JPS6114119B2 - - Google Patents

Info

Publication number
JPS6114119B2
JPS6114119B2 JP54012824A JP1282479A JPS6114119B2 JP S6114119 B2 JPS6114119 B2 JP S6114119B2 JP 54012824 A JP54012824 A JP 54012824A JP 1282479 A JP1282479 A JP 1282479A JP S6114119 B2 JPS6114119 B2 JP S6114119B2
Authority
JP
Japan
Prior art keywords
soil
bacterial cells
amount
culture
camp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54012824A
Other languages
Japanese (ja)
Other versions
JPS55104991A (en
Inventor
Jiro Ishama
Ichiro Nakazawa
Myuki Yoshida
Noboru Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITSUKOO SHOKUHIN KOGYO KK
KITSUKOOMAN KK
Original Assignee
KITSUKOO SHOKUHIN KOGYO KK
KITSUKOOMAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITSUKOO SHOKUHIN KOGYO KK, KITSUKOOMAN KK filed Critical KITSUKOO SHOKUHIN KOGYO KK
Priority to JP1282479A priority Critical patent/JPS55104991A/en
Publication of JPS55104991A publication Critical patent/JPS55104991A/en
Publication of JPS6114119B2 publication Critical patent/JPS6114119B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は風味の増強された蔬菜の栽培法、特に
蔬菜のアミノ酸量又はリコピン量の増強された蔬
菜を得ることを特徴とする蔬菜の栽培法に関す
る。 最近では食生活の向上とともに着色良好で、視
覚上好ましく風味良好な蔬菜の要望が高く、又加
工用原料としての蔬菜に於いても同様であり、例
えばトマトを原料とするジユース、ケチヤツプ及
びピユーレ等の品質を高上させるため、トマトの
品質向上特にアミノ酸、リコピン等の成分が多い
加工用トマトが要望されている。 このような蔬菜の風味に最も大きな影響を及ぼ
すものは成熟期における土壌水分の多少であり、
又温度の高低、日照時間の多少である。従つて、
従来蔬菜の品質を向上させるために行なわれてい
る耕種的な手段による農業の改良技術や肥料、農
薬等の使用による方法では、気侯や風土条件によ
り一定の効果を期待することがむつかしい。 一方、蔬菜そのものの品種改良も現在のところ
限界があるため、蔬菜の品質向上、ことに安定し
たアミノ酸量及びリコピン量などの増強は業界の
技術的課題となつている。 そこで本発明者らは、種々検討した結果、ミク
ロバクテリウム属、アスロバクタ−属、コリネバ
クテリウム属及びブレビバクテリウム属に属し、
サイクリツク−3′,5′−アデニル酸(以下、
CAMPと称する)生産能を有する菌を培地に培養
して得た菌体含有物を土壌に加え、該土壌で蔬菜
を栽培することにより従来になく、著しく品質が
改良され、アミノ酸量及びリコピン量等が増強さ
れた風味良好な蔬菜が得られることを発見し、か
かる知見に基づいて本発明を完成したものであ
る。 以下本発明について詳細に説明する。 先ず本発明に用いられる微生物としては、ミク
ロバクテリウム属、アスロバクター属、コリネバ
クテリウム属及びブレビバクテリウム属に属する
菌で、菌の利用しうる炭素源、窒素源、無機塩又
は必要によりCAMPの前駆物質を適当に含む培地
に培養した場合CAMPを生産する菌であればすべ
て用いられる。そしてこれらの菌の具体例として
はミクロバクテリウム属に属する菌として、例え
ばミクロバクテリウムNo.205(FERM−PNo.
106,ATCC21376)、ミクロバクテリウムNo.MT
−3(FERM−PNo.787,ATCC21981)、ミクロ
バクテリウムNo.205−AgAzMsTh−2(FERM−
PNo.3237)、ミクロバクテリウムNo.205−M−32
(FERM−PNo.1559,ATCC31001)、ミクロバク
テリウムNo.205−MP−197(FERM−PNo.2499)
等、アスロバクター属に属する菌として、例えば
アスロバクター11(FERM−PNo.207,
ATCC21375)、アスロバクタ−11−211(FERM
−PNo.1556,ATCC21978)等、コリネバクテリ
ウム属に属する菌として、例えばコリネバクテリ
ウム・ムリセプテカムNo.7(FERM−PNo.206,
ATCC21374)、コリネバクテリウム・ムリセプテ
カムNo.7−10(FERM−PNo.1555,
ATCC21977)等、ブレビバクテリウム属に属す
る菌として、例えばブレビバクテリウム・リクエ
フアシエンス(ATCC14929)等を挙げることが
できる。 次にCAMP生産能を有する菌を該菌の利用しう
るCAMP生産培地に接種して、PH5〜9、温度20
〜40℃で、10〜80時間培養を行なう。 培地の炭素源としては、例えばグルコース、殿
粉加水分解物、グリセリン等の糖質化合物、窒素
源としては、例えば硫安、塩安、尿素、各種アミ
ノ酸、アミノ高重合体加水分解物、コーンステー
プリカー及び酵母エキスなどの生物体エキスが使
用される。又無機燐酸塩としては、例えば燐酸一
カリ又はソーダ、燐酸二カリ又はソーダ、燐酸ア
ンモニウム等が使用される。そして又必要に応じ
て加えられる無機燐酸塩以外の無機塩としては、
例えば硫酸マグネシウム、塩化マグネシウム、硫
酸鉄、塩化鉄、硫酸亜鉛、硫酸コバルト、硫酸マ
ンガン、塩化マンガン等が挙げられる。使用菌株
のCAMP生産態様に応じて適宜CAMPの前駆物
質、例えばアデニン、ハイポキサンチン、サクシ
ニルアデニン、5−アミノ−4−イミダゾ−ルカ
ルボキサマイド、7−アミノ−ピラゾロ−(4,
3−d)−ピリミジン、ピラゾロ−(4,3−d)
−ピリミジン、4−アミノ−ピロロ−(2,3−
d)−ピリミジン、ピロロ−(2,3−d)−ピリ
ミジン又はこれらを塩基とするリボサイド、リボ
ヌクレオタイド若しくはデオキシリボサイド、デ
オキシリボヌクレオタイド等が用いられる。 培養は振盪培養、撹拌培養、通気培養などの適
宜な培養法を用い培養を行なうことができ、通常
CAMPの生成が最高に達したら培養を止め、菌体
含有培養物を得る。 本発明方法で用いる菌体含有物とは、上記
CAMP生産菌の菌体含有培養物又は常法により該
培養物を遠心分離、濾過等を行なつて得た分離菌
体若しくはこれらを適宜の乾燥法、例えば加熱乾
燥法(熱風乾燥法、回転ドラム乾燥法等)、噴霧
乾燥法等により乾燥したものであり、又適宜菌体
を破砕して用いることができるが、更に賦形剤、
肥料等と混ぜてもよく、時には除草剤、殺線虫剤
とともに使用することができる。 次に本発明方法に用いられる蔬菜としてはトマ
ト、イチゴ、キユーリ、スイカ、ナス、メロン、
ウリ等が挙げられる。 本発明方法において用いる菌体含有物の使用量
は菌体乾燥物として1〜1000Kg/10アールが好適
であり、その最適使用量は50〜500Kg/10アール
である。又使用時期は一般には定植前2〜3ケ月
及至定植後、使用形態により、例えば固定状の場
合は蔬菜栽培土壌に混合するか又は土壌表面に施
用し、溶液状の場合には土壌に撤布する。蔬菜栽
培土壌としては特に限定されず、例えば火山灰土
壌等蔬菜の生育に支障のないかぎり使用すること
ができる。 このようにして本発明方法により栽培して得ら
れる蔬菜のアミノ酸量、リコピン量が従来の蔬菜
に較べて極めて高く、商品価値の高い、風味良好
な果実が得られ、又得られた蔬菜を用いてジユー
ス等を作ると非常に高品質のものが得られ極めて
産業的メリツトが大である。 次に実施例を挙げて、本発明を具体的に説明す
る。 実施例 1 グルコース2%、ポリペプトン1%、酵母エキ
ス0.5%、NaCl0.3%、大豆油0.2%、シリコーン
KM70(消泡剤)(商品名:信越化学〓製)0.14%
(殺菌前3N NaOHでPH7.0に調製)からなる種培
地を30mlずつ、容量500mlの坂口フラスコに分注
し、115℃、15分間加熱殺菌した後、ブイヨンス
ラント上のミクロバクテリウムNo.205(FERM−
PNo.106,ATCC21376)を該培地に1白金耳接種
し、30℃、16時間、140r.p.m.で振盪培養した。
次にZnSO4・7H2O0.01%、KH2PO42%、
MgSO4・7H2O1%、FeSO4・7H2O0.01%、ポリ
ペプトン1%、酵母エキス0.5%、5′−イノシン
酸0.7%、グルコース10%、大豆油0.2%、シリコ
ーンKM70(商品名:信越化学〓製)0.14%(殺
菌前KOHでPH7.5に調製)からなる発酵培地の
内、グルコースとMgSO4・7H2Oは他の成分とは
別に、120℃、15分間殺菌した後、30容ジヤー
フアーメンター(丸菱〓製)中で120℃、15分間
殺菌した他の成分に加えて20とし、これに上記
種培養液を0.8接種し、28℃、72時間培養した。
培養終了後、菌体含有培養液をシヤープレス型遠
心器で遠心分離し、その上澄液中のCAMPを測定
したところ7.8mg/mlであつた。 次に得られた分離菌体を70℃で熱風乾燥し、水
分13%、N8.2%、P2.1%、CAMP3mg/g(乾燥
菌体)の乾燥菌体3.8Kgを得、同様に1000回の培
養を行ない計3800Kgの菌体を得た。 該乾燥菌体をトマト苗定植前の土壌中に、第1
表に示す量を肥料とともに使用し、全体として窒
素9.6Kg/10アール、リン酸27Kg/10アール
(P2O5として)及びカリ8.4Kg/10アール(K2Oと
して)になるように施用した。尚対照としては、
ミクロバクテリウムNo.205の乾燥菌体を使用せ
ず、上記組成になるように肥料のみを施用した土
壌(a)及びCAMP非生産菌ブレビバクテリウム・プ
ロトホルミアエ(Brevibacterium
protophormiae)(IFO12128)をミクロバクテリ
ウムNo.205同様に培養して得た乾燥菌体300Kgを上
記組成になるように肥料とともに使用した土壌(b)
を用いた。 一方トマト(品種K705)の種子を4月5日に
播種し、育成して得た苗を5月26日に上記各栽培
土壌に定植した。 各対照区及び処理区よりトマト果実を第1表に
示す日に採取し、採取したトマト果実のリコピン
量、アミノ酸量を測定した。 リコピン量の測定は三木等の方法(三木、赤
津:日本食品工業学会誌、第17巻、第5号、第
175〜177頁、1970年)に従つて次の如く行なつ
た。 トマト果実1Kgをミキサーで破砕した後、ふる
いで裏ごしし、サツカを用いてトマトパルプ中の
空気を充分脱気し、の1gを50c.c.ビーカーに正確
にとり、メタノール約15mlを加え10分間浸漬後、
3−G−3のガラスフイルターで濾過し、残査を
更にメタノールで浸漬液の色のなくなるまで十分
洗浄する。次にメタノール洗浄残査中のリコピン
をベンゼンで抽出し、ベンゼン抽出液をベンゼン
で50mlとした後、480nmで比色し、次式によりリ
コピン量を算出した。 又はアミノ酸量は、採取したトマト1Kgをミキ
サーで破砕し、10000×g、30分間遠心分離し、
その上澄液をNo.5Cの濾紙で濾過して得られた濾
液についてアミノ酸測定を行なつた。 アミノ酸分析はアミノ酸分析計〔日立KLA−
5型、樹脂:Durrum DC−6A、butter:ピコ緩
衝液(Durrm Chemical Corporation製、U.S.
A.)(Reiland,J.、J.R.Benson,Durrum Resin
Report No.7,1976)、呈色:ニンヒドリン法〕
により各々のアミノ酸を分析し、各アミノ酸の合
計をアミノ酸量とし、8月19日と8月28日に採取
したトマト中のアミノ酸量の平均値を、土壌(a)に
おける取穫トマト中のアミノ酸量平均値に対する
%で表示し、各結果を第1表に示した。以下、リ
コピン量、アミノ酸量については同様に測定し
た。
