JPS61138303A - Process controller using mountaineering method - Google Patents

Process controller using mountaineering method

Info

Publication number
JPS61138303A
JPS61138303A JP26029784A JP26029784A JPS61138303A JP S61138303 A JPS61138303 A JP S61138303A JP 26029784 A JP26029784 A JP 26029784A JP 26029784 A JP26029784 A JP 26029784A JP S61138303 A JPS61138303 A JP S61138303A
Authority
JP
Japan
Prior art keywords
variables
slope
mountaineering
equation
receives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26029784A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsunaga
清 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP26029784A priority Critical patent/JPS61138303A/en
Publication of JPS61138303A publication Critical patent/JPS61138303A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To apply a mountaineering method by determining a slope formula in accordance with measured values of process variables to manipulate process for climbing by a certain height in a prescribed direction, and setting certain limitations periodically to each process variable. CONSTITUTION:Measured values (x) and (y) of process variables are outputted from detectors 3 and 6. An operator 1 receives process measured values xi and yi and an efficiency variable zi inputted through sampling switch SW1-SW3 and calculates a slop formula z=ax+by+c by the regression calculation using the method of least squares. An operator 2 receives this slope formula (z) through a sampling switch SW4 and receives variables (x) and (y) and limit constants DELTAx-DELTAz inputted from the external and performs the mountaineering calculation and gives manipulated variables to controllers 4 and 7 through sampling switches SW5 and SW6. Controllers 4 and 7 drive operation ends 5 and 8 on a basis of input manipulated variables and display process variables (x) and (y). This operation is repeated at a prescribed period, thereby making mountaineering possible while always searching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、山登り手法をプロセス演算に用いたプロセス
制m装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a process control device that uses a hill-climbing method for process calculations.

(従来の技術) 統計学の分野における山登り手法は、1.11の形状等
の状態がパラメータによって特定されている場合に、山
の斜面をどのような条件の下に登るかという方法に関す
るものである。数理計画法の場合における山登り手法は
、一般に山の形状等がパラメータにより与えられており
、山の頂点はオフライン計算により求めるようになって
いることが多い。又、山の斜面を登る方法も、通常、最
大傾斜方式が採用されている。最大傾斜方式は、山の斜
面の傾斜の最も急な方向に、傾斜に比例さけて登る方式
である。
(Prior Art) Mountain climbing methods in the field of statistics are related to methods for determining under what conditions a slope of a mountain should be climbed when the shape and other conditions described in 1.11 are specified by parameters. be. In the mountain climbing method in the case of mathematical programming, the shape of the mountain is generally given by parameters, and the top of the mountain is often determined by off-line calculation. Furthermore, the maximum slope method is usually used to climb up the slope of a mountain. The maximum slope method is a method of climbing in the direction of the steepest slope of the mountain, in proportion to the slope.

(発明が解決しようとする問題貞) このような山登り手法を、プロセス制御の分野に応用し
ようとするといくつかの問題が生じる。
(Problems to be Solved by the Invention) Several problems arise when attempting to apply such a mountain climbing method to the field of process control.

第1に、従来の数理計画等においては、前述したように
オフライン計算により山の頂上を求める方法を採ってい
るため、実際のプロセス制御に適用するということ自体
が考えられていなかったことが挙げられる。第2に、従
来の山登り手法では、山の頂点を求めることが主目的で
あり、山の頂点を求めてしまうと探索を終了していた。
First, as mentioned above, in conventional mathematical planning, etc., the method of finding the top of the mountain is taken by off-line calculation, so it was not considered that it could be applied to actual process control. It will be done. Second, in conventional mountain climbing methods, the main purpose is to find the top of the mountain, and once the top of the mountain is found, the search ends.

プロセス制御の場合(オンラインの場合)では、ある時
刻に山の頂」二であっても、次の時刻に山の頂上である
とは限らない。プロセス変数は時々刻々と変化するもの
であるからである。
In the case of process control (online), even if you are at the top of the mountain at one time, it does not necessarily mean you will be at the top of the mountain at the next time. This is because process variables change from moment to moment.

本発明は、このような点に鑑みてなされたものであって
、その目的は、出登り手法をプロセス制御系に応用した
プロセス制御装置を実現することにある。
The present invention has been made in view of these points, and its purpose is to realize a process control device in which the climbing method is applied to a process control system.

