JPS61140847A - Electron spin resonance device - Google Patents

Electron spin resonance device

Info

Publication number
JPS61140847A
JPS61140847A JP59263982A JP26398284A JPS61140847A JP S61140847 A JPS61140847 A JP S61140847A JP 59263982 A JP59263982 A JP 59263982A JP 26398284 A JP26398284 A JP 26398284A JP S61140847 A JPS61140847 A JP S61140847A
Authority
JP
Japan
Prior art keywords
oscillator
microwave
resonance
cavity resonator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59263982A
Other languages
Japanese (ja)
Other versions
JPH0527832B2 (en
Inventor
Ekuo Yoshida
吉田 栄久夫
Kanae Fujii
藤井 金苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP59263982A priority Critical patent/JPS61140847A/en
Publication of JPS61140847A publication Critical patent/JPS61140847A/en
Publication of JPH0527832B2 publication Critical patent/JPH0527832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To obtain an electron spin resonance signal as digital information by controlling a microwave oscillator and placing a cavity resonator invariably in a resonance state, and recording variation in oscillation frequency accompanying a magnetic field sweep. CONSTITUTION:The sample in the cavity resonator 1 makes electron spin resonance as a magnetostatic field is swept and when the resonance frequency of the cavity resonator shifts from f0, a detection signal DELTAf indicating the extent and direction of the shift is obtained from a detector 6. A feedback circuit 10 amplifies the signal property and feeds it back to the oscillator 3, so the oscillation frequency of the oscillator 3 varies following up the shift in the resonance frequency due to the resonance and the cavity resonator 1 is held invariably in the resonance state. A figure shows the output signal of a counter 11 which monitors variation in the oscillation frequency of the oscillator 3 accompanying the sweep of the magnetostatic field. An electron spin resonance signal with a dispersed waveform is obtained from the output signal.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は電子スビンバ鳴装置に関し、特に共鳴信号をア
ナログ信号としてではなくデジタル信号として取出すこ
とのできる電子スピン共鳴装−に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an electronic spin resonance device, and more particularly to an electron spin resonance device that can extract a resonance signal not as an analog signal but as a digital signal.

[従来技術1 従来の電子スピン共鳴装置においては、静磁場内に空胴
共振器を配置し、該空胴共振器に収容された試料の電子
スピン共鳴によりマイクロ波が吸収され、共振器のバラ
ンスがくずれることによって発生する反射マイクロ波を
検出器で検出し、電子スピン共鳴信号を行でいる。
[Prior art 1] In a conventional electron spin resonance apparatus, a cavity resonator is placed in a static magnetic field, and microwaves are absorbed by the electron spin resonance of a sample housed in the cavity resonator, and the balance of the cavity is adjusted. A detector detects the reflected microwaves generated by the collapse of the beam, and generates an electron spin resonance signal.

このような構成を等価回路で表わすと第6図のようにな
る。第6図において1はマイクロ波発振器、2は空胴共
振器、3は空胴共振器2に一収容された試別、4はマイ
クロ波検出器、5は発振器1からのマイクロ波を空胴共
振器2へ供給すると共に、空胴共振器2からの反射マイ
クロ波を検出器4へ送るためのマイクロ波ブリッジであ
る。
When such a configuration is expressed as an equivalent circuit, it becomes as shown in FIG. In Fig. 6, 1 is a microwave oscillator, 2 is a cavity resonator, 3 is a sample housed in the cavity resonator 2, 4 is a microwave detector, and 5 is a cavity that receives the microwave from the oscillator 1. This is a microwave bridge for supplying microwaves to the resonator 2 and for transmitting reflected microwaves from the cavity resonator 2 to the detector 4.

空胴共振器は等価回路ではl 、C,Reの直列回路と
して表わされ、試r1が電子スピン共鳴していない時の
空胴共振器のインピーダンスZOは下式で表わされる。
The cavity resonator is expressed as a series circuit of l, C, and Re in an equivalent circuit, and the impedance ZO of the cavity when sample r1 is not undergoing electron spin resonance is expressed by the following formula.

70=RC+、j(ωL−1/θ)C)  ・・・(1
)一方、試r1が電子スピン共鳴すると、Lが試別の磁
化率χの分増加しL(1+χ)となるので、共鳴時の空
胴共振器のインピーダンス7rは下式で表わされる値と
なる。
70=RC+,j(ωL-1/θ)C)...(1
) On the other hand, when sample r1 undergoes electron spin resonance, L increases by the magnetic susceptibility χ of the sample and becomes L(1+χ), so the impedance 7r of the cavity resonator at the time of resonance becomes a value expressed by the following formula. .

