JPS61140393A - Manufacture of titanium clad steel - Google Patents

Manufacture of titanium clad steel

Info

Publication number
JPS61140393A
JPS61140393A JP26429184A JP26429184A JPS61140393A JP S61140393 A JPS61140393 A JP S61140393A JP 26429184 A JP26429184 A JP 26429184A JP 26429184 A JP26429184 A JP 26429184A JP S61140393 A JPS61140393 A JP S61140393A
Authority
JP
Japan
Prior art keywords
titanium
fine
organic solvent
steel
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26429184A
Other languages
Japanese (ja)
Inventor
Yuichi Komizo
裕一 小溝
Masaru Nishiguchi
西口 勝
Mutsuo Nakanishi
中西 睦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26429184A priority Critical patent/JPS61140393A/en
Publication of JPS61140393A publication Critical patent/JPS61140393A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain an increased manufacturing efficiency and improved quality of titanium clad steel by coating a mixture of Ni fine powdres having a specific size and an organic solvent and a mixture of Nb, Mo, etc. fine powdres having a specific size and an organic solvent on the surface of a base metal and the surface of a clad metal, respectively, heating and rolling both metals. CONSTITUTION:The surface of the base metal 1 is evenly coated with the Ni fine powdres 2 mixed into an organic solvent as an intermediate material and is dried. The surface of the clad metal 3 of titanium or a titanium alloy is evenly coated with the mixture of fine powdres 4 of a 1 kind among Nb, Mo, Zr, and V or >=2 kinds among them which not make an intermetallic compound and an organic solvent as an intermediate material and is dried. All the powder size are <100mum. The base metal 1 and the clad metal 3 are put one upon another putting the intermediate materials between those metals. Those metals are heated at a specific temp. and rolled. The method forms titanium clad steels having alpha phase, so that improved quality and increased manufacturing efficiency are obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は炭素鋼或は低合金鋼から成る母材とチタン或は
チタン合金よりなる合材とを接合してつくるチタンクラ
ッド鋼の製造方法に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is directed to the production of titanium clad steel, which is made by joining a base material made of carbon steel or low alloy steel and a composite material made of titanium or titanium alloy. Regarding the method.

(ロ)従来技術 普通鋼板の母材に他の金属からなる合材を接合したいわ
ゆるクラッド鋼は、その製造方法の相違によって鋳込ク
ランド鋼、爆着クラッド鋼、圧延クラッド鋼、爆着圧延
クラッド鋼および鋳込圧延クランドsなどがあり、合材
としてチタン或はチタン合金を使用し友チタンクラッド
鋼の製造方法としてはJIS  G3603rチタンク
ラッド鋼」に記載されて贋るように爆着クラッド法が知
られている。しかし爆着クラッド法は爆発力により母材
と合材とを圧着させる方法であるため素材の大きさに制
約があり、大きなりラッド鋼板金得ることができない開
明がおる。
(b) Conventional technology The so-called clad steel, which is made by bonding a composite material made of other metals to the base material of ordinary steel sheets, is classified into cast clad steel, explosion bonded clad steel, rolled clad steel, and explosion bonded rolled clad steel, depending on the manufacturing method. There are steel and cast-rolled crunds, etc. Titanium or titanium alloy is used as a composite material, and the method for manufacturing titanium clad steel is the explosion bonding clad method as described in "JIS G3603r titanium clad steel". Are known. However, since the explosive bonding cladding method is a method of crimping the base material and composite material using explosive force, there are restrictions on the size of the material, and it is difficult to obtain large rad steel sheet metals.