(問題点を解決するための手段) 前記した問題点を解決する本発明は、複数個のプロセス
変数の測定値から統計的手法を用いてそのときの斜面式
を決定し、決定された斜面式に基づいて当該斜面の最大
傾きをもつ方向に一定高さだけ登るにうにプロセス変数
を操作すると共に、各プロセス操作量に一定の制限を加
えるという操作を周期的に行うように構成したことを特
徴とするものである。
(Means for Solving the Problems) The present invention, which solves the above-mentioned problems, uses a statistical method to determine the slope equation at that time from the measured values of a plurality of process variables, and calculates the determined slope equation. The method is characterized in that the process variable is manipulated to climb a certain height in the direction of the slope with the maximum inclination based on the slope, and the operation of applying a certain limit to each process manipulated variable is periodically performed. That is.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す構成ブロック図である
。図において、1はサンプリングスイッチS W 1乃
至S W sを介して入力されてくるプロセス変数測定
値xi、 yi及び効率変数71を受けて統計的手法に
よりそのときの斜面式z =ax+by+cを算出する
第1の演算器である。統計的手法としては、例えば最小
2乗法により、測定結果とよく一致する回帰式を求める
方法が考えられる。2は第1の演算器1から出力される
斜面式2をサンプリングスイッチS W sを介して受
けると共にプロセス変数x、y及び効率変数lの制限定
数Δ×。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 receives process variable measurement values xi, yi and efficiency variable 71 inputted via sampling switches S W 1 to S W s and calculates the slope equation z = ax + by + c at that time using a statistical method. This is the first arithmetic unit. As a statistical method, for example, a least squares method may be used to find a regression equation that closely matches the measurement results. 2 receives the slope equation 2 output from the first arithmetic unit 1 via the sampling switch S W s and is a limiting constant Δ× of the process variables x, y and the efficiency variable l.

Δy及びΔZを受けて出登り計算を行う第2の演算器で
ある。これら、第1及び第2の演算器1゜2としては、
例えばマイクロコンビコータが用いられる。
This is a second arithmetic unit that receives Δy and ΔZ and performs up-and-down calculations. These first and second arithmetic units 1゜2 are as follows:
For example, a micro combi coater is used.

3はプロセス変量×を検出する検出器、4は該検出器3
の出力及び第2の演算器2から出力される操作量Δ×を
サンプリングスイッチS W sを介して受けて所定の
P[D演算を行い、操作端5を駆動する第1の調節計、
6はプロセス変flyを検出する検出器、7は該検出器
6の出力及び第2の演算器2から出力される操作量Δy
をサンプリングスイッチ5WIIを介して受けて所定の
PID演輝演算い、操作端8を駆動する第2の調節計で
ある。プロセス変量×としでは例えば温度が、プロセス
変@yとしては例えば圧力が用いられる。図より明らか
なように、第1及び第2の調節計4゜7に、それぞれ操
作入力の上下限値が用いられている。又、サンプリング
スイッチS W s〜SWsはそれぞれ一定のタイミン
グで同期してオンオフするようになっている。このよう
に構成された装置の動作を説明すれば、以下の通りであ
る。
3 is a detector that detects the process variable x; 4 is the detector 3;
a first controller that receives the output of and the manipulated variable Δx output from the second computing unit 2 via the sampling switch SWs, performs a predetermined P[D computation, and drives the operating end 5;
6 is a detector for detecting the process change fly; 7 is the output of the detector 6 and the manipulated variable Δy output from the second computing unit 2;
This is a second controller that receives the signal via the sampling switch 5WII, performs a predetermined PID calculation, and drives the operating end 8. For example, temperature is used as the process variable x, and pressure, for example, is used as the process variable @y. As is clear from the figure, upper and lower limits of operation input are used for the first and second controllers 4.7, respectively. Further, the sampling switches SWs to SWs are turned on and off in synchronization with each other at a fixed timing. The operation of the device configured as described above will be explained as follows.

検出器3.6からはそれぞれプロセス変量の測定値x、
■が出力される。これらプロセス変数×。
From the detectors 3.6, the measured values of the process variables x,
■ is output. These process variables x.

■と効率変数1は、プロセスの動特性が無視できる程度
に長い一定時間サンプリングされ、第1の演算器1内に
取込まれる。第1の演算器1は、これら取込んだデータ
を基にして、以下に示す統計的手法により、ぞのときに
おける斜面式を決定する。ここでは、最小2乗法を用い
た回帰計算により斜面式を求める。今、式Sとして S−Σ(zi −(axi +byi +c ) ) 
2但しi =1.2.・・・、n と表わすと、斜面式z−ax+by+cを表わす係数a
、b、cは、それぞれ次式より与えられる。即ち、 as/la −Σzixi−aΣX12−b 2:xiyi−cΣ×
1=Oas/ab =Σziyi−aΣxiyi−bΣyi2−cΣyi=
 Oas/a。
(2) and the efficiency variable 1 are sampled over a certain period of time so long that the dynamic characteristics of the process can be ignored, and are taken into the first computing unit 1. The first arithmetic unit 1 determines the slope equation at a given time based on the acquired data using the statistical method described below. Here, the slope equation is determined by regression calculation using the least squares method. Now, as the formula S, S−Σ(zi −(axi +byi +c ))
2 However, i = 1.2. ..., n is a coefficient a representing the slope equation z-ax+by+c
, b, and c are given by the following equations, respectively. That is, as/la −Σzixi−aΣX12−b 2:xiyi−cΣ×
1=Oas/ab =Σziyi-aΣxiyi-bΣyi2-cΣyi=
Oas/a.