The present invention relates to a method for cultivating vegetable vegetables with enhanced flavor, and particularly to a method for cultivating vegetable vegetables characterized by obtaining vegetable vegetables with enhanced amino acid content or lycopene content. Recently, as dietary habits have improved, there has been a high demand for vegetables that are well-colored, visually appealing, and have a good flavor.The same applies to vegetables that can be used as raw materials for processing, such as juices, ketchups, and piures made from tomatoes. In order to improve the quality of tomatoes, there is a demand for improved tomato quality, especially tomatoes for processing that are rich in components such as amino acids and lycopene. The biggest influence on the flavor of these vegetables is the level of soil moisture during the ripening stage.
Also, the temperature is high or low, and the amount of sunshine hours. Therefore,
Conventionally, methods used to improve the quality of vegetables, such as improved agricultural techniques through cultivating methods and the use of fertilizers, pesticides, etc., are difficult to expect to have a certain effect depending on the climate and climate conditions. On the other hand, there are currently limits to the breeding of vegetables themselves, so improving the quality of vegetables, especially stably increasing the amount of amino acids and lycopene, is a technical challenge in the industry. Therefore, as a result of various studies, the present inventors found that the genus Microbacterium, Aslobacter, Corynebacterium, and Brevibacterium belong to the genus Microbacterium, Aslobacter, and Brevibacterium.
Cyclic-3′,5′-adenylic acid (hereinafter referred to as
By cultivating bacteria with the production ability (called CAMP) in a medium and adding the bacterial cell content to the soil and cultivating vegetables in the soil, the quality is significantly improved, and the amount of amino acids and lycopene is unprecedented. The inventors have discovered that it is possible to obtain vegetable vegetables with enhanced flavor and enhanced flavor, and have completed the present invention based on this knowledge. The present invention will be explained in detail below. First, the microorganisms used in the present invention are those belonging to the genus Microbacterium, Aslobacter, Corynebacterium, and Brevibacterium, and the microorganisms include carbon sources, nitrogen sources, inorganic salts, or CAMP as necessary. Any bacteria that produces CAMP when cultured in a medium containing an appropriate precursor can be used. Specific examples of these bacteria include Microbacterium No. 205 (FERM-P No.
106, ATCC21376), Microbacterium No.MT
-3 (FERM-P No.787, ATCC21981), Microbacterium No.205-AgAzMsTh-2 (FERM-
PNo.3237), Microbacterium No.205-M-32
(FERM-PNo.1559, ATCC31001), Microbacterium No.205-MP-197 (FERM-PNo.2499)
As bacteria belonging to the genus Aslobacter, for example, Aslobacter 11 (FERM-P No. 207,
ATCC21375), Aslobacter 11-211 (FERM
- P No. 1556, ATCC 21978), and other bacteria belonging to the genus Corynebacterium, such as Corynebacterium muriseputecum No. 7 (FERM-P No. 206,
ATCC21374), Corynebacterium muriceptecum No.7-10 (FERM-P No.1555,
Examples of bacteria belonging to the genus Brevibacterium include Brevibacterium liquefaciens (ATCC 14929). Next, a bacterium capable of producing CAMP is inoculated into a CAMP production medium that can be used by the bacterium.
Culture at ~40°C for 10-80 hours. Carbon sources for the culture medium include, for example, carbohydrate compounds such as glucose, starch hydrolysates, and glycerin, and nitrogen sources include, for example, ammonium sulfate, ammonium chloride, urea, various amino acids, amino polymer hydrolysates, and corn staple liquor. and biological extracts such as yeast extract. As the inorganic phosphate, for example, monopotassium phosphate or soda, dipotassium phosphate or soda, ammonium phosphate, etc. are used. Inorganic salts other than inorganic phosphates that may be added as necessary include:
Examples include magnesium sulfate, magnesium chloride, iron sulfate, iron chloride, zinc sulfate, cobalt sulfate, manganese sulfate, manganese chloride, and the like. Depending on the CAMP production mode of the strain used, CAMP precursors such as adenine, hypoxanthine, succinyladenine, 5-amino-4-imidazolecarboxamide, 7-amino-pyrazolo-(4,
3-d)-pyrimidine, pyrazolo-(4,3-d)
-pyrimidine, 4-amino-pyrrolo-(2,3-
d)-pyrimidine, pyrrolo-(2,3-d)-pyrimidine, or riboside, ribonucleotide, deoxyriboside, deoxyribonucleotide, etc. using these as a base are used. Culture can be carried out using an appropriate culture method such as shaking culture, agitation culture, or aeration culture.
When the production of CAMP reaches the maximum, the culture is stopped and a culture containing bacterial cells is obtained. The bacterial cell-containing material used in the method of the present invention is the above-mentioned
A cell-containing culture of CAMP-producing bacteria, an isolated cell culture obtained by centrifuging, filtration, etc. of the culture using a conventional method, or a suitable drying method such as a heating drying method (hot air drying method, rotating drum drying method, etc.) (drying method, etc.), spray drying method, etc.Also, the bacterial cells can be crushed and used as appropriate, but in addition, excipients,
It can be mixed with fertilizers, etc., and sometimes used with herbicides and nematicides. Next, vegetables used in the method of the present invention include tomatoes, strawberries, cucumbers, watermelons, eggplants, melons,
