JPS58191004A - Searching circuit of extreme value - Google Patents

Searching circuit of extreme value

Info

Publication number
JPS58191004A
JPS58191004A JP7353782A JP7353782A JPS58191004A JP S58191004 A JPS58191004 A JP S58191004A JP 7353782 A JP7353782 A JP 7353782A JP 7353782 A JP7353782 A JP 7353782A JP S58191004 A JPS58191004 A JP S58191004A
Authority
JP
Japan
Prior art keywords
signal
controlled
period
output
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7353782A
Other languages
Japanese (ja)
Other versions
JPH0434161B2 (en
Inventor
Yuzo Nakayama
中山 有三
Osamu Nishiguchi
西口 統
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP7353782A priority Critical patent/JPS58191004A/en
Publication of JPS58191004A publication Critical patent/JPS58191004A/en
Publication of JPH0434161B2 publication Critical patent/JPH0434161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To perform a control to obtain the maximum value of the general efficiency, by changing the direction of the control quantity in response to the direction to the extreme value of the change component between the quantities to be controlled of this time and the previous time which are obtained periodically and then continuing the above-mentioned change of direction to approximate the quantity to be controlled to the extreme value. CONSTITUTION:When an operation start command signal (h) is delivered at a time point TO, a signal (s) is delivered as an output signal (g) from a switch 9 and just for a period TA. A switch 11 delivers the supplied signal as it is for the period TA by a signal (j) and then applies it to an integrator 12. As a result, the signal (s) is applied as it is to the integrator 12 from a generator 8. The signals (h) and (j) are turned off in a period TB, and therefore signals (i) and (k) are held. Then the output signal (k) of the integrator 12 is applied to a PI controller 2, and a new control quantity m1 is decided. Then a new quantity f1 is decided to the quantity m1. In such a way, the sampling time is successively shifted to decide the set value of control quantity in the direction where the quantity to be controlled varies to approximate to the extreme value.

Description

【発明の詳細な説明】 この発明はプロセス制御系等に使用される極値探索回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extreme value search circuit used in a process control system or the like.

従来のプロセス制御系、たとえば火力発電プラントでは
被制御量を一定に保つ定値制御方式が採用されている。
Conventional process control systems, such as thermal power plants, employ a constant value control method that keeps a controlled variable constant.

しかしながら火力発電プラントのボイラ制御に関し、ボ
イラの効率をf Bsタービンの効率JT、GRダンパ
の開度を操作量mとした場合たとえば開度mを大にする
と、タービン効率は上るが、ボイラ効率が下シ、逆に開
度mを小にするとボイラ効率は上るがタービン効率が下
ることになjl)総合効率を最大にする開度mi−義的
に決定することは困難である。
However, regarding boiler control in a thermal power plant, if the boiler efficiency is f Bs turbine efficiency JT and the opening degree of the GR damper is the manipulated variable m, then for example, if the opening degree m is increased, the turbine efficiency increases, but the boiler efficiency decreases. Conversely, if the opening degree m is made small, the boiler efficiency will increase, but the turbine efficiency will decrease.

そこで近年、火力発電プラントにおいて単に被制御量を
定値に保つのではなく、ボイラ効率、タービン効率を考
慮に入れプラントの総合効率が最大となる被制御量を制
御しようとする方式が検討とされるにいたっている。
Therefore, in recent years, instead of simply keeping the controlled variable at a fixed value in thermal power plants, a method has been considered that takes boiler efficiency and turbine efficiency into consideration and attempts to control the controlled variable that maximizes the overall efficiency of the plant. It has reached this point.

また一般にプロセス制御系は第1図に示すように、プロ
セスPに対し操作量m、外乱dとすると被制御量fが出
力されるが、操作量mの変化に対する被制御量fの関係
を示すと、たとえば第2図のようになシ外乱dの値によ
シ被制御量fの極小点(あるいは極大点)が変化する。
Generally, as shown in Fig. 1, a process control system outputs a controlled variable f when a manipulated variable m and a disturbance d are used for a process P. For example, as shown in FIG. 2, the minimum point (or maximum point) of the controlled amount f changes depending on the value of the disturbance d.

これを上記した火力発電プラントについて考えると外乱
たとえば負荷や燃料比等によシ操作量すなわち開度mの
変化に対する総合効°率fの最小となる点が相違するこ
とになる。それゆえプラント総合効率を最小になるよう
に制御するためには、操作量mを変化して被制御量であ
る総合効率が最小となる極値を探索する必要がある。
When this is considered for the above-mentioned thermal power plant, the difference is that the overall efficiency f is minimized with respect to changes in the manipulated variable, ie, the opening degree m, due to disturbances such as load and fuel ratio. Therefore, in order to control the plant overall efficiency so as to minimize it, it is necessary to change the manipulated variable m and search for an extreme value at which the overall efficiency, which is a controlled variable, is minimized.

