JPS61138484A - Infrared rays irradiator - Google Patents

Infrared rays irradiator

Info

Publication number
JPS61138484A
JPS61138484A JP26015484A JP26015484A JPS61138484A JP S61138484 A JPS61138484 A JP S61138484A JP 26015484 A JP26015484 A JP 26015484A JP 26015484 A JP26015484 A JP 26015484A JP S61138484 A JPS61138484 A JP S61138484A
Authority
JP
Japan
Prior art keywords
infrared
reflector
focal
focal point
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26015484A
Other languages
Japanese (ja)
Inventor
市村 伸男
浩一 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26015484A priority Critical patent/JPS61138484A/en
Publication of JPS61138484A publication Critical patent/JPS61138484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば鉄道軌道路面の融雪装置等に使用され
る赤外線照射器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared irradiator used, for example, in a snow melting device for a railway track surface.

〔従来の技術〕[Conventional technology]

第10図は従来の赤外線照射器の断面図を示すもので、
1は内外に焦点in、lbを有する楕円軌跡断面のアル
ミ板からなる反射板で、内部に位置した焦点1a位置に
シーズヒーター等の棒状発熱体2が配置されている。
Figure 10 shows a cross-sectional view of a conventional infrared irradiator.
Reference numeral 1 denotes a reflector made of an aluminum plate having an elliptical locus cross section with focal points in and lb on the inside and outside, and a rod-shaped heating element 2 such as a sheathed heater is arranged at the focal point 1a located inside.

3は反射板1を覆うケースである。なお、Fは焦点1a
と焦点1bを結ぶ軸線である。
3 is a case that covers the reflector 1. Note that F is the focal point 1a
This is the axis line connecting the focal point 1b and the focal point 1b.

以上からなる赤外線照射器において、発熱体2に通電さ
れると、矢印Aと矢印8間の角度01部に発熱体2から
直接用る赤外線が放射され、一方、反射板1に当たり反
射した赤外線(例えば矢印C従って、反射した赤外線の
範囲は矢印D−E間の角度θlになる。
In the infrared irradiator constructed as above, when the heating element 2 is energized, the infrared rays to be used directly are emitted from the heating element 2 at the angle 01 between the arrows A and 8, while the infrared rays that hit the reflector 1 and are reflected ( For example, according to arrow C, the range of reflected infrared rays is the angle θl between arrows D and E.

この赤外線照射器は、例えば第11図に示すように鉄道
軌道路面の融雪用として用いられる。第11図において
、5は軌道路面、6はレールで、この場合の融雪対象部
は路面5の凸部である。
This infrared irradiator is used, for example, as shown in FIG. 11, for melting snow on railway track surfaces. In FIG. 11, 5 is a track surface, 6 is a rail, and in this case, the part to be snow melted is a convex part of the road surface 5.

ここで、赤外線照射器は列車走行を妨げない軌道路面5
の側方部の所定高さに軌道路面5に対して下向きに傾け
て配置される。
Here, the infrared irradiator is installed on the track surface 5 which does not interfere with train running.
It is arranged at a predetermined height on the side part of the track surface 5 so as to be inclined downward with respect to the track surface 5.

従って、発熱体2から放散した赤外線全エネルギーを反
射板1の反射率を 100%として想定すると、矢印A
−B間にθ、7360%の赤外線エネルギーが放射され
、D−F間とF−8間にはそれぞれ更に(360−θ、
) / 360X 2%の赤外線エネルギーが加わる。
Therefore, if we assume that the total infrared energy emitted from the heating element 2 has a reflectance of 100% on the reflector 1, then the arrow A
Infrared energy of θ, 7360% is emitted between -B, and further (360-θ, 7360%) is emitted between D-F and F-8.
) / 360X 2% infrared energy is added.

又、発熱体2から路面5までの距離による空気等の吸収
分があって、路面5へ到達する赤外線照射密度は第12
図に示す通り、路面5に対して極めてバランスの悪いも
のになっている。特にF −8間が他の部分に対し、極
端に高くなっている。
In addition, there is absorption of air, etc. depending on the distance from the heating element 2 to the road surface 5, and the density of infrared rays reaching the road surface 5 is 12th.
As shown in the figure, it is extremely unbalanced with respect to the road surface 5. In particular, the area between F and 8 is extremely high compared to other areas.