Examples include gourd. The amount of the bacterial cell-containing material used in the method of the present invention is preferably 1 to 1000 kg/10 are as dry bacterial cell material, and the optimum amount to be used is 50 to 500 kg/10 are. The period of use is generally 2 to 3 months before planting and after planting, depending on the form of use, for example, if it is in a fixed form, it is mixed into the vegetable cultivation soil or applied to the soil surface, and if it is in a solution form, it is removed from the soil. do. The vegetable cultivation soil is not particularly limited, and for example, volcanic ash soil can be used as long as it does not hinder the growth of vegetables. In this way, the amino acid content and lycopene content of vegetables grown by the method of the present invention are extremely high compared to conventional vegetables, and fruits with high commercial value and good flavor can be obtained. When used in this way, very high quality products can be obtained, which has great industrial merits. Next, the present invention will be specifically explained with reference to Examples. Example 1 Glucose 2%, polypeptone 1%, yeast extract 0.5%, NaCl 0.3%, soybean oil 0.2%, silicone
KM70 (antifoaming agent) (product name: Shin-Etsu Chemical) 0.14%
Dispense 30 ml of seed medium (adjusted to pH 7.0 with 3N NaOH before sterilization) into 500 ml Sakaguchi flasks, heat sterilize at 115°C for 15 minutes, and then microbacterium No. 205 on the bouillon slant. (FERM−
PNo. 106, ATCC 21376) was inoculated into the medium and cultured with shaking at 140 rpm for 16 hours at 30°C.
Next, ZnSO 4 7H 2 O 0.01%, KH 2 PO 4 2%,
MgSO 4 7H 2 O 1%, FeSO 4 7H 2 O 0.01%, polypeptone 1%, yeast extract 0.5%, 5'-inosinic acid 0.7%, glucose 10%, soybean oil 0.2%, silicone KM70 (product name: Of the fermentation medium consisting of 0.14% (manufactured by Shin-Etsu Chemical Co., Ltd.) (adjusted to pH 7.5 with KOH before sterilization), glucose and MgSO 4 7H 2 O were sterilized separately from other components at 120°C for 15 minutes. In addition to the other ingredients that were sterilized for 15 minutes at 120°C in a 30-volume jar fermentor (manufactured by Marubishi), 0.8 of the above seed culture solution was inoculated and cultured at 28°C for 72 hours.
After the cultivation was completed, the culture solution containing the bacterial cells was centrifuged using a shear press type centrifuge, and the CAMP in the supernatant was measured and found to be 7.8 mg/ml. Next, the obtained isolated bacterial cells were dried with hot air at 70°C to obtain 3.8 kg of dried bacterial cells with a moisture content of 13%, N8.2%, P2.1%, and CAMP of 3 mg/g (dried bacterial cells). A total of 3,800 kg of bacterial cells were obtained by culturing twice. The dried bacterial cells were first added to the soil before planting tomato seedlings.
Use the amounts shown in the table with fertilizer, and apply so that the total amount is 9.6 Kg/10 are of nitrogen, 27 Kg/10 are of phosphoric acid (as P 2 O 5 ), and 8.4 Kg/10 are of potassium (as K 2 O). did. For comparison,
Soil (a) in which only fertilizer was applied to the above composition without using dried Microbacterium No. 205 cells, and the CAMP non-producing bacterium Brevibacterium protoformiae.
Soil (b) in which 300 kg of dried bacterial cells obtained by culturing Protophormiae (IFO12128) in the same manner as Microbacterium No. 205 were used together with fertilizer to have the above composition.
was used. Seeds of tomato (variety K705) were sown on April 5th, and the resulting seedlings were planted on May 26th in each of the above cultivation soils. Tomato fruits were collected from each control plot and treatment plot on the days shown in Table 1, and the lycopene content and amino acid content of the collected tomato fruits were measured. The amount of lycopene was measured using the method of Miki et al. (Miki, Akatsu: Journal of the Japan Food Industry Association, Vol. 17, No. 5,
175-177, 1970), as follows. After crushing 1 kg of tomato fruit with a mixer, puree it with a sieve, thoroughly deaerate the air in the tomato pulp using a satsuka, take exactly 1 g of tomato pulp into a 50 c.c. beaker, add about 15 ml of methanol, and soak for 10 minutes. rear,
Filter through a 3-G-3 glass filter, and thoroughly wash the residue with methanol until the color of the immersion liquid disappears. Next, lycopene in the methanol washing residue was extracted with benzene, and the benzene extract was made up to 50 ml with benzene, and the color was compared at 480 nm, and the amount of lycopene was calculated using the following formula. Alternatively, the amount of amino acids can be determined by crushing 1 kg of the collected tomatoes with a mixer, centrifuging at 10,000 x g for 30 minutes,
The supernatant was filtered through No. 5C filter paper, and the resulting filtrate was subjected to amino acid measurements. Amino acid analysis is performed using an amino acid analyzer [Hitachi KLA-
Type 5, resin: Durrum DC-6A, butter: pico buffer (manufactured by Durrm Chemical Corporation, US
A.) (Reiland, J., JRBenson, Durrum Resin
Report No. 7, 1976), coloration: ninhydrin method]
Each amino acid was analyzed using the method, the total of each amino acid was taken as the amino acid amount, and the average value of the amino acid amount in the tomatoes collected on August 19th and August 28th was calculated as the amino acid amount in the tomatoes collected in soil (a). The results are shown in Table 1, expressed as % of the average amount. Below, the amount of lycopene and the amount of amino acids were measured in the same manner.