この発明の目的は上記した制御系に適用可能な極値探索
回路を提供するにある。
An object of the present invention is to provide an extreme value search circuit applicable to the above-mentioned control system.

この発明の極値探索回路は、ある操作蓋設定値から操作
量を変化させて所定周期のサイクル毎に今回の被制御量
と前回の被制御量の差を求め、その差値すなわち変化分
が極値と同方向の変化であれば、操作量をさらに同方向
に変化させ、逆に変化分が極値と逆方向への変化であれ
ば、操作量を前回とは逆の方向に変化させて順次この操
作を繰シ返し、被制御量が極値に近づくように制御する
ことを原理とするものである。
The extreme value search circuit of the present invention changes the operation amount from a certain operation lid setting value, calculates the difference between the current controlled amount and the previous controlled amount at each predetermined cycle, and calculates the difference value, that is, the amount of change. If the change is in the same direction as the extreme value, the manipulated variable is further changed in the same direction, and conversely, if the change is in the opposite direction to the extreme value, the manipulated variable is changed in the opposite direction from the previous value. The principle is to repeat this operation one after another in order to control the controlled quantity so that it approaches the extreme value.

以下9図面に示す実施例によシこの発明の詳細な説明す
る。
The present invention will be described in detail below with reference to embodiments shown in nine drawings.

第3図はとの発明の極値探索回路が実施されるプロセス
制御系の基本ブロック図である。同図において1はプロ
セス、2はPIコントローラ、3は加算器、4は探索回
路である。プロセス1の出力である被制御量fは探索回
路4の入力信号として加えられている。探索回路4にお
いて被制御量fによシ操作量mの設定値が決定される。
FIG. 3 is a basic block diagram of a process control system in which the extreme value search circuit of the invention is implemented. In the figure, 1 is a process, 2 is a PI controller, 3 is an adder, and 4 is a search circuit. The controlled quantity f, which is the output of the process 1, is added as an input signal to the search circuit 4. In the search circuit 4, the set value of the manipulated variable m is determined based on the controlled variable f.

操作量mil:PIコントローラ2によるフィードバッ
ク制御によ多制御されている。このPIコントローラ2
はすでによく知られた回路である。
Manipulated amount mil: Controlled by feedback control by the PI controller 2. This PI controller 2
is already a well-known circuit.

探索回路4のさらに詳細なブロック図を第4図に示して
いる。同図において、5はむだ時間発生器であシこの回
路のむだ時間TDIは第5図に示すサンプリング用のタ
イミング信号の1サイクル周期、すなわちTA十TBに
設定されている。6は減算器であって、今回(サンプリ
ング時)加えられる被制御量信号aとむだ時間発生器5
よシの前回加えられた被制御量信号すの差c=a−bを
出力する。この差の出力信号Cは乗算器7に加えられる
。8は一定の負レベル信号Sを出力する信号発生器であ
る。9は乗算器7よシの信号eと信号発生器8よシの信
号Sを切換えて出力信号gを導出する切換器である。1
0は操作開始指令出力器であってプロセス1が整定し十
分な時間を経過した後の時間より(第5図に示すタイミ
ングTO)。
A more detailed block diagram of the search circuit 4 is shown in FIG. In the figure, 5 is a dead time generator, and the dead time TDI of this circuit is set to one cycle period of the sampling timing signal shown in FIG. 5, that is, TA+TB. 6 is a subtracter, which combines the controlled quantity signal a added this time (during sampling) and the dead time generator 5.
The difference c=a−b between the previously applied controlled variable signal is output. This difference output signal C is applied to a multiplier 7. 8 is a signal generator that outputs a constant negative level signal S. Reference numeral 9 denotes a switch that switches between the signal e from the multiplier 7 and the signal S from the signal generator 8 to derive an output signal g. 1
0 is the operation start command output device, and is from the time after Process 1 has stabilized and sufficient time has elapsed (timing TO shown in FIG. 5).