一方、合材としてステンレス鋼を使用したステンレスク
ラッド鋼の製造には圧延クラッド法や肉盛クラッド法が
広く利用されているが、これらの方法はチタンクランド
鋼の製造方法として採用し、得ない。これはチタンが種
々の金慎と金属化合物?つくるために正常な接着層が得
られないからである。このような問題を解決する方法と
して、ステンレスクラッド鋼の特殊な製造におけると同
様に、母材と合材との間にニッケル箔或はニッケルメッ
キ等による中間層を施すことが考えられるが、ニッケル
箔又はニッケルメッキ層ではチタンとの1間で金属間化
合物を形成し大きな脆化を招く之めクラッド鋼の製造が
困難となる問題がある。
On the other hand, rolling cladding methods and overlay cladding methods are widely used to manufacture stainless clad steel using stainless steel as a composite material, but these methods cannot be used as manufacturing methods for titanium clad steel. Is this a metal compound of titanium and various metals? This is because a normal adhesive layer cannot be obtained. One possible way to solve this problem is to apply an intermediate layer of nickel foil or nickel plating between the base material and composite material, as in the special manufacturing of stainless clad steel. The foil or nickel plating layer has the problem of forming an intermetallic compound with titanium, resulting in significant embrittlement, making it difficult to manufacture clad steel.

したがって中間層の材料としてチタン或はチタン合金物
と反応して金属間化合物などをつくらないチタンに対し
て安定した材料?選択使用する必要があるが、それらの
材料は金蝿箔を得るのが困難であったり、熱なロエ性に
問題があったりして従来の製造方法と同じような仕方で
使用したのでは母材と合材との間で健全な接着ノーが得
られない。
Therefore, as a material for the intermediate layer, is there a material that is stable to titanium and does not react with titanium or titanium alloys to form intermetallic compounds? It is necessary to use these materials selectively, but it is difficult to obtain gold leaf for these materials, or there are problems with thermal loe properties, so it is difficult to use these materials in the same manner as in conventional manufacturing methods. A sound adhesion cannot be obtained between the material and the composite material.

ま友合材又は母材の表面に中間1−をメッキにより施す
ことは能率、経済性に問題があるだけでなく、大きなり
ラッド鋼板をつくることができない問題がある。
Placing the intermediate layer on the surface of the composite material or the base material by plating not only poses problems in efficiency and economy, but also poses a problem in that it is not possible to produce a large rad steel plate.

?→発明が解決しようとする問題点 本発明が解決しようとする間頂け、能率的かつ経済的な
方法で炭素鋼系の母材とチタン系の合材との間に健全な
接着層を形成することである。
? →Problems to be Solved by the Invention Forming a sound adhesive layer between a carbon steel base material and a titanium composite material in a timely, efficient and economical manner That's true.

に)問題点を解決するための手段 本発明の技術的手段は、炭素鋼或は低合金鋼よりなる母
材とチタン或はチタン合金よりなる合材との組合せよる
クラッド鋼の製造方法にか°ハで、該母材と該合材との
間に挿入される中間材と1−で、母材側表面に有機溶剤
に混ぜた、粒径100μm以下のニッケル微粉末を塗布
し、かつ合材側表面にNb、Mo、ZrおよびVの粒径
100 am以下の微粉末の少なくとも一種類金有機溶
剤に混ぜて塗布し、該母材および合材を重ね合わせてη
口熱η口工するように構成されている。
B) Means for Solving the Problems The technical means of the present invention is based on a method for manufacturing clad steel that combines a base material made of carbon steel or low alloy steel and a composite material made of titanium or titanium alloy. C. Apply fine nickel powder with a particle size of 100 μm or less mixed with an organic solvent to the surface of the base material and the intermediate material to be inserted between the base material and the composite material. At least one type of fine powder of Nb, Mo, Zr, and V with a particle size of 100 am or less is mixed in a gold organic solvent and coated on the material side surface, and the base material and composite material are overlapped and η
It is configured to generate heat from the mouth.

(ホ)実施例 以下図面1を参照して本発明の実施例につ(ハで説明す
る。
(E) Embodiment An embodiment of the present invention will be described below with reference to FIG. 1.