【表】 実施例 2 コリネバクテリウム・ムリセプテカムNo.7
(FERM−PNo.206、ATCC21374)及びアスロバ
クター11(FERM−PNo.207,ATCC21375)を実
施例1同様に培養し、その上澄液中のCAMPを測
定したところそれぞれ4.8mg/ml及び3.9mg/mlで
あつた。 次に得られた分離菌体を50℃で熱風乾燥し、第
2表に示す組成の乾燥菌体を得た。該乾燥菌体
300Kg/10アールをトマト苗定植前の土壌に肥料
とともに使用し、全体として実施例1と同じ窒素
量、リン酸量、カリ量になるように土壌に施肥し
た。尚対照は実施例1と同様である。 5月26日に各栽培土壌にトマト苗(品種
K705)を定植し、各対照区及び処理区より成熟
トマト果実を採取し、アミノ酸量を測定し、その
結果を土壌aにおけるトマト中のアミノ酸量に対
する%で表示し、第2表に示した。
[Table] Example 2 Corynebacterium muriceptecum No.7
(FERM-P No. 206, ATCC 21374) and Aslobacter 11 (FERM-P No. 207, ATCC 21375) were cultured in the same manner as in Example 1, and the CAMP in the supernatant was measured to be 4.8 mg/ml and 3.9 mg, respectively. /ml. Next, the obtained isolated bacterial cells were dried with hot air at 50°C to obtain dried bacterial cells having the compositions shown in Table 2. The dried bacterial cells
300 kg/10 are was used together with fertilizer on the soil before planting tomato seedlings, and the soil was fertilized so that the overall amount of nitrogen, phosphoric acid, and potassium was the same as in Example 1. The control was the same as in Example 1. Tomato seedlings (varieties) were planted in each cultivation soil on May 26th.
K705) was planted, mature tomato fruits were collected from each control plot and treated plot, and the amount of amino acids was measured.The results were expressed as % of the amount of amino acids in tomatoes in soil a, and are shown in Table 2.