一定期期間TAだけONする操作開始指令信号りを出力
し切換器9に加えるようになっている。切換器9は操作
開始指令信号りがONしている期間信号Sを、それ以外
の期間すなわち操作指令信号わがOFFの間は信号eを
それぞれ出力信号gとして出力する。11は切換器9の
出力信号gを受け、出力信号iを導出する切換器である
。また12は切換器11の出力信号iを受け、出力信号
kを出力する積分器である。15は第5図に示す、サン
プリング用のタイミング信号jを出力するタイミング信
号発生器である。このタイミング信号jは切換器11.
積分器12に加えられるようになっている。切換器11
はタイミング信号jがONしている期間TAに、切換器
9よシの出力信号gを、タイミング信号JがOFFして
いる期間TBに自身の出力信号lをホールド(保持)し
てそれぞれ出力信号iとして出力する。また積分器12
はタイミング信号jがONしている期間TAに入力信号
iを積分演算し、タイミング信号jがOFFしている期
間TBはトラッキングモードとして。
An operation start command signal that is ON for a certain period of time TA is output and applied to the switch 9. The switch 9 outputs the signal S during the period when the operation start command signal 1 is ON, and outputs the signal e as the output signal g during other periods, that is, while the operation command signal 1 is OFF. Reference numeral 11 denotes a switch that receives the output signal g of the switch 9 and derives the output signal i. Further, 12 is an integrator that receives the output signal i of the switch 11 and outputs an output signal k. 15 is a timing signal generator shown in FIG. 5 that outputs a timing signal j for sampling. This timing signal j is sent to the switch 11.
It is adapted to be added to the integrator 12. Switch 11
outputs the output signal g from the switch 9 during the period TA when the timing signal j is ON, and holds the output signal l from the switch 9 during the period TB when the timing signal J is OFF. Output as i. Also, the integrator 12
The input signal i is integrated during the period TA during which the timing signal j is ON, and the period TB during which the timing signal j is OFF is set as a tracking mode.

タイミング期間TAの終了時点の出力値をホールドし、
それぞれ出力信号にとして出力する。この出力信号kが
P■:1ントローラ2に加えられ、PIコントローラに
よって操作量0mの新たな設定値が決定される。
Hold the output value at the end of the timing period TA,
Each is output as an output signal. This output signal k is applied to the P■:1 controller 2, and the PI controller determines a new set value for the manipulated variable 0m.

なお上記タイミング信号jの周期TA+TBは新だな操
作量mが設定されて後プロセスが整定される程度に十分
に侵くとられている。
Note that the period TA+TB of the timing signal j is set sufficiently to the extent that a new manipulated variable m is set and the post-process is stabilized.

14は切換器11の出力信号iを入力に受屹むだ時間T
 D 2 (TA < TB2<TB)を持つむだ時間
発生器である。このむだ時間発生器14の出力信号lは
関数発生器15に加えられる。関数発生器15は!第6
図に示すように入力信号lが正の時−100の出力信号
n、入力信号lが負の時+100の出力信号nを導出す
る特性を有している。この関数発生器15の出力信号n
は乗算器7に加えられるようになっている。乗算器7は
減算器6よりの信号Cと関数発生器15よシの信号nを
入力に受け10”0の乗算を行ない、上記したようにそ
の出力信号eを切換器9に加える。このむだ時間発生器
14、関数発生器15及び乗算器7は9次のサンプリン
グ時間に被制御1ifを極値に近づく方向に変化させる
ように操作量mを変化させるため、減算器6の出力信号
Cに正もしくは負の極性荷量を付与するための回路を構
成している。
14 is the dead time T when receiving the output signal i of the switching device 11 at the input.
It is a dead time generator with D 2 (TA < TB2 < TB). The output signal l of this dead time generator 14 is applied to a function generator 15. Function generator 15! 6th
As shown in the figure, it has a characteristic that when the input signal l is positive, an output signal n of -100 is derived, and when the input signal l is negative, an output signal n of +100 is derived. The output signal n of this function generator 15
is added to the multiplier 7. The multiplier 7 receives the signal C from the subtracter 6 and the signal n from the function generator 15, multiplies it by 10"0, and applies the output signal e to the switch 9 as described above. The time generator 14, the function generator 15, and the multiplier 7 change the manipulated variable m so as to change the controlled value 1if toward the extreme value at the 9th sampling time. A circuit for applying a positive or negative polarity load is configured.

次に以上のように構成される実施例回路の動作について
説明する。
Next, the operation of the embodiment circuit configured as described above will be explained.

第3図、第4図に示す回路において、プロセスが整定し
て十分な時間を経過した後の時間TQに操作開始指令出
力器10よシ操作開始指令信号りが発せられたとする。
In the circuits shown in FIGS. 3 and 4, it is assumed that the operation start command output device 10 issues an operation start command signal at time TQ after the process has stabilized and a sufficient period of time has elapsed.