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

融雪用途だけでなく、同様に照射対象平面に対して角度
をもって赤外線照射する場合、より均一加熱を要求され
る用途が多いが、従来の赤外線照射1はこれらを満足で
きないものである。乙の様に融雪用途では、照射対象面
に対し、全面融雪が困難もしくは長時間かかり、電力エ
ネルギーのロスも大きいという問題点が生じていた。
In addition to snow melting applications, there are also many applications where more uniform heating is required when infrared rays are irradiated at an angle to a plane to be irradiated, but the conventional infrared irradiation 1 cannot satisfy these requirements. In the case of snow melting applications such as the one mentioned above, there were problems in that it was difficult or took a long time to completely melt the snow on the surface to be irradiated, and there was also a large loss of electrical energy.

乙の発明は上記のような問題点を解決するためになされ
たもので、より均一に加熱のできる赤外線照射器を得る
乙とを目的とする。
The invention of B was made in order to solve the above-mentioned problems, and its purpose is to obtain an infrared irradiator that can heat more uniformly.

〔問題点を解決するための手段〕[Means for solving problems]

乙の発明による赤外線照射器は、それぞれ焦点の異なる
楕円軌跡断をした上側反射板と下側反射板とを備え、こ
の反射板内に位置する焦点が一致もしくはほぼ同一位置
になるように両者を配置し、前記焦点又はこの焦点に近
接した位置に発熱体を配置したものである。
The infrared irradiator according to the invention of Party B is equipped with an upper reflector and a lower reflector, each having a different focal point and cut in an elliptical locus, and the two are arranged so that the focal points located within the reflectors coincide or are at approximately the same position. A heating element is placed at the focal point or a position close to the focal point.

〔作用〕[Effect]

この発明における赤外線照射器は、上下の反射板の焦点
距離を異ならせることにより、発熱体から放散した赤外
線が、反射板で反射した後、異なろ2つの焦点を経て照
射対象面へ照射され、赤外線エネルギーがより均一的に
分散する。
In the infrared irradiator according to the present invention, by making the focal lengths of the upper and lower reflectors different, the infrared rays radiated from the heating element are reflected by the reflectors and then irradiated onto the irradiation target surface through two different focal points, Infrared energy is more evenly distributed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す赤外線照射器の断面
図を示すもので、第1図において、7ば上側反射板で、
焦点7n、7bを有した楕円軌跡断面をしている。8は
下側反射板で、焦点8a。
FIG. 1 shows a cross-sectional view of an infrared irradiator showing an embodiment of the present invention. In FIG. 1, 7 is an upper reflector;
It has an elliptical locus cross section with focal points 7n and 7b. 8 is a lower reflector, which has a focal point 8a.

8bを有する楕円軌跡断面をしている。又、焦点距離は
上側反射板7の方を下側反射板8に対して所定値に短く
設定している。そして、各反射板内に位置する焦点7n
、8aを一致又はは゛ぼ一致した位置にし、又反射板外
に位置する焦点7b、8bを同一軸線上にして一体に連
結している。
It has an elliptical locus cross section with 8b. Further, the focal length of the upper reflecting plate 7 is set shorter than that of the lower reflecting plate 8 to a predetermined value. A focal point 7n located within each reflecting plate
, 8a are aligned or nearly aligned, and the focal points 7b and 8b located outside the reflector are placed on the same axis and connected integrally.

2は焦点7a、8aに極めて近接した位置に配置した棒
状の発熱体、3は再反射板7,8の裏面を覆うケースで
ある。
2 is a rod-shaped heating element placed very close to the focal points 7a and 8a, and 3 is a case that covers the back surfaces of the re-reflection plates 7 and 8.

上記構成にお」する発熱体2から放射された赤外線にお
いて、矢印G−H間すなわち角度のと6間には発熱体2
から直接゛放射するものがあり、さらにJ−X間すなわ
ち角度65部には下側反射板8の反射赤外線、X−に間
すなわち角度66部には上側反射板7の反射赤外線がそ
れぞれ焦点8b、?’bに集光した後、分散する。
In the infrared rays emitted from the heating element 2 having the above configuration, the heating element 2 is located between the arrows GH and 6.
In addition, the infrared rays reflected by the lower reflector 8 are emitted directly between J-X, that is, at the angle 65, and the infrared rays reflected from the upper reflector 7 are located between X-, that is, at the angle 66, respectively, at the focal point 8b. ,? After concentrating on 'b, it disperses.