7r =Rc −1−j [θ>l  (1+χ)−1
/ωC]・・・(2) χを複素数でχ=χ′−jχ″と表わせば(2)式は下
式へと変形され、 7r = (RC+ω1−χ″)+ j[ω1−(1+χ’)−110>C]・・・(3) 従来の電子スピン共鳴装置は、共鳴に伴ってインピーダ
ンスが上述の如く70から7「へと変化することに基づ
く空胴共振器のQの低下によって外部に反射されるマイ
クロ波強度を検出しており、先にも述べた通り得られる
共鳴信号は木質的にアナログ信号である。
7r = Rc -1-j [θ>l (1+χ)-1
/ωC]...(2) Expressing χ as a complex number as χ=χ'-jχ'', equation (2) is transformed into the following equation, 7r = (RC+ω1-χ'')+j[ω1-(1+χ ')-110>C]...(3) In the conventional electron spin resonance device, the Q of the cavity resonator decreases due to the impedance changing from 70 to 7' as described above with resonance. The microwave intensity reflected to the outside is detected, and as mentioned earlier, the obtained resonance signal is essentially an analog signal.

[発明が解決しようとする問題点] このように出力信号がアナログ信号である場合、共鳴信
号が出力されない(即ち電子スピン共鳴が起きていない
)時の出力の安定性が要求される。
[Problems to be Solved by the Invention] In this way, when the output signal is an analog signal, stability of the output is required when no resonance signal is output (that is, when electron spin resonance is not occurring).

そのため、従来の電子スピン共鳴装買では、静磁場HO
を例えば100K H1稈度の周波数で変調し、共鳴が
起きた時のみ出力側に変調成分・が現われることを利用
し、ロックイン増幅器を用いて共鳴信号を取出す必要が
あった。
Therefore, in conventional electron spin resonance imaging, the static magnetic field HO
It was necessary to modulate the signal at a frequency of, for example, 100K H1, and extract the resonance signal using a lock-in amplifier, taking advantage of the fact that a modulation component appears on the output side only when resonance occurs.

そのため、構成が複雑になるし、SN比を十分考虚して
回路を設計しなければならなかった。
Therefore, the configuration becomes complicated, and the circuit must be designed with sufficient consideration given to the SN ratio.

本発明はこの点に鑑みてなされたものであり、電子スピ
ン共鳴信号をデジタル情報として得ることができ、構成
が的中で高いSN比の得られる電子スピン共鳴装四を提
供することを目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide an electron spin resonance device that can obtain an electron spin resonance signal as digital information, has an accurate configuration, and can obtain a high signal-to-noise ratio. There is.

F問題点を解決するための手段] この目的を達成するため、本発明にかかる電子スピン共
鳴装置は、静磁場を発生する手段と、該−3= 静10場を掃引する手段と、該静磁場内に配置される空
胴共振器と、マイクロ波発振器と、該発振器からのマイ
クロ波を前記空胴共振器へ供給すると共に該空胴共振器
からの反射マイクロ波を取出すマイクロ波ブリッジと、
取出されたマイクロ波を検出するマイクロ波検出器と、
該検出器の出力信号に基づき前記マイクロ波発振器の発
振周波数を制御して空胴共振器から反射マイクロ波が発
生しないようにするための自動周波数制御手段とを備え
、前記マイクロ波発振器の発振周波数の変化を前記静磁
場の掃引に関連して記録するようにしたことを特徴とし
ている。
Means for Solving Problem F] To achieve this object, the electron spin resonance apparatus according to the present invention includes a means for generating a static magnetic field, a means for sweeping the -3=static field, and a means for sweeping the static magnetic field. a cavity resonator disposed in a magnetic field, a microwave oscillator, a microwave bridge that supplies microwaves from the oscillator to the cavity resonator and extracts reflected microwaves from the cavity resonator;
a microwave detector that detects the extracted microwave;
automatic frequency control means for controlling the oscillation frequency of the microwave oscillator based on the output signal of the detector to prevent reflected microwaves from being generated from the cavity resonator; It is characterized in that the change in is recorded in relation to the sweep of the static magnetic field.

