JPS61137692A - Production of radiation shield in rotor of superconduction rotary electric machine - Google Patents

Production of radiation shield in rotor of superconduction rotary electric machine

Info

Publication number
JPS61137692A
JPS61137692A JP26106684A JP26106684A JPS61137692A JP S61137692 A JPS61137692 A JP S61137692A JP 26106684 A JP26106684 A JP 26106684A JP 26106684 A JP26106684 A JP 26106684A JP S61137692 A JPS61137692 A JP S61137692A
Authority
JP
Japan
Prior art keywords
rotor
radiation shield
melting point
radiation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26106684A
Other languages
Japanese (ja)
Inventor
Toshiaki Murakami
俊明 村上
Motoji Tsubota
基司 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26106684A priority Critical patent/JPS61137692A/en
Publication of JPS61137692A publication Critical patent/JPS61137692A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • B23K20/08Explosive welding

Abstract

PURPOSE:To obtain with high reliability the radiation shield with the duct groove for cooling by the explosive bonding of shielding bodies each other by interposing a low melting point metal bar between the radiation shielding bodies of cylindrical inner and outer two layers. CONSTITUTION:Cylindrical radiation shielding bodies 14a, 14b becoming the inner and outer layers are inserted into the core bar 18 for explosive bonding with co-axial arrangement. A low melting point metal bar 19 is arranged in the axial direction in the gap between the shielding bodies 14a, 14b and the outer peripheral part of the shielding body 14b is covered by the surrounding body and a gun powder 20 is ignited and exploded with charging it therein. Both parts of the shielding bodies 14a, 14b are deformed and bond3d explosively utilizing the pressure at this explosive time and the volume of the low melting point metal 19. Then the bonded part is heated to melt and flow out the low melting point metal 19 so as to from the duct groove 16 for cooling on this part.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は超電導回転電機の回転子において、その回転子
内筒と回転子外筒との間に存する間隙に設けられる回転
子外筒から回転子内筒への熱浸入を防止するための筒状
の内、外2層構成の輻射シールドを高信頼度をもって簡
単且つ安価に製造可能な超電導回転電機の回転子におけ
る輻射シールドの製造方法に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a rotor for a superconducting rotating electrical machine, in which the rotor is removed from the rotor outer cylinder provided in a gap between the rotor inner cylinder and the rotor outer cylinder. The present invention relates to a method for manufacturing a radiation shield for a rotor of a superconducting rotating electric machine, which allows a radiation shield having a cylindrical inner and outer two-layer structure for preventing heat infiltration into an inner cylinder to be easily and inexpensively manufactured with high reliability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第6図及び第7図は従来の代表的な超電導発電機の回転
子の構造を示したものである。即ち第6図及び第7図に
おいて、2は内部に冷却媒体としての液体へリューム1
を収容する回転子内筒、3はこの回転子内fFi2の外
側に予定の間隙を存して同心的に設けられた回転子外筒
で、これらは回転子内筒2の両端に設けられたトルクチ
ューブ4を介して一体的に連結されている。この場合、
これら回転子内筒2及び回転子外筒3の一端部はトルク
チューブ4の端部をボルトなどで強固に、また他端部は
トルクチューブ4の端部に熱褌縮を吸収する熱伸縮吸収
体5を介して連結される。また回転子外筒3は真空容器
としての機能を兼ね且つ交流磁界の浸透を食い止めるた
め常温ダンパー3a及びその内、外層の補強リング3b
、3cから構成されている。6は軸端から回転子内筒2
の内部に連通させて設けられた液体へリュウム1を供給
するための回転2重管、8は回転子内筒2のコイル溝7
に収納される超電導コイルで、この超電導コイル8はく
ざび9、絶縁物10を用いて遠心力及び電磁力に対して
強固に固定されている。また11は回転子内筒2から導
出される超電導コイル8のエンド部で、このエンド部1
1は保持環12を用いて遠心力及び電磁力に対して強固
に固定されている。また13は回転子外筒3の両端にボ
ルトなどを介して強固に結合された継ぎシャフトである
。さらに14は回転子外筒3と回転子内筒2との間に存
する間隙に設けられ且つトルクチューブ4上に座15を
介して取付けられた輻射シールドで、この輻射シールド
14は常温状態にある回転子外筒3から液体ヘリューム
温度の状態にある回転子内I!I2への熱浸入を防止す
るものである。
6 and 7 show the structure of a rotor of a typical conventional superconducting generator. That is, in FIGS. 6 and 7, 2 has liquid helium 1 inside as a cooling medium.
3 is a rotor outer cylinder provided concentrically with a predetermined gap outside this rotor inner cylinder fFi2, and these are provided at both ends of the rotor inner cylinder 2. They are integrally connected via a torque tube 4. in this case,
One end of the rotor inner cylinder 2 and the rotor outer cylinder 3 is firmly attached to the end of the torque tube 4 with bolts, and the other end is a thermal expansion/contraction absorber that absorbs thermal loincloth at the end of the torque tube 4. They are connected via a body 5. In addition, the rotor outer cylinder 3 also functions as a vacuum container and includes a room temperature damper 3a and inner and outer reinforcing rings 3b to prevent penetration of the alternating current magnetic field.
, 3c. 6 is the rotor inner cylinder 2 from the shaft end
8 is a rotating double tube for supplying rheum 1 to a liquid provided in communication with the inside of the rotor, and 8 is a coil groove 7 of the rotor inner cylinder 2.
This superconducting coil 8 is firmly fixed against centrifugal force and electromagnetic force using a wedge 9 and an insulator 10. Reference numeral 11 denotes an end portion of the superconducting coil 8 led out from the rotor inner cylinder 2;
1 is firmly fixed using a retaining ring 12 against centrifugal force and electromagnetic force. Further, reference numeral 13 denotes a joint shaft that is firmly connected to both ends of the rotor outer cylinder 3 via bolts or the like. Furthermore, 14 is a radiation shield provided in the gap existing between the rotor outer cylinder 3 and the rotor inner cylinder 2 and mounted on the torque tube 4 via a seat 15, and this radiation shield 14 is kept at room temperature. The inside of the rotor I, which is at the liquid helium temperature from the rotor outer cylinder 3! This prevents heat from entering I2.