以上の構成からなるこの発明の赤外線照射器を鉄道軌道
路面の融雪用に採用した例を第2図に示す。     
 ゛ 第2図において、5は軌道路面、6はレール、そして融
雪゛対象路部は路面5の凸部である。赤外線照射器は列
車走□行を妨げない軌道路面5の側方部の所定高さに軌
道路面5に向けて下向きに設置される。
FIG. 2 shows an example in which the infrared irradiator of the present invention having the above configuration is employed for melting snow on railway track surfaces.
In FIG. 2, 5 is a track surface, 6 is a rail, and the road portion to be melted is a convex portion of the road surface 5. The infrared irradiator is installed facing downward toward the track surface 5 at a predetermined height on the side of the track surface 5 that does not interfere with the running of the train.

ととで、発熱体2から放散した赤外線エネルギーは、反
射板7,8部で熱損失がな(、反射率を100%として
想定すると、G−X間に037360%、’X −H間
にθQ7360%の発熱体2からの直接放射エネルギー
があり、更にJ−X間(角度の)には下側反射板8の反
射エネルギー(180−e4.) / 380%、X’
−に間(角度θ6)には上側反射板7の反射すなわち、
発熱体2の位置と反射板7,8の焦点7b、8bとの距
離を適正に設定することにより、角度のと仏の比率を変
更でき、照射対象面に対し、これに対応した赤外線照射
エネルギー分布を得る乙とができる。この例では赤外線
の距離の減衰を考えて角度θ5をθ6より充分小さくし
ている第3図は第2図の考え方による路面5に対する赤
外線照射密度の分布図を示す。基本的には同図の如く、
二つの山形の照射密度を示すが、できるだけ平滑なカー
ブが得られるように焦点距離を設定する。
Therefore, the infrared energy dissipated from the heating element 2 has no heat loss at the reflection plates 7 and 8 (assuming the reflectance is 100%, 037360% between G and X, and 037360% between 'X and H). There is direct radiant energy from the heating element 2 of θQ7360%, and furthermore, between J-X (angle) there is reflected energy of the lower reflector 8 (180-e4.) / 380%, X'
- (angle θ6), the reflection of the upper reflector 7, that is,
By appropriately setting the distance between the position of the heating element 2 and the focal points 7b and 8b of the reflectors 7 and 8, the angle and the ratio of the angle can be changed, and the corresponding infrared irradiation energy can be applied to the irradiation target surface. It is possible to obtain the distribution. In this example, the angle θ5 is made sufficiently smaller than θ6 in consideration of distance attenuation of infrared rays. FIG. 3 shows a distribution diagram of the infrared irradiation density on the road surface 5 based on the concept of FIG. 2. Basically, as shown in the figure,
The irradiation density of two chevrons is shown, and the focal length is set so as to obtain the smoothest possible curve.

第4図はこの発明による第2の実施例を示すもので、1
0ば楕円軌跡断面をした上側反射板であり、焦点を10
aと10bに持っている。11は同じく楕円軌跡断面を
した下側反射板で、焦点を10aとllbに持つ。尚、
下側反射板11の焦点10aと上側反射板10の焦点1
0aを一致させるため、両者の接合部を若干ずらして固
定している。尚、LとMは焦点10aと焦点10b、及
び10aとllbを結ぶ軸線を示している。
FIG. 4 shows a second embodiment according to the invention.
0 is the upper reflector with an elliptical locus cross section, and the focal point is 10
I have it in a and 10b. Reference numeral 11 denotes a lower reflector having an elliptical locus cross section, and has focal points at 10a and llb. still,
Focus 10a of lower reflector 11 and focus 1 of upper reflector 10
In order to match 0a, the joint portions of both are slightly shifted and fixed. Note that L and M indicate the axes connecting the focal points 10a and 10b, and 10a and llb.