[作用1 試F1が電子スピン共鳴していない時の空胴共振器の共
鳴周波数foは下式で表わされ、fo=1/2πF「「
       ・・・(4)共鳴時の共振周波数frは
下式で表わされる。
[Effect 1 The resonant frequency fo of the cavity resonator when sample F1 is not undergoing electron spin resonance is expressed by the following formula, fo = 1/2πF
...(4) The resonance frequency fr at the time of resonance is expressed by the following formula.

fr=1/2  π      、   11−Z’)
     =・ (5)本発明においては、この共鳴に
伴う空胴共振器の共振周波数の変化に着目し、自動周波
数制御子−4= 段によりマイクロ波発振器を制御して空胴共振器が常に
共振状態にあるようにし、静磁場の掃引にIvI連して
マイクロ波発振器の発振周波数の変化を記録することに
より、電子スピン共鳴信号を周波数の変化としてとらえ
るようにしている。
fr=1/2 π, 11-Z')
=・ (5) In the present invention, we focus on the change in the resonant frequency of the cavity resonator accompanying this resonance, and control the microwave oscillator using the automatic frequency controller -4= stage to ensure that the cavity resonator always resonates. By recording the change in the oscillation frequency of the microwave oscillator in conjunction with the sweeping of the static magnetic field, the electron spin resonance signal is captured as a change in frequency.

[実施例] 以下、図面を用いて本発明の一実施例をrK説する。[Example] Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成を示し、図中1は磁石
2によって生成される静1it1場内に配置された空胴
共振器である。空胴共振器1には発振周波数可変のマイ
クロ波発振器3からのマイクロ波がアッテネータ4.マ
イクロ波ブリッジ例えばサーキュレータ5を介して供給
される。空胴共振器1で反射したマイクロ波は、サーキ
ュレ=り5を介してマイクロ波検出器6へ送られて検出
される。
FIG. 1 shows the configuration of an embodiment of the present invention, in which reference numeral 1 denotes a cavity resonator placed within a static field generated by a magnet 2. In FIG. Microwaves from a microwave oscillator 3 with a variable oscillation frequency are transmitted to the cavity resonator 1 through an attenuator 4. It is supplied via a microwave bridge, for example a circulator 5. The microwave reflected by the cavity resonator 1 is sent to a microwave detector 6 via a circuit 5 and detected.

前記発振器3とアッテネータ40間及びサーキュレータ
5と検出器6の間のマイクロ波線路には方向性結合器7
.8が設けられ、方向性結合器7から取出された参照マ
イクロ波は方向性結合器8を介してサーキュレータ5か
ら検出器6へ送られるマイクロ波に加え合わされろ。9
はその参照マイクロ波線路に挿入された移相器である。
A directional coupler 7 is provided on the microwave line between the oscillator 3 and the attenuator 40 and between the circulator 5 and the detector 6.
.. 8 is provided, and the reference microwave taken out from the directional coupler 7 is added to the microwave sent from the circulator 5 to the detector 6 via the directional coupler 8. 9
is a phase shifter inserted into the reference microwave line.

上記検出器6から得られる検出信号は、周波数制御用帰
還回路10を介して前記発振器3へ送られ、それにより
発振器3の発振周波数が制御される。11はその発振周
波数をカウントするためのマイクロ波周波数カウンタで
、そのカウント出力は記録装置12に記録される。13
は発振器3からのマイクロ波を取出して上記カウンタへ
送るための方向性結合器、14は静磁場を掃引するため
の電源である。
A detection signal obtained from the detector 6 is sent to the oscillator 3 via a frequency control feedback circuit 10, thereby controlling the oscillation frequency of the oscillator 3. 11 is a microwave frequency counter for counting the oscillation frequency, and the count output is recorded in the recording device 12. 13
14 is a directional coupler for extracting the microwave from the oscillator 3 and sending it to the counter, and 14 is a power source for sweeping the static magnetic field.

一ト述の如き構成において、共振器1の共振周波数が電
子スピン共鳴により変化した時、それを検出して発振器
3の発振周波数がそれに追従するように自動制御するた
めには、帰還回路10へ送られる信号が周波数fに対し
て第2図(a)又は(1))のような特性を持たなけれ
ばならない。
In the configuration as described above, when the resonant frequency of the resonator 1 changes due to electron spin resonance, in order to detect it and automatically control the oscillation frequency of the oscillator 3 to follow it, the feedback circuit 10 is The signal to be sent must have characteristics as shown in FIG. 2(a) or (1)) with respect to frequency f.

