JPS61139072A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61139072A
JPS61139072A JP59260002A JP26000284A JPS61139072A JP S61139072 A JPS61139072 A JP S61139072A JP 59260002 A JP59260002 A JP 59260002A JP 26000284 A JP26000284 A JP 26000284A JP S61139072 A JPS61139072 A JP S61139072A
Authority
JP
Japan
Prior art keywords
layer
conductivity
electrode
shaped
sih4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59260002A
Other languages
Japanese (ja)
Other versions
JPH0515073B2 (en
Inventor
Shinichi Muramatsu
信一 村松
Tadashi Saito
忠 斉藤
Juichi Shimada
嶋田 寿一
Sunao Matsubara
松原 直
Nobuo Nakamura
信夫 中村
Haruo Ito
晴夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59260002A priority Critical patent/JPS61139072A/en
Publication of JPS61139072A publication Critical patent/JPS61139072A/en
Publication of JPH0515073B2 publication Critical patent/JPH0515073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To form a device, in which a photovoltaic element shaped by the same semiconductor layer on the same substrate is isolated effectively through a simple means, by making the conductivity of an interface adjacent section connected to an electrode and a wiring lead out of the electrode higher than that of a section not coated with the electrode. CONSTITUTION:A transparent electrode 2 is formed onto a substrate 1, an ITO is shaped in 2,000Angstrom through an electron beam evaporation method by using a metallic mask, and an amorphous silicon layer 3 is formed onto the whole surface of the substrate 1. A P-layer 4 in 100Angstrom , an I-layer 5 in 5,000Angstrom and lastly an N-layer 6 in 400Angstrom are shaped. A mixed gas of SiH4, CH4, B2H6 and H2 is employed in order to form the layer 4, and a-SiC:H, a band gap thereof is wider than normal amorphous silicon (a-Si:H) and which contains carbon, is shaped. The conductivity of the P-layer 4 extends over approximately 1X10<-6>OMEGA<-1>.cm<-1>. Only SiH4 is used in order to form the I-layer 5, and the conductivity of the layer 5 extends over approximately 1X10<-4>OMEGA<-1>.cm<-1> under the irradiation of artificial solar rays. SiH4, PH3 and H2 are employed in order to shape the N-layer 6, and the conductivity of the layer 6 is 1X10<-5>OMEGA<-1>.cm<-1>.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複数個の光起電力素子から成る光起電力装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photovoltaic device comprising a plurality of photovoltaic elements.

〔発明の背景〕[Background of the invention]

薄膜半導体層を用いて、同一基板上に複数個の光起電力
素子を、その半導体層は共通に形成することが従来より
知られている。しかし、予想されるように、このような
構造では素子間の半導体層を通してリーク電流が流れる
という不都合があった。これを防ぐために、半導体層の
うちの高導電度を有する部分を、除去してしまう特開昭
55−120181号公報に記載の方法、あるいは絶縁
物に変えてしまう特公昭59−10593号公報に記載
の方法が知られていた。これらの方法は、リーク電流を
格段に低減できる有効な方法であるが、一方、それぞれ
問題点のあることがわかった。
2. Description of the Related Art It is conventionally known to form a plurality of photovoltaic elements on the same substrate using a thin film semiconductor layer using a common semiconductor layer. However, as expected, such a structure has the disadvantage that leakage current flows through the semiconductor layer between the elements. In order to prevent this, the method described in Japanese Patent Application Laid-Open No. 55-120181 involves removing the highly conductive portion of the semiconductor layer, or the method described in Japanese Patent Publication No. 59-10593, which involves replacing it with an insulator. The method described was known. Although these methods are effective methods for significantly reducing leakage current, it has been found that each method has its own problems.

すなわち、絶縁膜にする方法では、酸化の際の高温度に
よる素子の劣化や、イオン打込みによる素子へのダメー
ジの恐れがある。また、エツチング除去する方法では、
エツチング後活性層が大気中に露出するため、外部雰囲
気による汚染の恐れがある。
That is, in the method of forming an insulating film, there is a risk of deterioration of the element due to the high temperature during oxidation and damage to the element due to ion implantation. In addition, in the etching removal method,
Since the active layer is exposed to the atmosphere after etching, there is a risk of contamination from the external atmosphere.