そして、焦点距離は上側反射板10の10a−10b間
を下側反射板11のl Oa −11b間より短く設定
している。軸線りとMとは所定角度θ7を有する。発熱
体2から放射された赤外線は矢印N−P間の角度θBの
範囲は直接外部へ放散する。
The focal length between 10a and 10b of the upper reflector 10 is set shorter than that between lOa and 11b of the lower reflector 11. The axis R and M have a predetermined angle θ7. The infrared rays emitted from the heating element 2 are directly radiated to the outside within the range of the angle θB between the arrows NP.

上側反射板10で反射した赤外線は、焦点10bに集光
した後、L−Q間の角度θ!に放散する。
After the infrared rays reflected by the upper reflector 10 are focused on the focal point 10b, the angle between L and Q is θ! Dissipates into.

同様に下側反射板11で反射した赤外線は焦点11bに
集光した後、M−R間の角度α。に放散する。
Similarly, the infrared rays reflected by the lower reflector 11 are focused on the focal point 11b, and then the angle α between M and R is formed. Dissipates into.

以上から構成した赤外線照射器を軌道路面5の融雪用に
設置した図を第5図に示す。又、軌道路面5に対する赤
外線照射密度を第6図に示す。この第2の実施例の特徴
は、角度07部分すなわち軸線L−M間は再反射板10
,11からの反射光が重なり合う為、この部分の照射密
度が高くなる点にある。乙の例でも全体的に照射密度の
平均化をねらっているが、特に路面5の中央部の照射密
度を集中的に〆高める必要がある用途に対して有効であ
る。
FIG. 5 shows an infrared irradiator constructed as described above installed for melting snow on the track surface 5. Further, the infrared irradiation density on the track surface 5 is shown in FIG. The feature of this second embodiment is that at the angle 07 portion, that is, between the axis LM, the re-reflector 10
, 11 overlap, so the irradiation density in this part becomes high. Example B also aims to average the irradiation density as a whole, but it is particularly effective for applications where it is necessary to intensively increase the irradiation density in the center of the road surface 5.

第7図は乙の発明の第3の実施例を示すもので、13は
焦点13aと13bをもつ楕円軌跡断面をした上側反射
板、14は焦点13aと14bをもつ楕円軌跡断面をし
た下側反射板、なお、SとTはそれぞれ焦点13aと1
3bまた13aと14bを結ぶ軸線を示している。そし
て、焦点距離は上側反射板13の方を下側反射板14よ
り短く設定している。軸線SとTとは角度θ1.を有す
る。
FIG. 7 shows a third embodiment of the invention of B, in which 13 is an upper reflecting plate having an elliptical locus cross section with focal points 13a and 13b, and 14 is a lower reflecting plate having an elliptical locus cross section having focal points 13a and 14b. Reflector plate, S and T are focal points 13a and 1, respectively.
3b also shows an axis connecting 13a and 14b. The focal length of the upper reflector 13 is set shorter than that of the lower reflector 14. The axes S and T are at an angle θ1. has.

発熱体2から放射された赤外線は矢印U−V間すなわち
角度θ、2の範囲は直接外部へ放散する。上側反射板1
3で反射した赤外線は、焦点13bに集光の後、軸線S
と矢印Y間すなわち角度θ73に放散する。下側反射板
14で反射した赤外線は、焦点14bに集光した後、軸
線Tと矢印W間すなわち角度θ、4に放散する。ここで
、角度072間、軸線S−1間は反射板13,14から
の反射した赤外線が全く分布しない為、発熱体2からの
直接照射分のみになる。
The infrared rays emitted from the heating element 2 are directly radiated to the outside within the range between arrows UV and angle θ, 2. Upper reflector 1
The infrared rays reflected by
and arrow Y, that is, at an angle θ73. The infrared rays reflected by the lower reflector 14 are focused on the focal point 14b and then diffused between the axis T and the arrow W, that is, at an angle θ, 4. Here, since the infrared rays reflected from the reflection plates 13 and 14 are not distributed at all between the angle 072 and the axis S-1, only the direct irradiation from the heating element 2 occurs.