参照マイクロ波線路はそのために設けられたものであり
、方向性結合器8において参照マイクロ波をサーキュレ
ータ5から検出器6へ送られるマイクロ波に加え合わす
際、両者の位相差が90゜になるように移相器9を調整
することにより、第2図(a)又は(b)のような特性
が得られるようにしている。
The reference microwave line is provided for this purpose, and when adding the reference microwave to the microwave sent from the circulator 5 to the detector 6 in the directional coupler 8, it is set so that the phase difference between the two becomes 90 degrees. By adjusting the phase shifter 9, the characteristics shown in FIG. 2(a) or (b) can be obtained.

そのため、静磁場の掃引に伴って空胴共振器1内の試別
が電子スピン共鳴し、空胴共振器の共振周波数がfoか
らずれると、そのずれた聞及び方向を示す検出信号へf
が検出器6から得られる。
Therefore, when the sample in the cavity resonator 1 undergoes electron spin resonance as the static magnetic field sweeps, and the resonant frequency of the cavity resonator deviates from fo, the detection signal indicating the period and direction of the deviation changes to f.
is obtained from the detector 6.

帰還回路10はこの検出信号を適宜増幅して発振器3ヘ
フイードバツクするため、発振器3の発振周波数は共鳴
による共振周波数のずれに追随して変化することになり
、空胴共振器1は常に共振状態に保持される。第3図は
静磁場の掃引に伴う発振器3の発振周波数の変化をモニ
タしたカウンタ11の出力信号を示1゜この出力信号が
(5)式の共振周波数frに対応するものであり、分散
波形の電子スピン共鳴信号が得られる。
Since the feedback circuit 10 appropriately amplifies this detection signal and feeds it back to the oscillator 3, the oscillation frequency of the oscillator 3 changes to follow the shift in the resonance frequency due to resonance, and the cavity resonator 1 is always in a resonant state. Retained. Figure 3 shows the output signal of the counter 11 that monitors the change in the oscillation frequency of the oscillator 3 as the static magnetic field is swept. electron spin resonance signals are obtained.

この共鳴信号は、カウンタ11の出力信号としてデジタ
ル情報で得られる。従って、マイクロ波発振器3とカウ
ンタ11のM準ゲート発振器の発振周波数の安定度を十
分高めれば十分安定度の良い共鳴信号を臀ることができ
、従来のようにアナログ増幅器の雑音指数等を考慮した
慎重な回路設計を行う必要は無く、磁場変調機構及びロ
ックイン増幅器等の構成も不要となる。
This resonance signal is obtained as digital information as an output signal of the counter 11. Therefore, if the stability of the oscillation frequencies of the microwave oscillator 3 and the M quasi-gate oscillator of the counter 11 is sufficiently increased, a sufficiently stable resonance signal can be obtained, and the noise figure of the analog amplifier, etc., can be taken into account as in the conventional method. There is no need to perform careful circuit design, and configurations such as a magnetic field modulation mechanism and a lock-in amplifier are also unnecessary.

尚、従来装置においても参照マイクロ波線路を設けたも
のは存在する。ただし、その目的は発振器がら空胴共振
器へ供給するマイクロ波電力の大小にかかわらず検出器
の動作レベルを一定に保つことであり、そのため、検出
器直前の方向性結合器において参照マイクロ波をサーキ
ュレータから検出器へ送られるマイクロ波に加え合わす
際、両者の位相差がOo又は180°になるように移相
器が調整されている。従って、このような従来装置を用
いる場合は、位相差が90’になるように移相器を調整
し直す必要がある。
Note that there are also conventional devices that are provided with a reference microwave line. However, the purpose of this is to keep the operating level of the detector constant regardless of the magnitude of the microwave power supplied from the oscillator to the cavity resonator, so the reference microwave is When adding the microwaves sent from the circulator to the detector, the phase shifter is adjusted so that the phase difference between them becomes Oo or 180°. Therefore, when using such a conventional device, it is necessary to readjust the phase shifter so that the phase difference becomes 90'.

第4図は本発明の仙の実施例の構造を示し、第1図の実
施例と同一の構成要素には同一番号が付されている。第
4図において15は数に+−177′IJ至=8− 数10KHz程度の変調信号fmを発生する発振器で、
マイクロ波発振器3はこの変調信号によって変調された
マイクロ波を発生する。16は検出器6から得られる検
出信号を前記変調信号に基づいて位相検波するための位
相検波器である。
FIG. 4 shows the structure of a third embodiment of the invention, in which the same components as in the embodiment of FIG. 1 are given the same numbers. In Fig. 4, 15 is an oscillator that generates a modulation signal fm of about 10 KHz,
The microwave oscillator 3 generates microwaves modulated by this modulation signal. 16 is a phase detector for detecting the phase of the detection signal obtained from the detector 6 based on the modulation signal.