一Σzi−aΣxi−bΣyi−cn=0で表わされる
a、b、cについての連立方程式を解くことにより係数
a、b、cを求めることができる。尚、(2)式におけ
る定数Σztxi、Σ×12゜Σxtyi等については
、サンプリング毎に演算器1内のメモリに順次格納し、
或いは演算した結果を順次格納しておくことによって容
易に求めることができる。
Coefficients a, b, and c can be obtained by solving simultaneous equations for a, b, and c expressed as Σzi−aΣxi−bΣyi−cn=0. Note that the constants Σztxi, Σ×12°Σxtyi, etc. in equation (2) are sequentially stored in the memory in the arithmetic unit 1 for each sampling.
Alternatively, it can be easily obtained by sequentially storing the calculated results.

このようにして、係数a、b、cが求まると、斜面式z
 = ax+ by+ cが求まったことになる。本発
明においては、山の形状が特定できなくても、統計的手
法を用いることにより、その山の斜面式を求めることが
できる。第2図はこのようにして求めた斜面と山の状態
を示す図である。図において、八が山を、Bが斜面の一
部を示している。
In this way, when the coefficients a, b, and c are determined, the slope equation z
= ax+by+c has been found. In the present invention, even if the shape of a mountain cannot be specified, the slope equation of the mountain can be determined by using a statistical method. FIG. 2 is a diagram showing the conditions of slopes and mountains determined in this manner. In the figure, Yaga represents a mountain, and B represents a part of the slope.

第1の演算器1により求まった斜面式は、サンプリング
スイッチS W 4を介して第2の演算器2に与えられ
る。第2の演算器2は、該斜面式から、最大傾斜の方向
を決定する。今、斜面式を動作点近傍の式で表わすと、
第2図Bに示される動作点近傍の斜面式ΔZは ΔZ=aΔx+bΔy        (3)と表わす
ことができる。次にΔX、Δ■に第2図に示すような Δ×2+ΔV 2 = K         (4)な
る制限内Cを設け、この制限条件の下で、Δ2の最大値
を求めると、その値が最大傾斜の方向(山θりの方向)
を与える。
The slope equation determined by the first calculator 1 is given to the second calculator 2 via the sampling switch SW 4. The second calculator 2 determines the direction of maximum inclination from the slope equation. Now, if we express the slope equation as an equation near the operating point, we get
The slope equation ΔZ near the operating point shown in FIG. 2B can be expressed as ΔZ=aΔx+bΔy (3). Next, set a limit C for ΔX and Δ■ as shown in Figure 2, Δ×2 + ΔV 2 = K (4), and find the maximum value of Δ2 under this limiting condition. direction (direction of mountain θ)
give.

今、Δ2の最大値を求めるために Δ2 ′ −Δ2 +λ (K−Δ× 2−Δy  2
 )=a Δx+b  Δy +λ (K−Δ× 2−Δy 2 ) を定義し、Δ2′をΔ×、Δ■で偏微分すると、次式が
得られる。
Now, in order to find the maximum value of Δ2, Δ2 ′ −Δ2 +λ (K−Δ× 2−Δy 2
)=a Δx+b Δy +λ (K−Δ× 2−Δy 2 ) and by partially differentiating Δ2′ with Δ× and Δ■, the following equation is obtained.

aΔZ’/eΔx=a −2λΔx −QaΔZ’/a
Δy=b−2λΔy−0 (6)式を2λについて解くと、次式が得られる。
aΔZ'/eΔx=a −2λΔx −QaΔZ'/a
Δy=b−2λΔy−0 When equation (6) is solved for 2λ, the following equation is obtained.