以上から構成した赤外線照射器を軌道路面5の融雪用に
設置した図を第8図に示す。又、軌道路面5に対する赤
外線照射密度を第9図に示す。
FIG. 8 shows a diagram in which the infrared irradiator constructed as described above is installed for melting snow on the track surface 5. Further, the infrared irradiation density on the track surface 5 is shown in FIG.

乙の第3の実施例の特徴は角度θ、1部分の照射密度が
低い点である。乙の例でも全体的に平均的に平滑の照射
密度をねらうことができるが、特にこの特徴を生かし、
レール6のポイント部分を集中的に加熱する使い方も可
能となる。なお、第1〜第3の各実施例では反射板を上
下別体界で形成したが、同じ考え方の一体品の反射板で
も同様の効果が得られる。
The feature of the third embodiment is that the angle θ and the irradiation density in one part are low. In example B, it is possible to aim for an overall average irradiation density, but especially by taking advantage of this feature,
It is also possible to intensively heat a point portion of the rail 6. In each of the first to third embodiments, the upper and lower reflectors are formed as separate bodies, but the same effects can be obtained even if the reflectors are integrated into one piece based on the same concept.

〔発明の効果〕〔Effect of the invention〕

以上の様にこの発明は、上下の反射板の焦点距離をずら
すことにより、照射対象面に対し、角度をもって照射し
ても、従来より均一な赤外線照射密度分布を得ることが
可能である。又、必要により照射密度を任意に変化でき
る利点もある。
As described above, in the present invention, by shifting the focal lengths of the upper and lower reflectors, it is possible to obtain a more uniform infrared irradiation density distribution than before even if the irradiation target surface is irradiated at an angle. Another advantage is that the irradiation density can be changed arbitrarily if necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示す赤外線照射器の
断面図、第2図は第1図の照射器を融雪用に設置した説
明図、第3図はこの場合の赤外線照射密度を示す分布図
、第4図はこの発明の第2の実施例を示す赤外線照射器
の断面図、第5図はこれを融雪用に設置した説明図、第
6図は乙の場合の赤外線照射密度を水子分布図、第7図
シまとの発明の第3の実施例を示す赤外線照射器の断面
図、第8図はこれを融雪用に設置した説明図、第9図は
この場合の赤外線照射密度を示す分布図である。第10
図は従来の赤外線照射器の断面図、第11図はこれを融
雪用に設Ml、た説明図、第12図はこの場合の赤外線
照射密度を示す分布図である。 図中、2は発熱体、7は上側反射板、7a、7bはその
焦点、8は下側反射板、8a、8bはその焦点、10ば
上側反射板、1.Oa、10bはその焦点、11は下側
反射板、11bはその焦点、13は上側反射板、13a
、13bはその焦点、14は下側反射板、14 b (
fその焦点である。 なお、図中同一符号は同−又は相当部分を示すものであ
る。 代理人 大 岩 増 m(外2名) =11−
Figure 1 is a cross-sectional view of an infrared irradiator showing the first embodiment of this invention, Figure 2 is an explanatory diagram of the irradiator in Figure 1 installed for snow melting, and Figure 3 is the infrared irradiation density in this case. Fig. 4 is a cross-sectional view of an infrared irradiator showing the second embodiment of the present invention, Fig. 5 is an explanatory diagram of this infrared irradiator installed for snow melting, and Fig. 6 is an infrared irradiation diagram in case B. Figure 7 is a cross-sectional view of an infrared irradiator showing the third embodiment of Shimato's invention, Figure 8 is an explanatory diagram of this installed for snow melting, and Figure 9 is a diagram showing the density in this case. FIG. 2 is a distribution diagram showing the infrared irradiation density of 10th
The figure is a sectional view of a conventional infrared irradiator, FIG. 11 is an explanatory diagram of this infrared irradiator installed for snow melting, and FIG. 12 is a distribution diagram showing the infrared ray irradiation density in this case. In the figure, 2 is a heating element, 7 is an upper reflection plate, 7a and 7b are its focal points, 8 is a lower reflection plate, 8a and 8b are its focal points, 10 is an upper reflection plate, 1. Oa, 10b are the focal points, 11 is the lower reflector, 11b is the focus, 13 is the upper reflector, 13a
, 13b is its focal point, 14 is a lower reflector, 14 b (
f is its focus. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masu Oiwa m (2 others) = 11-