ところで、上記のような構成の超電導発電機の回転子に
おいて、回転子外筒3と回転子内筒2との間に存する間
隙に設けられる輻射シールド14は常温、と液体へリュ
ーム温度の中間温度に保持する必要があり、小容罎機で
は熱伝導のよい材料(例えばAI、Cu等)を用いて第
9図に示すようにトルクチューブの温度勾配の適当な位
置に設けられる座15からの熱伝導で冷却されている。
By the way, in the rotor of the superconducting generator configured as described above, the radiation shield 14 provided in the gap existing between the rotor outer cylinder 3 and the rotor inner cylinder 2 is at an intermediate temperature between normal temperature and liquid helium temperature. It is necessary to maintain the temperature of the torque tube at an appropriate temperature, and as shown in Fig. 9, a material with good thermal conductivity (e.g., AI, Cu, etc.) is used in the case of a small-capacity forming machine. Cooled by heat conduction.

しかしながら、大容量機では輻射シールドに対して事故
時に働り電磁力及び遠心力が大となるため、この輻射シ
ールドを可能な限り高強度材料とし、しかも回転子外筒
3の径の増大を防止するために薄肉とする必要がある。
However, in large-capacity machines, the electromagnetic force and centrifugal force that act on the radiation shield in the event of an accident become large, so the radiation shield should be made of as high-strength material as possible, and the diameter of the rotor outer cylinder 3 should be prevented from increasing. Therefore, it needs to be thin.

一般に高強度材料は熱伝導が悪いため、輻射シールドと
しては第9図に示すように円筒状の薄肉輻射シールド体
14a、14bにより内、外2層にして構成し、この内
、外2層のうち、その一方又は両方に冷却ガスを封入又
は流すための冷却用ガイド溝16を機械加工により形成
することが考えられている。しかしこのような構成の輻
射シールドを製造するには、例えば10100O級の超
電導発電機を考えた場合、径がΦ800〜10001r
IIRで長さが4000〜5000m+、肉厚が10〜
15s+程度であり、これを内、外層となる円筒状の輻
射シールド体14a、14bを燻液め等により一体化し
て2層構成とし且つ層間に軸方向に複数条の冷却用ガイ
ドを16を機械加工しなければならないため、加工時に
変形等が生じ非常に困難であるという欠点があった。ま
た内、外層となる円筒状の輻射シールド体14a、14
bは薄肉のものを用いていることから燻液め等により一
体化することが困難であるという欠点があった。
Generally, high-strength materials have poor thermal conductivity, so the radiation shield is constructed with two inner and outer layers of cylindrical thin-walled radiation shields 14a and 14b, as shown in FIG. It has been considered to form cooling guide grooves 16 in one or both of them by machining for sealing or flowing cooling gas. However, in order to manufacture a radiation shield with such a configuration, for example, when considering a 10100O class superconducting generator, the diameter must be Φ800 to 10001r.
IIR length is 4000~5000m+, wall thickness is 10~
The inner and outer layers of the cylindrical radiation shield bodies 14a and 14b are integrated using liquid smoke or the like to form a two-layer structure, and a plurality of cooling guides 16 are machined in the axial direction between the layers. Since it has to be processed, it has the disadvantage that deformation occurs during processing, making it extremely difficult. In addition, cylindrical radiation shield bodies 14a and 14 serving as inner and outer layers
Since b is thin-walled, it has the disadvantage that it is difficult to integrate it with liquid smoke or the like.