第1図において、まず炭素鋼又は低合金鋼の母材1の表
面には、中間材として溶剤に混ぜたニッケル(Ni)の
微粉末2・を層状に均一に塗布し、乾燥させる。一方チ
タン又はチタン合金の合材5の表面には、ニオブ(Nb
 ) 、モリブデンfMo)、ジルコニウムLZr) 
 又はバナジウム+y)のいずれか一種又は互いに金属
化合物をつくることのない二種以上の微粉末4を溶剤に
混ぜて中間材として層状に均一に塗布し乾燥させる。
In FIG. 1, first, fine powder 2 of nickel (Ni) mixed with a solvent as an intermediate material is uniformly coated in a layer on the surface of a base material 1 of carbon steel or low alloy steel, and then dried. On the other hand, the surface of the composite material 5 of titanium or titanium alloy has niobium (Nb
), molybdenum fMo), zirconium LZr)
or vanadium + y) or two or more types of fine powders 4 that do not form metal compounds with each other are mixed in a solvent, applied uniformly in a layer as an intermediate material, and dried.

と記N i+ N b + M o 、Z rおよび■
の金属微粉末の粒径は以下のような理由により100μ
m以下にする。すなわち微粉末の粒径に対する微粉末の
全表面積の割合は粒子径に反比例して増大する。
and written N i + N b + M o , Z r and ■
The particle size of the fine metal powder is 100μ for the following reasons.
m or less. That is, the ratio of the total surface area of the fine powder to the particle size of the fine powder increases in inverse proportion to the particle size.

そのため使用すると記金属微粉末の粒径を微細にすれば
するほど表面エネルギーが大きくなる几め界面拡散が活
発化し、第2図のNi に関する微粉末の粒径と焼結開
始温度との関係?示すグラフからも明らかなように、焼
結が低温で進行することになり、まに超微粉になれば融
点低下につながる。
Therefore, when used, the finer the particle size of the fine metal powder, the greater the surface energy, and the more active the interfacial diffusion becomes. As is clear from the graph shown, sintering proceeds at low temperatures, and if the powder becomes ultra-fine, the melting point will be lowered.

一方チタンおよびチタン合金を常温から加熱するとcL
相からβ相へ変態するが、この変態温度は純チタンで8
82°Cである。チタンクラッド鋼ではチタンの優れた
耐食性?利用することが主目的であるため、ぬ相で利用
するのが好ましい。このためチタンクラッド鋼製造時に
880°C以とに0口熱しない番が望ましく、そのよう
な低温でクラッド化?はかるためには使用する金属粉末
は微粒であればあるほど望ましく、100μm以下とす
る。
On the other hand, when titanium and titanium alloys are heated from room temperature, cL
The phase transforms into the β phase, but the transformation temperature for pure titanium is 8
It is 82°C. Does titanium have excellent corrosion resistance in titanium clad steel? Since the main purpose is to use it, it is preferable to use it in a neutral manner. For this reason, when manufacturing titanium clad steel, it is desirable not to heat it above 880°C, and cladding is required at such low temperatures. For measurement purposes, it is preferable that the metal powder used be as fine as possible, and should be 100 μm or less.

また溶剤としては、粉末を塗布する際適度の粘性を有す
る必要があることはもちろんであるが、中性で他の成分
と反応しないこと、適度の揮発速度を有すること、揮発
蒸気に中毒性のないこと、吸水性、吸湿性がないこと等
が要求されるため、ニトロセルロースラッカー、アセチ
ルセルロースラッカー、ニド−プロパンラッカー等のラ
ッカー系の有機溶剤が好ましい。
In addition, the solvent must not only have an appropriate viscosity when applying the powder, but also be neutral and not react with other ingredients, have an appropriate rate of volatilization, and be free from toxic vapors. Lacquer-based organic solvents such as nitrocellulose lacquer, acetylcellulose lacquer, and nido-propane lacquer are preferred because they are required to be free of water, have no water absorption, and have no hygroscopicity.

