造された石英ガラス・ぎ
楕円率とジャケット楕円率との関係を示したものである
。石英ガラス管の楕円率が3チ以上では楕円ジャケット
が2oチ以上でき、結合長5濶(波長0.63μm測定
)以下を傅た。
Figure 2 shows the ellipticity g (%) of the quartz glass tube 1 on the horizontal axis and the ellipticity (chi) of the jacket glass layer on the vertical axis, and shows the silica glass manufactured by the method shown in Figure 1.・This shows the relationship between the ellipticity and the jacket ellipticity. When the ellipticity of the quartz glass tube was 3 degrees or more, an elliptic jacket of 2 degrees or more was formed, and the bond length was 5 degrees or less (measured at a wavelength of 0.63 μm).

以上の条件で得られた偏波面保存光ファイバは、例えば
計測分野への応用が可能である。また、石英ガラス昔1
の楕円率がg=15%以上では、第2図からもジャケッ
トガラス層2の楕円率がさらに大きくなることはなく、
溶着工程で外径が真円化できない。
The polarization maintaining optical fiber obtained under the above conditions can be applied, for example, to the measurement field. Also, quartz glass old 1
When the ellipticity of g=15% or more, the ellipticity of the jacket glass layer 2 does not increase further as shown in FIG.
The outer diameter cannot be made into a perfect circle during the welding process.

石英ガラス管1の楕円形成においては、酸水素バーナ6
の移動と共に形成するが、長手方向に均一な楕円形成を
するためには、石英ガラス管1に与える熱量を適正化し
、楕円率の制御は減圧量で行なう。この減圧量が−30
ban Agを超えると石英ガラス管1は極端に楕円化
し、まだは中空から中実化するに至る。第3図は横軸に
減圧量をとり、縦軸に石英ガラス管の楕円率(チ)をと
って示したものである。また、ジャケットガラス層2の
楕円率は、コアロッド4とジャケットガラス層2、即ち
、中実化したときのジャケットガラス層の面積との幾何
学的な制約から決まる。ジャケットガラス層2は熱膨張
係数が大きく、ジャケットガラス層2を厚くすると熱歪
によりクラックを生じる。
In forming the quartz glass tube 1 into an oval shape, an oxyhydrogen burner 6 is used.
However, in order to form a uniform ellipse in the longitudinal direction, the amount of heat given to the quartz glass tube 1 is optimized, and the ellipticity is controlled by the amount of reduced pressure. This amount of pressure reduction is -30
When ban Ag is exceeded, the silica glass tube 1 becomes extremely oval, and changes from hollow to solid. FIG. 3 shows the amount of pressure reduction on the horizontal axis and the ellipticity (ch) of the quartz glass tube on the vertical axis. Further, the ellipticity of the jacket glass layer 2 is determined by geometric constraints between the core rod 4 and the jacket glass layer 2, that is, the area of the jacket glass layer when solidified. The jacket glass layer 2 has a large coefficient of thermal expansion, and if the jacket glass layer 2 is made thicker, cracks will occur due to thermal strain.

また、ロッドインチューブ工程においても上記の現象が
生じ母材形成は不可能である。そこで、楕円率が2oチ
以上形成できる範囲においてコアロッド4径と母材形成
上可能なジャケットガラス層2の検討を行なった結果、
コアロッド4の外径は6フ訓以下にしないと目的の楕円
率形成は不可能であった。
Furthermore, the above phenomenon occurs in the rod-in-tube process, making it impossible to form a base material. Therefore, as a result of examining the diameter of the core rod 4 and the possible jacket glass layer 2 for forming the base material within a range where the ellipticity can be formed at 2o or more,
It was impossible to form the desired ellipticity unless the outer diameter of the core rod 4 was set to 6 degrees or less.