〔発明の目的〕[Purpose of the invention]

本発明の目的は一同一基板上の同一半導体層でできてい
る光起電力素子を、簡単な手段で実効的に分離した装置
を提供することにある。
An object of the present invention is to provide a device in which photovoltaic elements made of the same semiconductor layer on the same substrate can be effectively separated by simple means.

〔発明の概要〕[Summary of the invention]

本発明においては、装置形成後に低抵抗部分を除去もし
くは絶縁物化するのではなく、非単結晶半導体層はいず
れの部分も少くとも10−3 Ω−1cm−1以下の導
電率で形成し、半導体形成後に、その表面の一部分に紫
外、もしくは可視のレーザ光を照射して低抵抗化するも
のである。本発明では、熱処理時間が1秒以下のレーザ
を用いた短時間熱処理法を用いる。レーザとして、パル
スレーザとCWレーザがあり、CWの場合、走査速度を
早くすれば実質的に短時間の熱処理が可能である。
In the present invention, instead of removing the low-resistance portion or making it an insulator after forming the device, the non-single crystal semiconductor layer is formed with a conductivity of at least 10-3 Ω-1 cm-1 or less, and the semiconductor After formation, a portion of the surface is irradiated with ultraviolet or visible laser light to lower the resistance. In the present invention, a short-time heat treatment method using a laser is used in which the heat treatment time is 1 second or less. Lasers include pulsed lasers and CW lasers, and in the case of CW, heat treatment can be performed in a substantially short time if the scanning speed is increased.

かかるレーザの例として次のものがある。パルスレーザ
として、エキシマレーザ(波長157〜351nm) 
、ルビーレーザ(694止)、ネオジウムYAGレーザ
(266,532,101064n 、ガラスレーザ(
531nm)やアレキサンドライトレーザ(700〜8
18nm)などがある。CWレーザとして、Arイオン
レーザ(257nm)やHeNeレーザ(633nm)
などがある。金遣、アモルファスシリコンのレーザアニ
ールとしてQスイッチのNd:YAGレーザ(1064
nm)が用いられた例は知られていたが、このような長
波長光では、アモルファスシリコン膜の吸収係数が小さ
く膜全体に光が吸収されるため、極めて薄い表面層のみ
を処理することは出来なかった。従って良好な太陽電池
性能は得られていない。
Examples of such lasers include: As a pulse laser, excimer laser (wavelength 157-351 nm)
, ruby laser (694 stop), neodymium YAG laser (266,532,101064n), glass laser (
531nm) and alexandrite laser (700-8
18 nm). As a CW laser, Ar ion laser (257 nm) and HeNe laser (633 nm) are used.
and so on. Q-switched Nd:YAG laser (1064
There have been known examples in which amorphous silicon film was used for long-wavelength light, but since the absorption coefficient of the amorphous silicon film is small and the light is absorbed by the entire film, it is difficult to treat only the extremely thin surface layer. I could not do it. Therefore, good solar cell performance has not been obtained.

アモルファスシリコン太陽電池において、レーザアニー
ルする2層あるいはnNjの全膜厚は20〜40nmで
ある。このため、上記各種レーザ光の中で、波長400
nm以下のレーザ光を用いれば吸収深さは約10nmで
、縦方向の上部半導体層のみ熱処理できるなどの利点を
有する。これに適したレーザとして、エキシマレーザ(
波長二重型で266nm)がある。特に、エキシマレー
ザは励起ガスの種類を変えて、発振波長を変えることが
可能である。例えば、F 2(157nm)、ArF 
(193nm) 、 KrC1(222nm)、K r
 F (248nm)、XeBr(282nm)、Xe
C1(308nm)とX e F (351nm)で出
力も数+W迄の大出力で大口径のレーザが得られる。
In an amorphous silicon solar cell, the total thickness of the two layers or nNj to be laser annealed is 20 to 40 nm. For this reason, among the various laser beams mentioned above, wavelengths of 400
If laser light of nm or less wavelength is used, the absorption depth is about 10 nm, which has the advantage that only the upper semiconductor layer in the vertical direction can be heat-treated. An excimer laser (
There is a wavelength dual type (266 nm). In particular, the oscillation wavelength of excimer lasers can be changed by changing the type of excitation gas. For example, F2 (157 nm), ArF
(193nm), KrC1 (222nm), Kr
F (248 nm), XeBr (282 nm), Xe
With C1 (308 nm) and X e F (351 nm), a laser with a large output and a large diameter up to several + W can be obtained.