2λ=a/Δ×=b/ΔV −(a2+h2)/Δ2 これから Δx = (a / (a 2+b 2) )Δ2Δv
−(b/(a2+b2 ))Δ2 即ち、(8)式で示されるΔX、Δyだけ移動すると、
とりもなおさず、最大傾斜方向に所定量だけ山登りをし
たことになる。尚、Δ×、Δytr負符号にすると、山
を下るシーケンスになる。
2λ=a/Δ×=b/ΔV −(a2+h2)/Δ2 From now on, Δx = (a/(a 2+b 2)) Δ2Δv
−(b/(a2+b2))Δ2 In other words, if you move by ΔX and Δy shown in equation (8),
In other words, you have climbed the mountain by a predetermined amount in the direction of maximum inclination. Note that if Δ×, Δytr are given negative signs, the sequence will go down the mountain.

ここで、1回のステップで登る速度をΔZoとすると1
回の操作量は、(8)式よりそれぞれΔx −(a /
 (a 2 +b 2 ) )ΔZ。
Here, if the climbing speed in one step is ΔZo, then 1
The operation amount for each time is calculated from equation (8) as follows: Δx − (a /
(a 2 +b 2 ))ΔZ.

ΔV −(b / (a 2 +b 2 ) )ΔZ。ΔV − (b / (a 2 + b 2)) ΔZ.

となる。ところで、本発明によれば、山の頂上に到達し
ても常に一定周期で探索が行われる。従って、場合によ
っては閃のステップで登ろうとする可能性がある。そこ
で、ΔXとΔVの1回の操作量にもそれぞれ制限を設け
ることにする。
becomes. By the way, according to the present invention, even after reaching the top of the mountain, the search is always performed at a constant cycle. Therefore, depending on the situation, there is a possibility that you will try to climb using the Step of Flash. Therefore, limits are set for each of the amounts of one-time operation of ΔX and ΔV.

ΔX、ΔVの制限量ΔxOrΔyO及びΔzOは外部か
ら、例えばキーボードからのキーイン操作により第2の
演算器2に与えられる。この結果、Δ×、Δyはそれぞ
れ次式で与えられる。
The limit amounts ΔxOrΔyO and ΔzO of ΔX and ΔV are given to the second arithmetic unit 2 from the outside, for example, by a key-in operation from a keyboard. As a result, Δx and Δy are respectively given by the following equations.

ここで (10)式において、Signxは×″の符号(+か−
か)を示し、1n (ΔXo、lx l)は与えられた
制限間ΔxOと動作点のX座標の絶対値lxlのうち、
小さい方の値を選択することを示す。即ち、(10)式
で示される制限の下に(9)式で与えられる1回の操作
mΔ×、ΔVを決定すればよい。この操作量Δ×、Δy
は、第2の演算器2からサンプリングスイッチSWs、
SW6を介してそれぞれの調節計4.7に与えられる。
Here, in equation (10), Signx is the sign of x'' (+ or -
), and 1n (ΔXo, lx l) is the given limit ΔxO and the absolute value lxl of the X coordinate of the operating point,
Indicates that the smaller value is selected. That is, it is sufficient to determine one operation mΔ×, ΔV given by equation (9) under the restriction shown by equation (10). This operation amount Δ×, Δy
are the sampling switches SWs from the second arithmetic unit 2,
It is applied to each controller 4.7 via SW6.

調節計4.7は、入力操作量Δ×、ΔVに基づいて操作
端5.8を駆動すると共に、プロセス変lx 、yを表
示する。このような操作を所定の周期で繰返せば、常に
探索しながらの山登りが可能となる。
The controller 4.7 drives the operating end 5.8 based on the input operation amounts Δx and ΔV, and displays the process changes lx and y. By repeating such operations at predetermined intervals, it becomes possible to climb the mountain while always searching.

尚、動作点の座標(x、y)に上下限等の制限がある場
合は、操作をその制限にクランプさせ、制限されていな
い変数のみを同一条件で動かすようにすればよい。或い
は、制限された変数を除いて前述の操作を行えばよい。
Note that if the coordinates (x, y) of the operating point have restrictions such as upper and lower limits, the operation may be clamped to the restrictions and only variables that are not restricted may be moved under the same conditions. Alternatively, the above operations may be performed except for limited variables.

この場合、変数は1次元となるので、操作量は 又は 上述の説明においては3次元の山登りの場合を例にとっ
て説明したが、本発明はこれに限るものではなく、任意
の次元の山登りの場合にも同様に適用することができる
。又、斜面式を求める統計的手法も前述の最小2乗法に
よる回帰計算に限るものではなく、その他の統計的計算
手法を用いてもよい。
In this case, the variable is one-dimensional, so the amount of operation is The same can be applied to Further, the statistical method for determining the slope equation is not limited to the above-mentioned regression calculation using the least squares method, and other statistical calculation methods may be used.