この時点における被制御量をf(To)、操作量をmO
とする。この状態下ではプロセスが整定しているのでf
 (TO)=f (TO−TDI)=fOであシ、シた
がって信号a=倍信号であり減算器6の出力信号Cは0
である。一方時間TOよりTA切期間け操作開始指令信
号りが切換器9に加えられるので、この期間切換器9は
信号発生器8よりの信号Sを出力信号gとして出力する
The controlled variable at this point is f(To), and the manipulated variable is mO.
shall be. Under this condition, the process is stable, so f
(TO)=f (TO-TDI)=fO, therefore, signal a=double signal, and output signal C of subtractor 6 is 0.
It is. On the other hand, since the TA off period operation start command signal is applied to the switch 9 from time TO, the period switch 9 outputs the signal S from the signal generator 8 as the output signal g.

また切換器11はタイミング信号jによってTA切期間
入力される信号をそのまま出力し、この信号を積分器1
2に加えるので積分器12には信号発生器8よシの信号
Sが加えられることになシ。
In addition, the switch 11 outputs the signal input during the TA off period as it is according to the timing signal j, and transfers this signal to the integrator 1.
2, so the signal S from the signal generator 8 is added to the integrator 12.

期間TAの間信号余生器8よシの信号Sにつき積分処理
がなされる。期間TAが経過して期間TBに入ると操作
開始指令信号り、タイミング信号jのいずれもがOFF
するので、以後期間TB中は切換器11の出力信号i及
び積分器12の出力信号には期間TA終了時点の値にホ
ールドされる。
During the period TA, the signal S from the signal remainder generator 8 is subjected to integration processing. When period TA elapses and period TB begins, both the operation start command signal and timing signal j turn OFF.
Therefore, during the period TB thereafter, the output signal i of the switch 11 and the output signal of the integrator 12 are held at the values at the end of the period TA.

そして積分器12の出力信号kがPIコントローラ2に
加えられ操作量mは新たな設定値m1に決められる。そ
の結果、第7図(5)の時間−操作量特性及び第7図向
の時間−被制御量特性に示すように5次のサンプリング
時間T1までに、操作量mは新だな設定値m 1に被制
御量fはfOから操作量設定値m1に対応する値f1に
整定される。なお第7図の例では、操作量mの増加に対
して当初被制御量fが減少する方向に変化する場合を示
している。
Then, the output signal k of the integrator 12 is applied to the PI controller 2, and the manipulated variable m is determined to a new set value m1. As a result, as shown in the time-operated amount characteristic in FIG. 7 (5) and the time-controlled amount characteristic in FIG. 1, the controlled variable f is set from fO to the value f1 corresponding to the manipulated variable set value m1. Note that the example in FIG. 7 shows a case where the initially controlled amount f changes in a direction that decreases with respect to an increase in the manipulated variable m.

期間TBが経過して次のサンプリング時間T1に達する
と、被制御量f(TI)はf(T[])に対して減少方
向なので減算器乙の出力信号Cすなわち被制御量の変化
分は負の値となる。一方晦間TO〜T1サイクルにおけ
る期間TA経過時の切換器11の出力信号!は負レベル
の信号なのでサンプリング時間T1で、むだ時間発生器
14に出力される信号lも負であり、そのため関数発生
器15の出力信号nとして+100が導出され、この+
100の信号が乗算器7に加えられる。乗算器7に加え
られる2人力信号は負と正となシ、出力信号eとC・1
00 しては’  ””  100  ”’より、減算器6の
負の出力信号Cがそのまま導出されることになる。タイ
ミングT1では開始指令信号りがOFFなので乗算器7
の出力信号e、すなわち被制御量の変化分はそのまま切
換器9を通過しさらに期間TA中は切換器11も通過し
積分器12に加えられる。その被制御量の変化分は期間
TAO間、積分器12で積分処理される。期間TBに入
ると次のサンプリング時間T2まで切換器11及び積分
器12の出力はホールドされる。積分器12の出力信号
には上記サンプリング時間TOの時と同様PIコントロ
ーラ2に加えられ操作量mは新たな設定値m2に定めら
れる。そして第7図(A)に示すように次のサンプリン
グ時間T2tでに、操作量mは新たな設定値m2に、ま
た第7図(B)に示すように被制御量fはflから操作
量設定値m2に対応する値f2に整定される。
When the period TB passes and the next sampling time T1 is reached, the controlled quantity f(TI) decreases with respect to f(T[]), so the output signal C of the subtractor O, that is, the change in the controlled quantity is It becomes a negative value. On the other hand, the output signal of the switch 11 when the period TA has elapsed in the T1 cycle! Since is a negative level signal, the signal l output to the dead time generator 14 at sampling time T1 is also negative, so +100 is derived as the output signal n of the function generator 15, and this +
100 signals are applied to multiplier 7. The two input signals applied to the multiplier 7 are negative and positive, and the output signals e and C・1
00, the negative output signal C of the subtracter 6 is derived as is from ' `` 100 ''. At timing T1, the start command signal is OFF, so the multiplier 7
The output signal e, that is, the change in the controlled variable passes through the switch 9 as it is, and further passes through the switch 11 during the period TA and is added to the integrator 12. The change in the controlled amount is integrated by the integrator 12 during the period TAO. When the period TB begins, the outputs of the switch 11 and the integrator 12 are held until the next sampling time T2. The output signal of the integrator 12 is applied to the PI controller 2 in the same manner as at the sampling time TO, and the manipulated variable m is set to a new set value m2. Then, as shown in FIG. 7(A), at the next sampling time T2t, the manipulated variable m changes to the new set value m2, and as shown in FIG. 7(B), the controlled variable f changes from fl to the manipulated variable. It is set to a value f2 corresponding to the set value m2.