コアロッド4径が細径のため水平方向で石英ガラスg1
とコアロッド4を融着一体化する場合、コアロッド4が
偏心するため、垂直方向位置とし下方から加熱源を移動
させる。クラッドガラス層3の形成は、屈折率は△n 
= 0%で、しかも、ジャケットガラス層2に比べ粘性
の高いガラスを形成し、コアロッド4を融着一体化する
際にコアロッド4の偏心を抑える役目をする。従って、
クラッド付コアロッドを挿入する場合にも形成する必要
がある。
Because the diameter of core rod 4 is small, quartz glass G1 is used in the horizontal direction.
When the core rod 4 and the core rod 4 are fused and integrated, the core rod 4 is eccentric, so the heating source is moved from below to a vertical position. When forming the cladding glass layer 3, the refractive index is △n
= 0%, moreover, it forms a glass with higher viscosity than the jacket glass layer 2, and serves to suppress the eccentricity of the core rod 4 when the core rod 4 is fused and integrated. Therefore,
It is also necessary to form it when inserting a clad core rod.

まだ、コアロッド4は、クラッド層6を有するコアロッ
ドでもよく、この場合、コアロッド4とクラッド層6の
境界面の均一性がよく低損失化が可能となる。また、ジ
ャケットガラス層2は、B203を含むガラスで、B 
no 3 F 203 S io 2系ガラスの他に、
B10 B GeO2S to 2、B rho BP
P2QBSzO2、B 2OB−F−G e O2−8
i O2系ガラスでもよい。そして、クラッドガラス層
6は、△n=0.05%以下、この範囲を満足し、かつ
、ジャケットガラス層より高融点が必要である。
However, the core rod 4 may be a core rod having a cladding layer 6. In this case, the interface between the core rod 4 and the cladding layer 6 has good uniformity, and loss can be reduced. Further, the jacket glass layer 2 is a glass containing B203, and the jacket glass layer 2 is a glass containing B203.
In addition to no 3 F 203 S io 2 series glass,
B10 B GeO2S to 2, B rho BP
P2QBSzO2, B 2OB-F-G e O2-8
i O2-based glass may also be used. The clad glass layer 6 needs to satisfy this range, with Δn=0.05% or less, and have a higher melting point than the jacket glass layer.

従って、ガラスとしては、P 、、05−8 io 2
、GeO2−”;io2、P 205 B 2Q 3 
S to 2、B 20B G e Q !!−8i0
2、B 2Q 3−F−P 205−8 i O2、B
203−F−G e O2−8i O2系ガラスでもよ
い。
Therefore, as a glass, P , 05-8 io 2
, GeO2-”; io2, P 205 B 2Q 3
S to 2, B 20B G e Q! ! -8i0
2, B 2Q 3-F-P 205-8 i O2, B
203-F-G e O2-8i O2-based glass may also be used.

第4図は第1図の装置で製造した偏光面保存光ファイバ
のジャケットガラス層楕円率と結合長との関係説明図で
あり、各種結合長を有する偏波面保存光ファイバを製造
できる。
FIG. 4 is an explanatory diagram of the relationship between the jacket glass layer ellipticity and the coupling length of the polarization-maintaining optical fiber manufactured by the apparatus shown in FIG. 1, and polarization-maintaining optical fibers having various coupling lengths can be manufactured.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明の偏波面保存光ファイバの製造
方法によれば、光フアイバ母材の製造条件が明らづ・と
なり低損失で各種結合長を有する偏波面保存光ファイバ
母材が製造できる効果を有するものである。
As described above, according to the method for manufacturing a polarization-maintaining optical fiber of the present invention, the manufacturing conditions of the optical fiber preform can be made clear, and polarization-maintaining optical fiber preforms having various coupling lengths can be manufactured with low loss. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の偏波面保存光ファイバの製造方法を実
施する装置の説明図、第2図は第1図の方法により製造
された光フアイバ母材の石英ガラス管楕円率とジャケッ
トガラス層楕円率の関係説明図、第3図は同じく、石英
ガラス管の減圧量と石英ガラス管楕円率との関係説明図
、第4図は同じく、ジャケットガラス層楕円率と結合長
の関係説明図である。 1 ;石英ガラス管、、2;ジャケットガラス當、6;
クラッドガラス層、4;コアロンド。 見 1 図 見 2 図 が反量−旭A)ラ シー1−″Iシト オ侶 P1キ
FIG. 1 is an explanatory diagram of an apparatus for carrying out the method of manufacturing a polarization-maintaining optical fiber of the present invention, and FIG. 2 shows the ellipticity of the silica glass tube of the optical fiber base material manufactured by the method of FIG. 1 and the jacket glass layer. Figure 3 is an explanatory diagram of the relationship between the ellipticity of the silica glass tube, and Figure 4 is an explanatory diagram of the relationship between the ellipticity of the jacket glass layer and the bond length. be. 1; quartz glass tube; 2; jacket glass; 6;
Clad glass layer, 4; core rond. See 1 See 2 See the figure - Asahi A) Rashi 1 - ″I Shito Osu P1 Ki