【表】 実施例 3 第3表に示す菌株を実施例1の如く培養し、か
つ実施例1同様に行なつて乾燥菌体を得た。 各々の乾燥菌体200Kg/10アールをイチゴ苗定
植前の土壌に肥料とともに使用し、全体として窒
素7.5Kg/10アール、リン酸20Kg/10アール
(P2O5として)及びカリ8.5Kg/10アール(K2Oと
して)になるように混合した。尚対照として肥料
のみを施用した土壌及びブレビバクテリウム・プ
ロトホルミアエ(IFO12128)の乾燥菌体200Kg/
10アールを、上記組成になるように肥料とともに
使用した土壌を用いた。 一方、イチゴ苗(品種Shure crop)を10月1
日に上記栽培土壌に定植し、その翌年完熟に従つ
て6月1日、6月7日の2回イチゴ果実を採取し
た。採取したイチゴ500gをミキサーで破砕し、
10000×g、30分間遠心分離し、その上澄液No.5C
の濾紙で濾過して得られた濾液についてアミノ酸
測定を行なつた。2回のアミノ酸量の平均値を肥
料のみを施用した土壌で栽培したイチゴ中のアミ
ノ酸量平均値に対する%で表示し、第3表に示し
た。
[Table] Example 3 The strains shown in Table 3 were cultured as in Example 1, and dried cells were obtained in the same manner as in Example 1. 200Kg/10A of each dry bacterial cell was used together with fertilizer in the soil before planting strawberry seedlings, and the total content was 7.5Kg/10A of nitrogen, 20Kg/10A of phosphoric acid (as P 2 O 5 ), and 8.5Kg/10A of potassium. (as K 2 O). As a control, soil to which only fertilizer was applied and 200 kg of dried bacterial cells of Brevibacterium protoformiae (IFO12128)
Soil was used in which 10 are was used together with fertilizer to have the above composition. Meanwhile, strawberry seedlings (variety: Shure crop) were grown on October 1st.
Strawberry fruits were planted in the above cultivation soil on June 1st, and strawberry fruits were collected twice on June 1st and June 7th as they reached full ripeness the following year. Crush 500g of collected strawberries with a mixer,
Centrifuge at 10,000×g for 30 minutes and remove the supernatant No.5C.
Amino acid measurements were performed on the filtrate obtained by filtration through a filter paper. The average value of the amino acid content of the two times was expressed as a percentage of the average value of the amino acid content in strawberries grown in soil to which only fertilizer was applied, and is shown in Table 3.