なお、この動作サイクルにおける切換器11の出力信号
iも負レベルの信号なので、関数発生器15の出力信号
nは+100すなわち正の信号となる。次のサンプリン
グ時間T2でも被制御量f(T2)はf(TI)に対し
て減少方向なので、上記したサンプリング時間T1と同
様に、極小方向への変化なので、以降の動作もさらに被
制御量fを下げる方向に進行する。すなわち9乗算器7
の出力は負の信号すなわち減算器6よシの信号Cをその
まま出力信号eとして導出し、切換器9.及び切換器1
1を通過させてこの被制御量の変化分に対して積分器1
2で積分処理を施し、さらにこの積分器12の出力信号
で操作量mを正の方向に増加させて設定変更する。そし
て上記サンプリング時間TO,TIの時と同様第7図(
6)に示すように次のサンプリング時間T3までに、操
作量mは新たな設定値m3に、また第7図(B)に示す
ように被制御量fはf2から操作量設定値m3に対応す
る値C3に整定される。
Note that since the output signal i of the switch 11 in this operation cycle is also a negative level signal, the output signal n of the function generator 15 becomes +100, that is, a positive signal. Even at the next sampling time T2, the controlled amount f(T2) is in the decreasing direction with respect to f(TI), so the change is in the minimum direction, similar to the sampling time T1 described above, so the subsequent operation is also further controlled by the controlled amount f progress in the direction of lowering. i.e. 9 multipliers 7
The output of the subtractor 6 is a negative signal, that is, the signal C from the subtractor 6 is directly derived as the output signal e, and the switch 9. and switch 1
1 is passed through the integrator 1 for the change in this controlled quantity.
2 performs integration processing, and further uses the output signal of this integrator 12 to increase the manipulated variable m in the positive direction and change the setting. Then, as in the case of the above-mentioned sampling times TO and TI, FIG.
6), by the next sampling time T3, the manipulated variable m changes to the new set value m3, and as shown in FIG. 7(B), the controlled variable f changes from f2 to the manipulated variable set value m3. It is set to the value C3.

次にサンプリング時間T5の動作に移るが第7図に示す
例では、72〜T3の動作サイクルで操作量mの増加に
対し被制御量fも増加している。
Next, moving on to the operation during the sampling time T5, in the example shown in FIG. 7, the controlled amount f also increases as the manipulated variable m increases in the operation cycle from 72 to T3.

すなわち被制御量fは減少方向から増加方向に変化して
いる。このことは、操作量m2とm3の間に被制御量f
を最小にする点があることを意味している(第7図(C
)の操作量−被制御量特性参照1そのためサンプリング
時間T3では操作量mを下げて被制御量fを下げること
になる。
That is, the controlled amount f changes from a decreasing direction to an increasing direction. This means that the controlled variable f is between the manipulated variables m2 and m3.
This means that there is a point that minimizes (Figure 7 (C)
) Manipulated amount-controlled amount characteristic reference 1 Therefore, at the sampling time T3, the manipulated variable m is lowered to lower the controlled amount f.

サンプリング時間T3では被制御量f (T3 )はf
(T2)に対して増加方向なので、減算器乙の出力。
At sampling time T3, the controlled quantity f (T3) is f
Since it is in the increasing direction with respect to (T2), the output of subtractor B.