Claims (1)

【特許請求の範囲】[Claims] (1)石英ガラス管内壁に同心円状にジャケットガラス
層及びクラッドガラス層を順次形成し、上記石英ガラス
管の一端を封じ内部を大気圧より低圧にした状態で長手
方向に逐次加熱し楕円化した後、内部にコアロッドを挿
入し加熱融着し中実化する方法において、上記石英ガラ
ス’tWの楕円率が5%〜15%でジャケットガラス層
の楕円率を30チ以上に形成することを特徴とする偏波
面保存光ファイバの製造方法。
(1) A jacket glass layer and a clad glass layer were sequentially formed concentrically on the inner wall of the quartz glass tube, one end of the quartz glass tube was sealed, and the inside was heated at a pressure lower than atmospheric pressure, and heated successively in the longitudinal direction to make it oval. Then, in the method of inserting a core rod inside and heating and fusing it to make it solid, the silica glass 'tW has an ellipticity of 5% to 15% and the jacket glass layer has an ellipticity of 30 cm or more. A method for manufacturing a polarization-maintaining optical fiber.
JP5715184A 1984-03-23 1984-03-23 Production of optical fiber retaining plane of polarization Pending JPS60200839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5715184A JPS60200839A (en) 1984-03-23 1984-03-23 Production of optical fiber retaining plane of polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5715184A JPS60200839A (en) 1984-03-23 1984-03-23 Production of optical fiber retaining plane of polarization

Publications (1)

Publication Number Publication Date
JPS60200839A true JPS60200839A (en) 1985-10-11

Family

ID=13047562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5715184A Pending JPS60200839A (en) 1984-03-23 1984-03-23 Production of optical fiber retaining plane of polarization

Country Status (1)

Country Link
JP (1) JPS60200839A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913645A (en) * 1982-07-15 1984-01-24 Hitachi Cable Ltd Manufacture of optical fiber retaining plane of polarization
JPS5913642A (en) * 1982-07-09 1984-01-24 Hitachi Cable Ltd Manufacture of optical fiber retaining plane of polarization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913642A (en) * 1982-07-09 1984-01-24 Hitachi Cable Ltd Manufacture of optical fiber retaining plane of polarization
JPS5913645A (en) * 1982-07-15 1984-01-24 Hitachi Cable Ltd Manufacture of optical fiber retaining plane of polarization

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
US4274854A (en) Polarization-preserving optical fiber
KR900003449B1 (en) Dispersion-shift fiber and its production
US4935045A (en) Method of manufacturing a preform for asymmetrical optical fiber
JPS5945609B2 (en) Optical fiber manufacturing method
US4602926A (en) Optical fibre fabrication
JPH04270132A (en) Production of glass matrix for optical fiber
JPH01153551A (en) Production of optical fiber having definite polarization
JPS60200839A (en) Production of optical fiber retaining plane of polarization
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPS6218492B2 (en)
JP3823341B2 (en) Optical fiber preform, optical fiber and manufacturing method thereof
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS6150887B2 (en)
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPS60108334A (en) Manufacture of base material for optical fiber having retained plane of polarization
JP2000128558A (en) Production of quartz glass preform for optical fiber
JPS6350291B2 (en)
JPH0130768B2 (en)
JPS6011244A (en) Manufacture of optical fiber
JPH0930824A (en) Polarization maintaining optical fiber and its production
JPH0324420B2 (en)
JPS58208148A (en) Manufacture of optical fiber causing single polarization
JPS62153136A (en) Production of elliptic core constant polarization optical fiber
RU2043314C1 (en) Method of making blank of single-mode fiber light guide, keeping polarization of radiation