【表】 実施例 4 グルコース2%、ポリペプトン1%、酵母エキ
ス0.5%、FeSO4・5H2O0.05%、NaCl0.3%、大
豆油0.2%、シリコーンKM70(消泡剤)(商品
名:信越化学〓製)0.14%(殺菌前3N KOHでPH
7.0に調製)からなる種培地を実施例1同様に殺
菌した後、該培地に第4表に示す各菌株のブイヨ
ンスラント上の菌体を1白金耳接種し、30℃、16
時間振盪培養した。次に実施例1の培地組成から
5′−イノシン酸0.7%を除いた発酵培地を実施例
1同様に殺菌した後、第4表に示す各菌株の上記
種培養液を各0.8%接種し、28℃、72時間培養し
た。培養終了後、各菌体含有培養液をシヤープレ
ス型遠心器で遠心分離し、その上澄液中のCAMP
を測定したところ第4表に示す通りであつた。 次に得られた各分離菌体(乾燥菌体換算300
Kg)を5000の水に懸濁し、トマト苗定植前の栽
培土壌10アールに撒布し、全体として窒素9.6
Kg/10アールリン酸27Kg/10アール(P2O5とし
て)及びカリ8.4Kg/10アール(K2Oとして)に
施肥した。 トマト苗(品種K705)を各栽培土壌に定植
し、完熟トマトを採取し、実施例1と同様にアミ
ノ酸量を測定し、その結果を肥料のみを施用した
土壌で栽培したトマト中のアミノ酸に対するKlで
表示し、第4表に示した。 尚、対照としては肥料のみを施用した土壌及び
ブレビバクテリウム・プロトホルミアエ
(IFO12128)の分離菌体(乾燥菌体換算300Kg)
を上記同様10アールに撒布し、全体として上記組
成になるように施肥した土壌で栽培したトマト果
実を用い、同様にアミノ酸を測定した。又各分離
菌体の乾燥菌体成分を第4表に併せて表示した。
[Table] Example 4 Glucose 2%, polypeptone 1%, yeast extract 0.5%, FeSO 4 5H 2 O 0.05%, NaCl 0.3%, soybean oil 0.2%, silicone KM70 (antifoaming agent) (product name: Manufactured by Shin-Etsu Chemical Co., Ltd.) 0.14% (PH with 3N KOH before sterilization)
7.0) was sterilized in the same manner as in Example 1, one platinum loop of bacterial cells of each strain shown in Table 4 on a bouillon slant was inoculated into the medium, and the culture was incubated at 30°C for 16
Cultured with shaking for hours. Next, from the medium composition of Example 1
The fermentation medium except for 0.7% of 5'-inosinic acid was sterilized in the same manner as in Example 1, and then 0.8% of each of the above seed cultures of the strains shown in Table 4 was inoculated and cultured at 28°C for 72 hours. After culturing, the culture solution containing each bacterial cell is centrifuged using a shear press centrifuge, and the CAMP in the supernatant is
When measured, the results were as shown in Table 4. Next, each isolated bacterial cell obtained (300 dried bacterial cells)
Kg) was suspended in 5,000 ml of water and applied to 10 are of cultivation soil before planting tomato seedlings, resulting in a total nitrogen content of 9.6
Kg/10 are phosphoric acid 27 Kg/10 are (as P 2 O 5 ) and potassium 8.4 Kg/10 are (as K 2 O) were fertilized. Tomato seedlings (variety K705) were planted in each cultivation soil, ripe tomatoes were collected, and the amount of amino acids was measured in the same manner as in Example 1. The results were calculated as Kl for amino acids in tomatoes grown in soil to which only fertilizer was applied. and shown in Table 4. As a control, soil to which only fertilizer was applied and isolated bacterial cells of Brevibacterium protoformiae (IFO12128) (300 kg in terms of dry bacterial cells)
Amino acids were measured in the same manner using tomato fruits grown in soil fertilized to have the above-mentioned composition as a whole. The dry bacterial cell components of each isolated bacterial cell are also shown in Table 4.