すなわち被制御量の変化分は正の値とな2る。この信号
Cは乗算器7.切換器9及び切換器11を経てそのまま
積分器12に加えられ、そして積分器12で積分処理さ
れて正の出力信号kが導出されPIコントローラ2に加
えられ、操作量mは新だな設定値m4に決められる。こ
の新操作量設定値m4はPIコントローラ2に加えられ
る信号が正の信号であるため、前サイクルの設定値m5
よりも小さくなる。次のサンプリング時間T4までに操
作量mは新たな設定値m4に、被制御量fはf3から操
作量設定値m 4に対応する値f4に整定される。
In other words, the amount of change in the controlled amount is a positive value. This signal C is applied to the multiplier 7. It is directly applied to the integrator 12 via the switch 9 and the switch 11, and is subjected to integration processing by the integrator 12 to derive a positive output signal k, which is applied to the PI controller 2, and the manipulated variable m is changed to a new set value. It can be decided on m4. Since the signal applied to the PI controller 2 is a positive signal, this new manipulated variable set value m4 is set to the previous cycle's set value m5.
becomes smaller than By the next sampling time T4, the manipulated variable m is set to a new set value m4, and the controlled variable f is set from f3 to a value f4 corresponding to the manipulated variable set value m4.

なおこの動作サイクルにおける切換器11の出力信号i
は正レベルの信号なので関数発生器15の出力信号nは
−100すなわち負の信号となる。
Note that the output signal i of the switch 11 in this operation cycle
Since n is a positive level signal, the output signal n of the function generator 15 becomes -100, that is, a negative signal.

そのため次のサンプリン・グ時間T4では、減算器乙の
出力信号Cすなわち被制御量の変化分は9乗算器7で正
負が逆転される。サンプリング時間T4では被制御量f
 (T4)がf (T5 )に対して減少しているので
被制御量の変化分は負であるから9乗算器7の出力信号
eは正となシこの正の信号が、切換器9及び11を通過
して積分器12に加えられ積分処理され、そして操作量
mを今度はさらに減少させる方向の出力信号にと出力し
、PIコントローラ2に加える。
Therefore, at the next sampling time T4, the sign of the output signal C of the subtractor B, that is, the change in the controlled quantity is reversed by the 9 multiplier 7. At sampling time T4, the controlled quantity f
Since (T4) is decreasing with respect to f (T5), the change in the controlled amount is negative, so the output signal e of the 9 multiplier 7 is positive. 11, is applied to an integrator 12, is subjected to integration processing, and is then outputted as an output signal in the direction of further decreasing the manipulated variable m, and is applied to the PI controller 2.

以上のようにして、各サンプリング時間毎に。As above, for each sampling time.

前回に対する今回サンプリング時間の被制御量の変化分
を求め、この変化分に基づいて9次の被制御量が極小値
に近づくように変化する方向の次の操作量設定値を定め
、この動作を繰返すことにより被制御量が最小値となる
点を探索する。
Find the change in the controlled variable at the current sampling time compared to the previous time, and based on this change, determine the next manipulated variable setting value in the direction in which the 9th order controlled variable approaches the minimum value, and perform this operation. By repeating this process, the point where the controlled variable becomes the minimum value is searched for.

なお上記実施例においては被制御量の最小となる点を探
索する場合について説明したが、関数発生器15に、入
力が正の時出力が+100.入力が負の時出力が−10
0となる特性のものを用いることにより、被制御量が最
大値となる点を探索することができる。
In the above embodiment, the case where the point where the controlled amount is the minimum is searched is explained, but when the input to the function generator 15 is positive, the output is +100. When the input is negative, the output is -10
By using a characteristic that is 0, it is possible to search for a point where the controlled amount has the maximum value.

以上のようにこの発明によれば、操作量を順次変化させ
ることにより被制御量の極値を探索可能であるから、外
乱の影響を受けることなく制御系の目的に合った最適制
御をなすことができる。
As described above, according to the present invention, it is possible to search for the extreme value of the controlled variable by sequentially changing the manipulated variable, so it is possible to perform optimal control that suits the purpose of the control system without being affected by disturbances. I can do it.