次に中間材を間に挾むようにして母材1と合材6とを重
ね合せて所定の温度f好ましくは85000〜880℃
)ic173熱し、熱間圧唾する。
Next, the base material 1 and the composite material 6 are placed on top of each other with the intermediate material in between, and heated to a predetermined temperature f, preferably 85,000 to 880°C.
)ic173 Heat and hot press.

〔具体的実施列〕[Specific implementation sequence]

母材として厘さ178珊の軟鋼板fss41相当)を、
かつ合材として厚さ24rrr!Rのチタン板fJI3
2種)?使用し、本発明法として金属粉末はそれぞれ一
種類ずつ又は二種類有機溶剤C′、Sトロセルロース1
4%、ベンゼン35%、ダンフルガム14壬、酢酸ブチ
ル10幅その他から成る)に混合し、刷毛で前記母材お
よび合材の表面に第1表に示されるように塗布し乾燥さ
せ、他方従来技術としては厚さ10L]μmの金属箔を
挿入し或は厚さ100μmに金属メッキを施し、母材と
合材とを重ね合わせて圧下比が2となるように熱間圧延
を行ないチタンクランド合金を製造し、クラッド化につ
いて比較検討した。
As the base material, use a mild steel plate (equivalent to FSS41) with a thickness of 178 dia.
And the thickness is 24rrr as a composite material! R titanium plate fJI3
2 types)? In the method of the present invention, one or two types of metal powder are used, organic solvent C', S trocellulose 1
4% benzene, 35% benzene, 14 ml of danfur gum, 10 ml of butyl acetate, etc.) and applied with a brush to the surfaces of the base material and composite material as shown in Table 1 and dried, while the conventional technique In this case, insert a metal foil with a thickness of 10L] μm or apply metal plating to a thickness of 100μm, overlap the base material and composite material, and perform hot rolling so that the reduction ratio is 2 to obtain a titanium crand alloy. were manufactured and compared and studied for cladding.

ここでクラッド化の判定は全て超音波探傷試讃による接
合状態で行ない、第1表にか”ハて、非接合部面積比率
が5壬未満のものを「○」、5憾以上のものヲ「×」で
表わした。
Here, all judgments on cladding are made in the bonded state by ultrasonic testing. Represented by "x".

また@1表にかいて総合判断は、単にクラッド化の良否
の判(析だけでなく、池の要素飼えば合材としてのチタ
ンの非β相化、作業能窓カよび経済性をも考慮して判断
しである。A 2 、 I/a 4および&6・はクラ
ンド化の点では満足できるがりaI8温度が高くチタン
がβ相化する点で総合判断はΔであり、また&7もクラ
ッド化の点では満足できるが、Ni箔を使用していて作
業能富力よび経済性の点(へ)効   果 以上の説明から明らかなように、本発明のチタンクラッ
ド鋼の製造方法によれば比較的大きなりラッド鋼板でも
品′σの良いものを能率的にしかも経済的につくること
ができる。
In addition, as shown in Table 1, comprehensive judgment is not only based on the judgment (analysis) of whether or not cladding is appropriate, but also considers the non-β phase of titanium as a composite material, workability window, and economic efficiency. A 2 , I/a 4 and &6 are satisfactory in terms of cladding, but the overall judgment is Δ because the aI8 temperature is high and titanium becomes β phase, and &7 is also cladding. However, as is clear from the above explanation, the method of manufacturing titanium clad steel of the present invention has relatively low effects in terms of workability and economy due to the use of Ni foil. Even large rad steel plates with good quality can be produced efficiently and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のチタンクラッド鋼の製造順序を図解的
に示す図、第2図ζNi についての粉末径とv8結開
始@度との関係を示す図である。 特許出願人 住友金属工!床式会社 (外5名) 第1図 粉末径(μ値)
FIG. 1 is a diagram schematically showing the manufacturing order of the titanium clad steel of the present invention, and FIG. 2 is a diagram showing the relationship between the powder diameter and the v8 bonding start degree for ζNi. Patent applicant Sumitomo Metal Industries! Floor type company (5 people) Figure 1 Powder diameter (μ value)

Claims (1)