【表】 実施例 5 肉エキス1%、ポリペプトン1%、酵母エキス
0.5%、NaCl0.3%、MnCl2・4H2O0.0005%、
FeSO4・5H2O0.01%、大豆油0.2%、シリコーン
KM70(商品名:信越化学〓製)0.14%(殺菌前
3N NaOHでPH7.0に調製)からなる種培地を、実
施例1同様に殺菌した後、該培地に第5表に示す
各菌株のブイヨンスラント上より1白金耳接種
し、30℃、16時間、140r.p.m.で振盪培養した。
次にZnSO4・7H2O0.01%、KH2PO42%、
MgSO4・7H2O1%、FeSO4・7H2O0.025%、Fe2
(SO43・XH2O0.025%、MnCl2・4H2O0.0001
%、グルコース10%、大豆油0.2%、シリコーン
KM70(消泡剤)(商品名:信越化学〓製)0.14%
(殺菌前3N KOHでPH7.5に調製)からなる発酵培
地を実施例1と同様の方法で殺菌した後、第5表
に示す各菌株の上記種培養液を各0.8%接種し、
28℃、72時間培養した。培養終了後、各菌体含有
培養液をシヤープレス型遠心器で遠心して得た分
離菌体を70℃で熱風乾燥し、乾燥菌体を得た。該
乾燥菌体200Kg/10アールを、トマト苗定植前の
土壌中に肥料とともに使用し、全体として窒素
9.6Kg/10アール、リン酸27Kg/10アール(P2O5
として)及びカリ8.4Kg/10アール(K2Oとし
て)になるよう施用し、該栽培土壌にトマト苗
(品種K705)を定植した。 尚、対照としてブレビバクテリウム・プロトホ
ルミアエ(IFO12128)を同様に培養して得た乾
燥菌体200Kg/10アールを肥料とともに施用し
た。 各処理区及び対照区より成熟トマト果実を採取
し、アミノ酸量を測定し、その結果を対照区にお
けるトマト中のアミノ酸量に対する%で表示し、
第5表に示した。
[Table] Example 5 Meat extract 1%, polypeptone 1%, yeast extract
0.5%, NaCl0.3%, MnCl2.4H2O0.0005 % ,
FeSO 4 5H 2 O 0.01%, soybean oil 0.2%, silicone
KM70 (product name: Shin-Etsu Chemical) 0.14% (before sterilization)
After sterilizing a seed medium (adjusted to pH 7.0 with 3N NaOH) in the same manner as in Example 1, one platinum loopful of each strain shown in Table 5 was inoculated onto the bouillon slant and incubated at 30°C for 16 hours. , and cultured with shaking at 140 rpm.
Next, ZnSO 4 7H 2 O 0.01%, KH 2 PO 4 2%,
MgSO47H2O1 %, FeSO47H2O0.025 %, Fe2
(SO 4 ) 3・XH 2 O0.025%, MnCl 2・4H 2 O0.0001
%, glucose 10%, soybean oil 0.2%, silicone
KM70 (antifoaming agent) (product name: Shin-Etsu Chemical) 0.14%
After sterilizing the fermentation medium (adjusted to pH 7.5 with 3N KOH before sterilization) in the same manner as in Example 1, 0.8% of each of the above seed cultures of the strains shown in Table 5 was inoculated.
Cultured at 28°C for 72 hours. After the cultivation was completed, the culture solution containing each bacterial cell was centrifuged using a shear press type centrifuge, and the isolated bacterial cells obtained were dried with hot air at 70°C to obtain dried bacterial cells. 200 kg/10 are of the dried bacterial cells are used together with fertilizer in the soil before planting tomato seedlings, and the total nitrogen content is
9.6Kg/10ares, phosphoric acid 27Kg/10ares (P 2 O 5
) and potassium at 8.4 kg/10 are (as K 2 O), and tomato seedlings (variety K705) were planted in the cultivation soil. As a control, 200 kg/10 are of dried bacterial cells obtained by culturing Brevibacterium protoformiae (IFO12128) in the same manner were applied together with fertilizer. Collect mature tomato fruits from each treatment plot and control plot, measure the amount of amino acids, and display the results as a percentage of the amount of amino acids in tomatoes in the control plot,
It is shown in Table 5.

【表】 実施例 6 グルコール2%、ポリペプトン1%、酵母エキ
ス0.5%、FeSO4・5H2O0.01%、Fe2(SO43
XH2O0.01%、大豆油0.2%、シリコーンKM70
(商品名:信越化学〓製)0.14%(殺菌前3N
NaOHでPH7.0に調製)からなる種培地を実施例
1同様に殺菌した後、ブレビバクテリウム・リク
エフアシエンス(Brevibacterium
Iiquefaciens)(ATCC14929)を一白金耳接種
し、30℃、16時間、140r.p.m.で振盪培養した。
次にKH2PO41%、K2HPO41%、(NH42SO42%、
MgSO4・7H2O0.05%、FeSO4・5H2O0.005%、
グルコース10%、大豆油0.2%、シリコーンKM70
(商品名:信越化学〓製)0.14%、水道水(殺菌
前3N KOHでPH7.5に調製)からなる発酵培地を
実施例1同様に殺菌し、200容ジヤー・フアー
メンター(丸菱〓製)中に120とし、これに種
培養液を0.8%接種して実施例1同様に培養後、
培養液をシヤープレス型遠心分離し、の上澄液中
のCAMPを測定したところ0.8mg/mlであつた。 次に得られた分離菌体を50℃で熱風乾燥し、
1000の培養液が30Kgの乾燥菌体を得た。トマト
苗定植前の土壌に該乾燥菌体250Kgを肥料ととも
に使用し、全体として実施例1と同じ窒素量、リ
ン酸量、カリ量になるように施用し、トマト苗
(品種K705)を上記トマト栽培土壌に定植した。
尚対照としてブレビバクテリウム・プロトホルミ
アエ(IFO12128)を上記同様に培養して得た乾
燥菌体250Kgを肥料とともに施用した。 各処理区及び対照区より成熟トマト果実を採取
し、アミノ酸量を測定したところ、ブレビバクテ
リウム・リクエフアシエンス(ATCC14929)を
使用した栽培土壌から得られたトマト中のアミノ
酸量は対照区のトマト中のアミノ酸量の125%で
あつた。
[Table] Example 6 Glucol 2%, polypeptone 1%, yeast extract 0.5%, FeSO 4.5H 2 O 0.01%, Fe 2 (SO 4 ) 3 .
XH2O0.01 %, soybean oil 0.2%, silicone KM70
(Product name: Shin-Etsu Chemical) 0.14% (3N before sterilization)
After sterilizing the seed medium consisting of Brevibacterium liquefaciens (adjusted to pH 7.0 with NaOH) in the same manner as in Example 1,
Iiquefaciens) (ATCC14929) was inoculated with one platinum loop and cultured at 30°C for 16 hours with shaking at 140 rpm.
Then KH 2 PO 4 1%, K 2 HPO 4 1%, (NH 4 ) 2 SO 4 2%,
MgSO47H2O0.05 %, FeSO45H2O0.005 %,
Glucose 10%, Soybean oil 0.2%, Silicone KM70
A fermentation medium consisting of 0.14% (trade name: manufactured by Shin-Etsu Chemical) and tap water (adjusted to pH 7.5 with 3N KOH before sterilization) was sterilized in the same manner as in Example 1, and a 200 volume jar fermenter (manufactured by Marubishi) was sterilized. ) was inoculated with 0.8% seed culture solution and cultured in the same manner as in Example 1.
The culture solution was subjected to shear press centrifugation, and CAMP in the supernatant was measured and found to be 0.8 mg/ml. Next, the isolated bacterial cells obtained were dried with hot air at 50°C.
1000 culture solutions yielded 30Kg of dried bacterial cells. 250 kg of the dried bacterial cells were used together with fertilizer on the soil before planting tomato seedlings, and applied so that the overall amount of nitrogen, phosphoric acid, and potassium was the same as in Example 1, and the tomato seedlings (variety K705) were planted with the above tomato seedlings. It was planted in cultivation soil.
As a control, 250 kg of dried bacterial cells obtained by culturing Brevibacterium protoformiae (IFO12128) in the same manner as above was applied together with fertilizer. When mature tomato fruits were collected from each treatment plot and the control plot and the amount of amino acids was measured, it was found that the amount of amino acids in tomatoes obtained from the cultivation soil using Brevibacterium liquefaciens (ATCC14929) was higher than that of tomatoes in the control plot. It was 125% of the amount of amino acids in it.