Claims (4)

【特許請求の範囲】[Claims] (1)楕円軌跡断面をした上側反射板と、これとは焦点
距離の異なる楕円軌跡断面の下側反射板とを備え、反射
板内に位置する焦点が一致もしくはほぼ同一位置になる
ように両者を配置し、前記焦点又はこの焦点に近接した
位置に発熱体を配置したことを特徴とする赤外線照射器
(1) Equipped with an upper reflector having an elliptical locus cross section and a lower reflector having an elliptical locus cross section with a different focal length, both of which are arranged so that the focal points located within the reflector coincide or are at approximately the same position. An infrared irradiator characterized in that a heating element is arranged at the focal point or a position close to the focal point.
(2)上側反射板と下側反射板を一体品で構成したこと
を特徴とする特許請求の範囲第(1)項記載の赤外線照
射器。
(2) The infrared irradiator according to claim (1), characterized in that the upper reflector and the lower reflector are integrally formed.
(3)反射板内の焦点と反射板外に位置する2つの焦点
を一直線上に配置したことを特徴とする特許請求範囲第
(1)項記載の赤外線照射器。
(3) The infrared irradiator according to claim (1), characterized in that a focal point inside the reflecting plate and two focal points located outside the reflecting plate are arranged in a straight line.
(4)反射板内の焦点と反射板外に位置する2つの焦点
をそれぞれ結ぶ軸線が、所定角度を保つように構成した
ことを特徴とする特許請求範囲第(1)項記載の赤外線
照射器。
(4) The infrared irradiator according to claim (1), characterized in that the axes connecting the focal point inside the reflecting plate and the two focal points located outside the reflecting plate maintain a predetermined angle. .
JP26015484A 1984-12-10 1984-12-10 Infrared rays irradiator Pending JPS61138484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26015484A JPS61138484A (en) 1984-12-10 1984-12-10 Infrared rays irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26015484A JPS61138484A (en) 1984-12-10 1984-12-10 Infrared rays irradiator

Publications (1)

Publication Number Publication Date
JPS61138484A true JPS61138484A (en) 1986-06-25

Family

ID=17344060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26015484A Pending JPS61138484A (en) 1984-12-10 1984-12-10 Infrared rays irradiator

Country Status (1)

Country Link
JP (1) JPS61138484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856949A (en) * 1988-10-07 1989-08-15 Toshiaki Shimada Rotative tool for repairing electrodes for spot welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113135A (en) * 1977-03-15 1978-10-03 Shizuoka Seiki Co Ltd Method of preventing road or like from freezing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113135A (en) * 1977-03-15 1978-10-03 Shizuoka Seiki Co Ltd Method of preventing road or like from freezing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856949A (en) * 1988-10-07 1989-08-15 Toshiaki Shimada Rotative tool for repairing electrodes for spot welding

Similar Documents

Publication Publication Date Title
US4652979A (en) Lamp assembly for emitting a beam of light at an angle to its optical axis
O'Gallagher et al. Test of a “trumpet” secondary concentrator with a paraboloidal dish primary
JPS5998401A (en) Lamp for vehicle
JPS61138484A (en) Infrared rays irradiator
JPS60103324A (en) Beam distributor
CZ296294A3 (en) Apparatus for machining by a light beam
CN216539386U (en) UV glues solidification equipment
JPS6229155B2 (en)
JPS6386289A (en) Snow melting far-infrared irradiator
JPS61233108A (en) Infrared irradiation device
JPS61260577A (en) Infrared irradiator
JPS59161641A (en) Solar heat collector
JPH073526Y2 (en) Vehicle headlights
JP4325036B2 (en) aperture
JP3071375B2 (en) Laser focusing device
JPS5987326A (en) Laser output absorbing device
JPH0114670Y2 (en)
JPS61140927A (en) Acoustooptic modulator
JP3268741B2 (en) Electron beam irradiation device
JPH0225597Y2 (en)
JPS63269131A (en) Parallel light forming device
JPS6321052Y2 (en)
JPH03283602A (en) Resistor with built-in temperature fuse
JPH0545586A (en) Light emission device
JPS5833463B2 (en) Shyunetsouchi