【特許請求の範囲】[Claims]  炭素鋼或は低合金鋼よりなる母材とチタン或はチタン
合金よりなる合材との組合せによるクラッド鋼の製造方
法において、該母材と該合材との間に挿入される中間材
として、母材側表面に有機溶剤と混ぜた粒径100μm
以下のニッケル微粉末を塗布しかつ合材側表面にNb、
Mo、ZrおよびVの粒径100μm以下の微粉末の少
なくとも一種類を有機溶剤に混ぜて塗布し、該母材およ
び合材を重ね合わせて加熱加工することを特徴とするチ
タンクラッド鋼の製造方法。
In a method for manufacturing clad steel by combining a base material made of carbon steel or low alloy steel and a composite material made of titanium or a titanium alloy, as an intermediate material inserted between the base material and the composite material, Particle size 100 μm mixed with organic solvent on the surface of the base material side
Apply the following fine nickel powder and apply Nb to the composite material side surface.
A method for producing titanium clad steel, which comprises applying at least one type of fine powder of Mo, Zr, and V with a particle size of 100 μm or less in an organic solvent, overlapping the base material and composite material, and heating-processing. .
JP26429184A 1984-12-14 1984-12-14 Manufacture of titanium clad steel Pending JPS61140393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26429184A JPS61140393A (en) 1984-12-14 1984-12-14 Manufacture of titanium clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26429184A JPS61140393A (en) 1984-12-14 1984-12-14 Manufacture of titanium clad steel

Publications (1)

Publication Number Publication Date
JPS61140393A true JPS61140393A (en) 1986-06-27

Family

ID=17401121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26429184A Pending JPS61140393A (en) 1984-12-14 1984-12-14 Manufacture of titanium clad steel

Country Status (1)

Country Link
JP (1) JPS61140393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540961A (en) * 2016-10-28 2017-03-29 鞍钢未来钢铁研究院 A kind of vacuum complex technique produces the assembly method of super-thick steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540961A (en) * 2016-10-28 2017-03-29 鞍钢未来钢铁研究院 A kind of vacuum complex technique produces the assembly method of super-thick steel plate

Similar Documents

Publication Publication Date Title
JP5102814B2 (en) High strength dissimilar metal joining method of steel alloy and titanium or titanium alloy using intermediate layer having joining strength exceeding base material strength, and steel alloy and titanium or titanium alloy joined by the method High strength bonding alloy containing
US2906008A (en) Brazing of titanium members
US3197858A (en) Process for diffusion-bonding
WO2010112342A1 (en) Dual brazing alloy element comprising at least one first layer of an ni-based brazing alloy and also at least one second layer with active element, process for producing said element and uses thereof
JP2003523830A (en) Joining method of copper and stainless steel
JPS6029593B2 (en) Manufacturing method of Ti-clad steel
US3145466A (en) Diffusion bonding of metal members
JPS61140393A (en) Manufacture of titanium clad steel
US2985955A (en) Metal clad article
US3617396A (en) Brazing mixture for joining parts
DE102018128222A1 (en) Process for the production of roll-clad composite materials from a total package composed of material packages and overall package therefor
JPS5829589A (en) Manufacture of titanium-clad steel plate
DE2835869A1 (en) COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JPH0615426B2 (en) Bonded body of SiC or Si (bottom 3) N (bottom 4) base material and Mo or W base material
JPS60203377A (en) Production of titanium clad material
JPS6350113B2 (en)
JPS6090875A (en) Ceramic and matal bonding method
JP3355199B2 (en) Arc spraying wire
JPH08325636A (en) Production of structural part equipped with element brazed to base material
JPH01150489A (en) Manufacture of thin stainless steel clad sheet
JPH05220587A (en) Manufacture of clad steel
JPS6182996A (en) Production of composite brazing filler metal
JPS5893584A (en) Joining method for heat resisting alloy
JPH08318381A (en) Joining method of metal material
JPS60259305A (en) Composite tool and preparation thereof