本発明は、かかる短波長のレーザを用い1表面のPもし
くはn層のみを熱処理することにより、pもしくはn層
の電気抵抗を下げることを特徴としている。半導体膜と
して、B又はAIなどのp形不鈍物、P又はAsなとの
n彫工鈍物を含有するアモルファスSi:H膜、微結晶
化Si:H膜。
The present invention is characterized in that the electric resistance of the p- or n-layer is lowered by heat-treating only the p- or n-layer on one surface using such a short wavelength laser. The semiconductor film is an amorphous Si:H film or a microcrystalline Si:H film containing a p-type dull material such as B or AI, or an n-type dull material such as P or As.

5iGe:H膜、SiN:H膜やSiC: H膜などが
ある。不純物を該Si膜中に含有させる工程として、プ
ラズマCVDなどの膜形成中にガスから導入する方法と
ノンドープ又は低濃度ドープ層中にイオン打込み法で導
入する方法などがある。
Examples include 5iGe:H film, SiN:H film, and SiC:H film. The process of incorporating impurities into the Si film includes a method of introducing them from a gas during film formation such as plasma CVD, and a method of introducing impurities into a non-doped or lightly doped layer by ion implantation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例をその製造工程に従って説明す
る。第1図に示すようにガラス基板1上に透明電極2を
形成した。パターン形成のために金属マスクを用い、I
To(I ndinm T in Oxide)を電子
ビーム蒸着法で2000人形成した。次にガラス基板1
の全面に非晶質シリコン層3をプラズマCVD@で形成
した。第1に2層4を100人1次いで1層5を500
0人、最後にn層6を400人形成した。2M4の形成
にはS I H4、CHa r B z Ha rH2
の混合ガスを用い、通常のアモルファスシリコン(a−
8i:H)よりバンドギャップの広い、炭素を含んだa
−8iC;Hを形成した。その導電率はlXl0−’ 
Ω−1・cm−”程度であった。1層5の形成にはSi
H4のみを用い、その導電率は、疑似太陽光照射下でl
Xl0−’ Ω−1・cm−”程度であった。n層形成
にはS I Ha r P H* r Hzを用い、そ
の導電率はlXl0−’ Ω−1・cIll−1であっ
た。このn層の形成条件を従来の条件と比較して表1に
示す。
An embodiment of the present invention will be described below according to its manufacturing process. As shown in FIG. 1, a transparent electrode 2 was formed on a glass substrate 1. Using a metal mask for patterning, I
A total of 2,000 layers of To (Indim Tin Oxide) were formed by electron beam evaporation. Next, glass substrate 1
An amorphous silicon layer 3 was formed on the entire surface by plasma CVD@. First, 2nd layer 4 for 100 people 1 then 1st layer 5 for 500 people
0 people, and finally formed the n layer 6 with 400 people. For the formation of 2M4, S I H4, CH r B z Ha rH2
Normal amorphous silicon (a-
8i:H) with a wider bandgap than carbon-containing a
-8iC; H was formed. Its conductivity is lXl0-'
The resistance was about Ω-1 cm-”.For the formation of one layer 5, Si
Only H4 is used, and its conductivity is l under simulated sunlight irradiation.
The conductivity was about 1X10-'Ω-1·cm-". S I Har P H * r Hz was used to form the n-layer, and the conductivity was 1X10-' Ω-1·cIll-1. Table 1 shows the conditions for forming this n-layer in comparison with conventional conditions.