本実施例においては、移相器9は先に述べた従来例と同
様位相差が0°又は180°になるように設定されてい
る。そのため、検出器6から得られる信号は周波数fに
対して第2図(a)、(b)のような特性ではなく第5
図(a)又は(b)のような特性を示す。この時、マイ
クロ波には変調信号fmによる変調がか【プられている
ため、出力信号にもその変調信号が現われるが、その信
号の位相は共振器1の共振周波数が高くなる側にずれた
場合と低くなる側へずれた場合とで位相が異なる(第5
図(a)参照)。そこで、位相検波器16を用いて変調
信号fmに基づいて位相検波を行えば、検波器16の出
力には先の実施例におIプるΔfと全く等価な信号が1
りられる。従って、この信号を帰)!回路10を介して
発振器3ヘフィードバックすれば、第1図の実施例と全
く同様に空胴共振器1が常に共振状態になるように発振
器3の発振周波数が制御され、電子スピン共鳴信号がI
+7られろことになる。
In this embodiment, the phase shifter 9 is set so that the phase difference is 0° or 180°, as in the conventional example described above. Therefore, the signal obtained from the detector 6 does not have the characteristics as shown in FIGS. 2(a) and 2(b) with respect to the frequency f, but
It exhibits characteristics as shown in figure (a) or (b). At this time, since the microwave is modulated by the modulation signal fm, the modulation signal also appears in the output signal, but the phase of the signal shifts to the side where the resonant frequency of resonator 1 becomes higher. The phase is different depending on the case where it is shifted to the lower side (the fifth
(See figure (a)). Therefore, if the phase detector 16 is used to perform phase detection based on the modulated signal fm, the output of the detector 16 will contain a signal completely equivalent to Δf that is applied to I in the previous embodiment.
You can get rid of it. Therefore, return this signal)! By feeding back to the oscillator 3 via the circuit 10, the oscillation frequency of the oscillator 3 is controlled so that the cavity resonator 1 is always in a resonant state, just as in the embodiment shown in FIG.
It will be +7.

[発明の効m] ■ス上詳述した如く、本発明によれば、電子スピン共鳴
信号をデジタル情報として得ることができ、構成が簡単
で高いSN比の得られる電子スピン共鳴装置が実現され
る。
[Effects of the Invention] ■As detailed above, according to the present invention, an electron spin resonance apparatus that can obtain an electron spin resonance signal as digital information, has a simple configuration, and can obtain a high S/N ratio is realized. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は夫々本発明の一実施例を示す図、第
2図及び第5図は夫々検出器6から得られる信号の周波
数に対する特性を示す図、第3図は静…場の掃引に伴う
発振器3の発振周波数の変化をモニタしたカウンタ11
の出力信号を示す図、第6図は従来の電子スピン共鳴装
置の構成を等価回路で表わした図である。 1:空胴共振器  2:vA石 3:マイクロ波発振器 5:サーキュレータ 6:マイクロ波検出器 7.8,13:方向性結合器 9:移相器 10:周波数制御用帰還回路 11:マイクロ波周波数カウンタ 12:記録装置  14:電源
1 and 4 are diagrams each showing an embodiment of the present invention, FIGS. 2 and 5 are diagrams each showing the characteristics of the signal obtained from the detector 6 with respect to frequency, and FIG. A counter 11 monitors changes in the oscillation frequency of the oscillator 3 as the oscillator 3 sweeps.
FIG. 6 is a diagram showing the configuration of a conventional electron spin resonance apparatus using an equivalent circuit. 1: Cavity resonator 2: VA stone 3: Microwave oscillator 5: Circulator 6: Microwave detector 7.8, 13: Directional coupler 9: Phase shifter 10: Frequency control feedback circuit 11: Microwave Frequency counter 12: Recording device 14: Power supply

Claims (2)