その上回路も減算器、切換器、積分器、むだ時間発生器
等、一般の制御用コントローラに組込まれる機能ブロッ
クを用いて実現できるものであるから、特殊複雑なプロ
グラムを組むことが不要であり9回路全体を簡単、安価
に得ることができる。
Furthermore, the circuit can be realized using functional blocks built into general controllers, such as subtracters, switches, integrators, and dead time generators, so there is no need to create special complicated programs. The entire 9 circuits can be obtained easily and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なプロセス制御系を示す図、第2図はプ
ロセス制御系の操作−一被制御量特性の一例を示す図、
第6図はこの発明の極値探索回路が実施されるプロセス
制御系の基本ブロック図。 第4図は第3図に示すプロセス制御系の探索回路をさら
に詳細に示したブロック図、第5図は第4図に示す回路
のタイミング信号波形図、第6図は第4図に示す探索回
路の関数発生器の入−出力特性を示す図、第7図は第6
図、第4図に示す回路−の動作を説明するだめの特性図
の一側上あって第7図(A)は時間−操作量特性を示す
図、第7図(B)は時間−被制御量特性を示す図、第7
図G)は操作量−被制御量特性を示す図である。 1:プロセス、   2:PIコントローラ。 6:加算器、  4:探索回路、 5・14:むだ時間
°発生器、  6:減算器、  7:乗算器。 8:信号発生器、  9・11:切換器。 10:操作開始指令信号出力器、  12:積分器、 
 13:タイミング信号発生器。 15:関数発生器。 特許出願人     株式会社島津製作所代理人  弁
理士  中 村 茂 信
Fig. 1 is a diagram showing a general process control system, Fig. 2 is a diagram showing an example of operation-controlled quantity characteristics of the process control system,
FIG. 6 is a basic block diagram of a process control system in which the extreme value search circuit of the present invention is implemented. Figure 4 is a block diagram showing the search circuit of the process control system shown in Figure 3 in more detail, Figure 5 is a timing signal waveform diagram of the circuit shown in Figure 4, and Figure 6 is the search circuit shown in Figure 4. Figure 7 is a diagram showing the input-output characteristics of the function generator of the circuit.
Figure 7(A) is a diagram showing the time-operated amount characteristic, and Figure 7(B) is a diagram showing the time-operated amount characteristic on one side of the characteristic diagram for explaining the operation of the circuit shown in Figure 4. Diagram showing control amount characteristics, 7th
Figure G) is a diagram showing the manipulated variable-controlled variable characteristics. 1: Process, 2: PI controller. 6: Adder, 4: Search circuit, 5/14: Dead time generator, 6: Subtractor, 7: Multiplier. 8: Signal generator, 9/11: Switch. 10: Operation start command signal output device, 12: Integrator,
13: Timing signal generator. 15: Function generator. Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura

Claims (1)

【特許請求の範囲】[Claims] (1)外乱に応じて、操作量に対する被制御量の極値が
変化する制御系の、被制御量の極値探索回路であって。 前記被制御量が入力され所定周期のサイクルで今回入力
の被制御量と前回入力の被制御量の差を算出して出力す
る減算手段と、所定レベルの信号を出力する信号発生手
段と、操作開始指令を出力する手段と、前記減算手段と
前記信号発生手段よシの信号を受は前記操作開始指令出
力手段よシの操作開始指令信号ONで前記信号発生手段
よシの信号を出力し、操作開始指令信号OFFで前記減
算手段よりの信号を出力する第1の切換手段と、前記各
サイクルにおける所定の第1゛期間は前記第1の切換手
段よシの信号をツその他の第2期間では自身の出力を保
持して出力する第2の切換手段と、この第2の切換手段
出力を受け、前記第1の期間は積分演算をなし、前記第
2の期間は出力値を保持し、その出力値を前記操作量設
定値の更新用信号とする積分手段と、前記第2の切換手
段の今回の出力信号の極性に基づいて1次サイクルにお
ける前記減算器から前記第1の切換手段への信号に。 被制御量が極値に近づく方向に前記操作量が変化するよ
うに極性を付与する手段とを備えることを特徴とする極
値探索回路。
(1) An extreme value search circuit for a controlled variable in a control system in which the extreme value of the controlled variable relative to the manipulated variable changes in response to disturbances. a subtraction means that receives the input of the controlled quantity and calculates and outputs the difference between the currently input controlled quantity and the previously input controlled quantity at a predetermined cycle; a signal generating means that outputs a signal at a predetermined level; means for outputting a start command; receiving signals from the subtracting means and the signal generating means; outputting a signal from the signal generating means when the operation start command signal from the operation start command output means is ON; A first switching means outputs the signal from the subtraction means when the operation start command signal is OFF, and a predetermined first period in each cycle outputs the signal from the first switching means during a second period. a second switching means that holds and outputs its own output; receiving the output of the second switching means; the first period performs an integral calculation; the second period holds the output value; an integrating means that uses the output value as a signal for updating the manipulated variable setting value, and a signal from the subtracter to the first switching means in the primary cycle based on the polarity of the current output signal of the second switching means. at the signal. An extreme value search circuit comprising means for imparting polarity so that the manipulated variable changes in a direction in which the controlled variable approaches the extreme value.
JP7353782A 1982-04-30 1982-04-30 Searching circuit of extreme value Granted JPS58191004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7353782A JPS58191004A (en) 1982-04-30 1982-04-30 Searching circuit of extreme value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353782A JPS58191004A (en) 1982-04-30 1982-04-30 Searching circuit of extreme value

Publications (2)