従来は高導電率(1〜IOΩ−1・c+n−”)を得る
ために、5iHaに対するH2の割合を多くし、圧力を
低く設定し、高パワーで形成していた。この場合には、
堆積時間が長い、RFpOWerが高いので1層へのダ
メージの恐れがある、などの問題があった。また、n層
を通しての隣接素子へのリーク電流も大きかったことは
先に述べたとおりである。これに対して本方法では、R
Fρoverを低く、SiH4もH2に対してかなり多
く流すことから、短時間かつダメージの心配なくn層の
堆積ができる。また導電率が低いので隣接素子間のリー
ク電流もまったく問題にならなかった。ただし、素子特
性はn層の導電率が高いほど良いので、a−5i:H層
形成後に素子領域のn層の導電率を高くするため、以下
の処理を行った。
Conventionally, in order to obtain high conductivity (1 to IOΩ-1・c+n-"), the ratio of H2 to 5iHa was increased, the pressure was set low, and the formation was performed with high power. In this case,
There were problems such as a long deposition time and a risk of damage to one layer due to the high RFpOWer. Furthermore, as described above, the leakage current to adjacent elements through the n-layer was also large. On the other hand, in this method, R
Since Fρover is low and SiH4 is flowed in a considerably larger amount than H2, the n-layer can be deposited in a short time and without fear of damage. Furthermore, since the conductivity was low, leakage current between adjacent elements was not a problem at all. However, since the higher the conductivity of the n-layer, the better the element characteristics are, the following treatment was performed to increase the conductivity of the n-layer in the element region after forming the a-5i:H layer.

第2図に示すように、a−3i:H層形成後に金属マス
ク7を置き、波長350nmのエキシマ・レーザーを照
射した。その結果、照射面のn層61のみが1Ω−1・
CUV”程度の導電率になった。次に。
As shown in FIG. 2, after the a-3i:H layer was formed, a metal mask 7 was placed and an excimer laser beam having a wavelength of 350 nm was irradiated. As a result, only the n-layer 61 on the irradiated surface was 1Ω-1.
The conductivity has reached the level of "CUV".Next.

このまま金属電極形成装置でA1を抵抗加熱蒸着した。A1 was then vapor-deposited by resistance heating using a metal electrode forming apparatus.

その結果、第3図に示すように金属電極8が形成され、
光起電力装置ができた。なお、本断面図では素子部分の
みを示したが、透明電極2と金属電極8は本断面以外の
部分では配線としても用いられている。エキシマ・レー
ザによるアニールは、大気中、真空中のいずれでもその
作用に違いはなかった。従って、アニールは大気中で行
っても、あるいは金属電極8形成用の真空装置中で行っ
ても良い。本作製方法で作製した太陽電池の効率は、太
陽光下でJ sc : 15.3mA/cm” 、Vo
c :0.85V、 F F : 0.68テ変換効率
は8.8%となった。
As a result, a metal electrode 8 is formed as shown in FIG.
A photovoltaic device was created. Although only the element portion is shown in this cross-sectional view, the transparent electrode 2 and the metal electrode 8 are also used as wiring in parts other than this cross-section. There was no difference in the effect of excimer laser annealing whether in air or vacuum. Therefore, the annealing may be performed in the atmosphere or in a vacuum apparatus for forming the metal electrode 8. The efficiency of the solar cell produced by this production method is J sc: 15.3 mA/cm", Vo
c: 0.85V, FF: 0.68TE, the conversion efficiency was 8.8%.

これは、従来のn層形成条件での変換効率8.5〜9.
0%とほとんど違わず、太陽電池の形成方法としてまっ
たく問題がないことがわかった。一方、素子間のリーク
電流は従来法ではμA/cm2オーダーであったものが
、本方式ではnA/am”オーダーに低減され、本発明
の有効さが確認された。
This is a conversion efficiency of 8.5 to 9.5% under conventional n-layer formation conditions.
It was found that there was almost no difference from 0%, and there was no problem at all as a method for forming solar cells. On the other hand, the leakage current between the elements was on the order of μA/cm2 in the conventional method, but was reduced to the order of nA/am'' in the present method, confirming the effectiveness of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非常に簡単なプロセスで素子間を分離
した構造ができ、かつ素子特性を劣化させるような影響
を与えないという効果がある。
According to the present invention, it is possible to create a structure in which elements are separated by a very simple process, and there is an effect that the element characteristics are not deteriorated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の第一の製造工程を示す断面図
、第2図は第二の製造工程を示す断面図第3図は第三の
製造工程を示す断面図である。 符号の説明 1・・・ガラス基板、2・・・透明電極、3・・・非晶
質シリコン層、4・・・P層、5・・・i層、6・・・
n層。 7・・・金属マスク、8・・・金属電極、61・・・n
層。
FIG. 1 is a cross-sectional view showing the first manufacturing process of an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the second manufacturing process, and FIG. 3 is a cross-sectional view showing the third manufacturing process. Explanation of symbols 1...Glass substrate, 2...Transparent electrode, 3...Amorphous silicon layer, 4...P layer, 5...i layer, 6...
n layer. 7...Metal mask, 8...Metal electrode, 61...n
layer.