【特許請求の範囲】[Claims] (1)静磁場を発生する手段と、該静磁場内に配置され
る空胴共振器と、マイクロ波発振器と、該発振器からの
マイクロ波を前記空胴共振器へ供給すると共に該空胴共
振器からの反射マイクロ波を取出すマイクロ波ブリッジ
と、取出されたマイクロ波を検出するマイクロ波検出器
と、該検出器の出力信号に基づき前記マイクロ波発振器
の発振周波数を制御して空胴共振器から反射マイクロ波
が発生しないようにするための自動周波数制御手段とを
備え、前記マイクロ波発振器の発振周波数の変化を前記
静磁場の掃引に関連して記録するようにしたことを特徴
とする電子スピン共鳴装置。
(1) A means for generating a static magnetic field, a cavity resonator disposed within the static magnetic field, a microwave oscillator, supplying microwaves from the oscillator to the cavity resonator, and causing the cavity resonance. a microwave bridge that extracts reflected microwaves from the microwave, a microwave detector that detects the extracted microwaves, and a cavity resonator that controls the oscillation frequency of the microwave oscillator based on the output signal of the detector. automatic frequency control means for preventing reflected microwaves from being generated from the microwave oscillator, and recording changes in the oscillation frequency of the microwave oscillator in relation to the sweeping of the static magnetic field. Spin resonator.
(2)前記マイクロ波発振器の発振周波数を周波数カウ
ンタで測定するようにした特許請求の範囲第1項記載の
電子スピン共鳴装置。
(2) The electron spin resonance apparatus according to claim 1, wherein the oscillation frequency of the microwave oscillator is measured by a frequency counter.
JP59263982A 1984-12-14 1984-12-14 Electron spin resonance device Granted JPS61140847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263982A JPS61140847A (en) 1984-12-14 1984-12-14 Electron spin resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263982A JPS61140847A (en) 1984-12-14 1984-12-14 Electron spin resonance device

Publications (2)

Publication Number Publication Date
JPS61140847A true JPS61140847A (en) 1986-06-27
JPH0527832B2 JPH0527832B2 (en) 1993-04-22

Family

ID=17396901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263982A Granted JPS61140847A (en) 1984-12-14 1984-12-14 Electron spin resonance device

Country Status (1)

Country Link
JP (1) JPS61140847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011425A1 (en) * 1991-12-06 1993-06-10 Sumitomo Special Metals Co., Ltd. Electron spin resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718139A (en) * 1980-07-07 1982-01-29 Mitsubishi Electric Corp In-band signal detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718139A (en) * 1980-07-07 1982-01-29 Mitsubishi Electric Corp In-band signal detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011425A1 (en) * 1991-12-06 1993-06-10 Sumitomo Special Metals Co., Ltd. Electron spin resonator
US5465047A (en) * 1991-12-06 1995-11-07 Nikkiso Co., Ltd. Electron spin resonator having variable resonance frequency and error detecting automatic frequency control

Also Published As

Publication number Publication date
JPH0527832B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
US3495161A (en) Optically driven atomic resonator systems employing means for modulating the sense of rotational polarization of the pumping light
US7924004B2 (en) Electric potential sensor for use in the detection of nuclear magnetic resonance signals
EP0570592B1 (en) Electron spin resonator
JPS61140847A (en) Electron spin resonance device
JP3443010B2 (en) Resonator and electron spin resonance measuring device
JP4388539B2 (en) Resonator and magnetic resonance measuring apparatus
US4135152A (en) System for monitoring and measuring high voltage D.C. transmission line current
JP4041900B2 (en) Automatic control device for electron spin resonance measuring device
Clark Superheterodyne measurement of microwave attenuation at a 10-kHz intermediate frequency
US3100280A (en) Gyromagnetic resonance methods and apparatus
US3502963A (en) Single coil nuclear resonance spectrometer having the radio frequency excitation directionally coupled into the coil
US3173084A (en) Gyromagnetic resonance method and apparatus
JPH0587248B2 (en)
RU2066865C1 (en) Device for frequency- selective conversion of microwave power
JP2000065910A (en) Apparatus and method for magnetic resonance measuring and resonator
Hoffman et al. Simultaneous Measurement of Attenuation and Velocity Change with an ltrasonic Continuous Wave Spectrometer
CA1181812A (en) Dual r.f. biased squid electronic circuit
KR100198554B1 (en) Microscopic magnetometer
US2421724A (en) Method and means for measuring power output of high-frequency signal generators
US3548298A (en) Transistorized nuclear magnetic resonance gaussmeter
RU2099854C1 (en) Gyromagnetic shf crossmultiplier
SU1071988A1 (en) Metal detector
Daams Cesium-Beam Servo System Using Square-Wave Frequency Modulation
JP2008180569A (en) Esr device
SU693226A1 (en) Electron-paramagnetic analyzer of composition