Publication Number Publication Date
JPS58191004A true JPS58191004A (en) 1983-11-08
JPH0434161B2 JPH0434161B2 (en) 1992-06-05

Family

ID=13521072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353782A Granted JPS58191004A (en) 1982-04-30 1982-04-30 Searching circuit of extreme value

Country Status (1)

Country Link
JP (1) JPS58191004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138303A (en) * 1984-12-10 1986-06-25 Yokogawa Electric Corp Process controller using mountaineering method
JPS62236004A (en) * 1986-04-07 1987-10-16 Idemitsu Petrochem Co Ltd Automatic adjustment control method
JPS62288902A (en) * 1986-06-06 1987-12-15 Idemitsu Petrochem Co Ltd Optimum control method for process
US5300872A (en) * 1991-02-20 1994-04-05 Hitachi, Ltd. Method and apparatus for control of inverter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129075A (en) * 1973-04-20 1974-12-10
JPS5042281A (en) * 1973-08-20 1975-04-17
JPS53147182A (en) * 1977-04-08 1978-12-21 Inst Vysokikh Temperatur Akade Self optimizing control system for object with single mode charactelistic function
JPS55102004A (en) * 1979-01-31 1980-08-04 Mitsubishi Heavy Ind Ltd Optimum parameter search unit for control unit
JPS5646603A (en) * 1979-09-26 1981-04-27 Mitsubishi Electric Corp Switchboard grounding device
JPS5652322A (en) * 1979-09-29 1981-05-11 Katsushige Misumi Method and device for conveying fluid under pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129075A (en) * 1973-04-20 1974-12-10
JPS5042281A (en) * 1973-08-20 1975-04-17
JPS53147182A (en) * 1977-04-08 1978-12-21 Inst Vysokikh Temperatur Akade Self optimizing control system for object with single mode charactelistic function
JPS55102004A (en) * 1979-01-31 1980-08-04 Mitsubishi Heavy Ind Ltd Optimum parameter search unit for control unit
JPS5646603A (en) * 1979-09-26 1981-04-27 Mitsubishi Electric Corp Switchboard grounding device
JPS5652322A (en) * 1979-09-29 1981-05-11 Katsushige Misumi Method and device for conveying fluid under pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138303A (en) * 1984-12-10 1986-06-25 Yokogawa Electric Corp Process controller using mountaineering method
JPS62236004A (en) * 1986-04-07 1987-10-16 Idemitsu Petrochem Co Ltd Automatic adjustment control method
JPS62288902A (en) * 1986-06-06 1987-12-15 Idemitsu Petrochem Co Ltd Optimum control method for process
US5300872A (en) * 1991-02-20 1994-04-05 Hitachi, Ltd. Method and apparatus for control of inverter

Also Published As

Publication number Publication date
JPH0434161B2 (en) 1992-06-05

Similar Documents

Publication Publication Date Title
Tan et al. Analysis of active disturbance rejection control for processes with time delay
JPS58191004A (en) Searching circuit of extreme value
Longman et al. Automated tuning concepts for iterative learning and repetitive control laws
JPH03207267A (en) Control method and device
Wang et al. Sampled tracking for delayed systems using two time-scales sampled-data controllers
US20090261771A1 (en) Interpolator for a networked motion control system
JPH077285B2 (en) Plant control equipment
Wang et al. Adaptive fixed-time control and synchronization for hyperchaotic Lü systems
Lu et al. Asymptotic stabilisation of multiple input nonlinear systems via sliding modes
Robertson et al. Multi-level optimization techniques for designing digital input shapers
Hryniuk et al. Approximation PID-controllers through deadbeat controller and its tuning
Hong et al. A model-free control strategy for battery energy storage with an application to power accommodation
Chen et al. The importance of smooth updates in producing good error levels in repetitive control
Park et al. Decentralized output-feedback controller for uncertain large-scale nonlinear systems using higher-order switching differentiator
Rouchon Flatness and stick-slip stabilization
Qixin et al. Uniformed model of networked control systems with long time delay
JPS5990103A (en) Automatic tuner
Inooka et al. Design of a digital controller based on series expansions of pulse transfer functions
Lucibello et al. Cyclic control of linear systems: theory and experimental implementation on a flexible arm
Bekiroglu et al. Model reference adaptive approach to sliding mode control
Jadhav et al. An Intelligent Optimized Gain Scheduling Proportional-Integral-Derivative Controller for Bearing Application
JP2001060119A (en) Maximum power control method for solar battery
Li et al. A design method of perfect tracking control for discrete-time systems using multirate control
Sapiee et al. PI Controller design using model reference adaptive control approaches for a chemical process
Touzri et al. A new design method of an Internal Multi-Model controller for a linear process with a variable time delay