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に、一部分を第1及び第2電極ではさまれ
た非単結晶質半導体層が形成されており、該第1及び第
2電極ではさまれた部分で発電が行われる装置において
、該第1電極もしくは第2電極、及び、そこから引き出
される配線に接続する該非単結晶質半導体層の界面近傍
部分が、該第1電極および第2電極におおわれていない
部分に比べて高い導電率を有することを特徴とする光起
電力装置。
In an apparatus in which a non-single-crystalline semiconductor layer is formed on an insulating substrate, a portion of which is sandwiched between first and second electrodes, and power generation is performed at the portion sandwiched between the first and second electrodes. A portion near the interface of the non-single-crystalline semiconductor layer connected to the first electrode or the second electrode and the wiring drawn therefrom has higher conductivity than the portion not covered by the first electrode or the second electrode. A photovoltaic device comprising:
JP59260002A 1984-12-11 1984-12-11 Photovoltaic device Granted JPS61139072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260002A JPS61139072A (en) 1984-12-11 1984-12-11 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260002A JPS61139072A (en) 1984-12-11 1984-12-11 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS61139072A true JPS61139072A (en) 1986-06-26
JPH0515073B2 JPH0515073B2 (en) 1993-02-26

Family

ID=17341929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260002A Granted JPS61139072A (en) 1984-12-11 1984-12-11 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61139072A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115372A (en) * 1979-02-27 1980-09-05 Sanyo Electric Co Ltd Photovoltaic device
JPS55120180A (en) * 1979-03-09 1980-09-16 Sanyo Electric Co Ltd Fabricating method of photovoltaic device
JPS55121686A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Photovoltaic device
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy
JPS5745980A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Amorphous solar battery and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115372A (en) * 1979-02-27 1980-09-05 Sanyo Electric Co Ltd Photovoltaic device
JPS55120180A (en) * 1979-03-09 1980-09-16 Sanyo Electric Co Ltd Fabricating method of photovoltaic device
JPS55121686A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Photovoltaic device
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy
JPS5745980A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Amorphous solar battery and manufacture thereof

Also Published As

Publication number Publication date
JPH0515073B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
KR890003499B1 (en) Apparatus for semiconductor manufacture
JP5286146B2 (en) Method for manufacturing photoelectric conversion device
US4468853A (en) Method of manufacturing a solar cell
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
EP4340046A1 (en) Hybrid passivation back contact cell and fabrication method thereof
KR101370126B1 (en) Method for forming selective emitter of solar cell using annealing by laser of top hat type and Method for manufacturing solar cell using the same
CN115188837B (en) Back contact solar cell, preparation method and cell assembly
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
JPH0359588B2 (en)
JP2001156026A (en) Semiconductor elements and manufacturing method therefor
JPS61139072A (en) Photovoltaic device
JP3346907B2 (en) Solar cell and method of manufacturing the same
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP2648683B2 (en) Method for manufacturing semiconductor device
JPH0927627A (en) Thin film solar cell and manufacture thereof
JPH0282655A (en) Manufacture of photovolatic device
JP2002237609A (en) Method of manufacturing tandem thin-film solar cell
US10672931B2 (en) Solar cell
JP2001352081A (en) Method for manufacturing photoelectromotive device
JPS6244863B2 (en)
JP4052782B2 (en) Integrated photovoltaic device and method for manufacturing the same
JPS60163429A (en) Manufacture of amorphous silicon solar cell
JP2000208787A (en) Solar battery
JPH0685292A (en) Manufacture of amorphous silicon solar cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term