(発明の効果) 以上詳細に説明したように、本発明によれば、山登り手
法をプロセス制御に用いることができ、更に山の形状が
予めわかっていなくても斜面式を求めることができ、実
用上の効果が極めて大きい。
(Effects of the Invention) As explained in detail above, according to the present invention, the mountain climbing method can be used for process control, and the slope formula can be obtained even if the shape of the mountain is not known in advance, making it possible to put it into practical use. The above effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は山と斜面を示す図である。 1.2・・・演算器   3.6・・・検出器4.7・
・・調節計   5.8・・・操作端S W 1〜S 
’A’ e・・・サンプリングスイッチX>N
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
The figure shows mountains and slopes. 1.2... Arithmetic unit 3.6... Detector 4.7.
...Controller 5.8...Operation end SW 1~S
'A' e...Sampling switch X>N

Claims (1)

【特許請求の範囲】[Claims] 複数個のプロセス変数の測定値から統計的手法を用いて
そのときの斜面式を決定し、決定された斜面式に基づい
て当該斜面の最大傾きをもつ方向に一定高さだけ登るよ
うにプロセス変数を操作すると共に、各プロセス操作量
に一定の制限を加えるという操作を周期的に行うように
構成したことを特徴とする山登り手法を用いたプロセス
制御装置。
The slope equation at that time is determined using statistical methods from the measured values of multiple process variables, and the process variable is set to climb a certain height in the direction of the slope with the maximum slope based on the determined slope equation. 1. A process control device using a hill-climbing method, characterized in that the device is configured to periodically perform an operation in which a certain limit is applied to each process operation amount.
JP26029784A 1984-12-10 1984-12-10 Process controller using mountaineering method Pending JPS61138303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26029784A JPS61138303A (en) 1984-12-10 1984-12-10 Process controller using mountaineering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26029784A JPS61138303A (en) 1984-12-10 1984-12-10 Process controller using mountaineering method

Publications (1)

Publication Number Publication Date
JPS61138303A true JPS61138303A (en) 1986-06-25

Family

ID=17346082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26029784A Pending JPS61138303A (en) 1984-12-10 1984-12-10 Process controller using mountaineering method

Country Status (1)

Country Link
JP (1) JPS61138303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240038A (en) * 1988-03-19 1989-09-25 Fujitsu Ltd System for reproducing peak value comparison type timing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191004A (en) * 1982-04-30 1983-11-08 Shimadzu Corp Searching circuit of extreme value
JPS59211103A (en) * 1983-05-16 1984-11-29 Japan Steel Works Ltd:The Method and device for multivariate control of extrusion molding machine for synthetic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191004A (en) * 1982-04-30 1983-11-08 Shimadzu Corp Searching circuit of extreme value
JPS59211103A (en) * 1983-05-16 1984-11-29 Japan Steel Works Ltd:The Method and device for multivariate control of extrusion molding machine for synthetic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240038A (en) * 1988-03-19 1989-09-25 Fujitsu Ltd System for reproducing peak value comparison type timing

Similar Documents

Publication Publication Date Title
KR100251279B1 (en) Method for controlling a thickness of a layer deposited in a semiconductor fabricating equipment
JPS61138303A (en) Process controller using mountaineering method
JPH05301196A (en) Robot control system parameter regulating device
KR100365096B1 (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JPH09101805A (en) Feedback control method of chaos system using adaptive tracking
EP0587897A4 (en) Prediction control apparatus.
CN100412772C (en) Editing apparatus and editing processing program
JPS57124566A (en) Method for controlling cooling of die in die casting
CN108062021A (en) Methods of self-tuning of the SISO full format Non-Model Controller based on local derviation information
KR960018817A (en) Setting method of time constant at the time of track planning of robot
KR100244443B1 (en) Continuous motion controller of robot and method of the same
JPS6144326B2 (en)
CN108181808A (en) Inclined methods of self-tuning of the form Non-Model Controller based on systematic error of MISO
CN108008634A (en) Inclined methods of self-tuning of the form Non-Model Controller based on local derviation information of MISO
JP2848932B2 (en) Robot path speed setting device
JPS6385804A (en) Apparatus for renewing correlation of physical nature together with measurement data
JPH01106103A (en) Process controller
JPS61125601A (en) Controller with potentiometer
JPS62235734A (en) Manufacture of semiconductor device
JPH07182310A (en) Method and device for structure analysis
JP2983995B2 (en) Character processor
SU750431A1 (en) Device for control of long articles coiling
SU748444A1 (en) Extrapolator
JPH01123165A (en) Generation of sweep step signal
JPS63293429A (en) Data processor for spectrophotometer