Claims (1)

【特許請求の範囲】 1 サイクリツク−3′,5′−アデニル酸生産菌の
菌体含有物を土壌に施用することを特徴とする蔬
菜の栽培法。 2 サイクリツク−3′,5′−アデニル酸生産菌が
ミクロバクテリウム属、アスロバクタ−属、コリ
ネバクテリウム属及びブレビバクテリウム属に属
する菌である特許請求の範囲第1項記載の蔬菜の
栽培法。 3 菌体含有物がサイクリツク−3′,5′−アデニ
ル酸生産培地に培養して得た菌体である特許請求
の範囲第1項記載の蔬菜の栽培法。
[Scope of Claims] 1. A method for cultivating vegetables, which comprises applying to soil a substance containing cells of cyclic-3',5'-adenylic acid producing bacteria. 2. The method for cultivating vegetables according to claim 1, wherein the cyclic-3',5'-adenylic acid-producing bacteria belong to the genus Microbacterium, Aslobacter, Corynebacterium, and Brevibacterium. . 3. The method for cultivating vegetables according to claim 1, wherein the bacterial cell-containing material is bacterial cells obtained by culturing in a cyclic-3',5'-adenylic acid production medium.
JP1282479A 1979-02-08 1979-02-08 Vegetable clutivation Granted JPS55104991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282479A JPS55104991A (en) 1979-02-08 1979-02-08 Vegetable clutivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282479A JPS55104991A (en) 1979-02-08 1979-02-08 Vegetable clutivation

Publications (2)

Publication Number Publication Date
JPS55104991A JPS55104991A (en) 1980-08-11
JPS6114119B2 true JPS6114119B2 (en) 1986-04-17

Family

ID=11816125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282479A Granted JPS55104991A (en) 1979-02-08 1979-02-08 Vegetable clutivation

Country Status (1)

Country Link
JP (1) JPS55104991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324434U (en) * 1986-07-07 1988-02-18

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788287B2 (en) * 1987-12-28 1995-09-27 三井東圧化学株式会社 Plant growth promoter
CN1449251A (en) * 2000-02-23 2003-10-15 吴羽化学工业株式会社 Plant growth promoters and method of promoting plant growth
ES2172389B1 (en) * 2000-04-13 2003-10-01 Inabonos Sa STIMULATING COMPOSITION OF GROWTH OF PLANTS.
CN103254022A (en) * 2013-05-30 2013-08-21 吉林农业大学 Soil bio-activator for ginseng continuous cropping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324434U (en) * 1986-07-07 1988-02-18

Also Published As

Publication number Publication date
JPS55104991A (en) 1980-08-11

Similar Documents

Publication Publication Date Title
CA2359338C (en) Bacillus subtilis takemi and use thereof
AU2354101A (en) Treatment of seeds and plants with useful bacteria
CN102627504B (en) Culture substrate special for organic herbal fruits and preparation method thereof
CN102839076A (en) Preparation method of pit mud for esterifying enzyme compound bacterium liquid
JP3461856B2 (en) Natto strain and natto produced using this natto strain
CN101690571B (en) Cherry tomato preserved product and production method thereof
JPS6114119B2 (en)
JPH0739386A (en) Production of bacterial cellulose
US4210672A (en) Preparation of yogurt
JPH04240177A (en) Organic fermented fertilizer and production thereof
US5459053A (en) Use of rumen contents from slaughter cattle for the production of lactic acid
US7037672B2 (en) Process for producing a bran pickles flavoring solution
CN111286472B (en) Bacillus amyloliquefaciens with fragrance production function and preparation method and application thereof
US4278690A (en) Method of producing nutrient food by fermenting water oats with a Bacillus subtilis
CN106520625B (en) A kind of symbiosis streptococcus acidi lactici fermented solution, preparation method and its usage
CN105543134A (en) Complex-microbial-inoculant product for vegetable fermentation
JPH0994026A (en) Culture soil for growing tea containing many active ingredients
US3979522A (en) Biochemical process for the synthesis of protein from cellulose and starch-containing plants
Ehon et al. Towards Added Value Attieke Production in Côte d ‘Ivoire Using Bacillus spp. as Starters
JPH0433409B2 (en)
JPH06343415A (en) Production of function-enriched vinegar
FR2605184A1 (en) NOVEL MICROORGANISM AND CULTURE METHOD USING THE SAME
Olubamiwa et al. Evaluation of nutritional composition and acceptability of Soy-Coconut Milk-Based Yoghurt fermented with different starter culture
Perera et al. Evaluation of the effects of natural fermentation on Nutritional quality of the cassava variety MU51
JPH0998716A (en) Production of microorganism-added pickle and pickle obtained thereby