(発明の目的) 本発明は上記欠点を解決するためになされたもので、そ
の目的は回転子内筒と回転子外筒との間に存する間隙に
設けられる回転子外筒から回転子内筒への熱浸入を防止
するための筒状の内、外2層構成の輻射シールドを高信
頼度をもって簡単且つ安価に製造することができる超電
導回転電機の回転子における輻射シールドの製造方法を
提供することにある。
(Object of the Invention) The present invention has been made to solve the above-mentioned drawbacks, and its purpose is to connect the rotor outer cylinder to the rotor inner cylinder provided in the gap between the rotor inner cylinder and the rotor outer cylinder. To provide a method for manufacturing a radiation shield for a rotor of a superconducting rotating electric machine, which can easily and inexpensively manufacture a radiation shield having a cylindrical inner and outer two-layer structure for preventing heat infiltration into the rotor with high reliability. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、回転子内筒と回転
子外筒との間に存する間隙に設けられる筒状の内、外2
層構成の輻射シールドを製造するに当り、外層となる輻
射シールド体と同心的に設けられた内層となる輻射シー
ルド体の中空部に爆着用心金を挿入し且つこれら内層、
外層となる輻射シールド体の間に存する間隙に冷部用ガ
イド溝を形成するための線条の低融点金属を複数本配し
、また前記外層となる輻射シールド体の外周部を火薬で
覆う構成としてこの火薬を爆発させることによりその爆
発時の圧力を利用して前記外層となる輻射シールド体と
内層となる輻射シールド体とを爆着させ、しかる後加熱
により前記線条の低融点金属を溶融流出せしめてこの部
分に冷却用ダクト溝を形成するようにしたことを特徴と
するものである。
In order to achieve such an object, the present invention has two cylindrical inner and outer cylinders provided in the gap between the rotor inner cylinder and the rotor outer cylinder.
In manufacturing a radiation shield with a layered structure, an explosion core is inserted into the hollow part of a radiation shield body that is an inner layer that is provided concentrically with a radiation shield body that is an outer layer, and these inner layers,
A plurality of filamentous low melting point metal strips are arranged in the gap between the radiation shield bodies serving as the outer layer to form guide grooves for the cold part, and the outer periphery of the radiation shield body serving as the outer layer is covered with explosives. By exploding this gunpowder, the pressure at the time of the explosion is used to cause the radiation shielding body serving as the outer layer to explode into contact with the radiation shielding body serving as the inner layer, and then by heating, the low melting point metal of the filament is melted. This feature is characterized in that a cooling duct groove is formed in this portion to allow the water to flow out.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)は本発明による輻射シールドの製造方法を
説明するための構成例を示すものである。
FIG. 1(a) shows a configuration example for explaining the method of manufacturing a radiation shield according to the present invention.

第1図(a)において、18は外周面に軸方向に伸びる
複数条の溝17を有する筒状の心金で、この心金18に
内、外層となる筒状の薄肉輻射シールド体14a、14
bを同心的に配して挿入する。
In FIG. 1(a), reference numeral 18 denotes a cylindrical core metal having a plurality of grooves 17 extending in the axial direction on its outer peripheral surface, and a cylindrical thin-walled radiation shield body 14a serving as an inner and outer layer of the core metal 18, 14
Insert b concentrically.

次に外層となる輻射シールド体14bと内層となる輻射
シールド体14aとの間に存する間隙に線条の低融点金
属19を心金18に有する溝17に対応させてそれぞれ
軸方向に配設する。また前記外層となる輻射シールド体
14bの外周部を包囲物で覆い、その中に火薬20を充
填する。
Next, in the gap existing between the radiation shielding body 14b serving as the outer layer and the radiation shielding body 14a serving as the inner layer, a low melting point metal 19 is arranged in the axial direction in correspondence with the groove 17 in the mandrel 18. . Further, the outer periphery of the radiation shield body 14b serving as the outer layer is covered with a surrounding material, and the gunpowder 20 is filled in the surrounding material.

このような状態で、火#20を点火して爆発させると内
、外層となる筒状の薄肉輻射シールド体14a、14b
が爆着し、これと同時に爆着時の圧力により内層の輻射
シールド体14aが心金18の溝17に沿って内側に変
形する。この場合、爆着時の圧力により低融点金属1つ
が心金18の溝17に内層となる輻射シールド体14a
を変形させて入ることにより、内、外層となる筒状の薄
肉輻射シールド体14a、14bが一体化される。
In this state, when fire #20 is ignited and exploded, the inner and outer layers of the cylindrical thin radiation shield bodies 14a and 14b are created.
At the same time, the inner layer radiation shield 14a is deformed inwardly along the groove 17 of the mandrel 18 due to the pressure at the time of the explosion. In this case, one low melting point metal becomes an inner layer in the groove 17 of the core metal 18 due to the pressure at the time of explosion bonding in the radiation shield body 14a.
By deforming and entering the cylindrical thin radiation shield bodies 14a and 14b, which become the inner and outer layers, are integrated.

しかる後、加熱により低融点金属19を溶融させて外部
に流出せしめることにより、この部分に冷却用ダクト溝
16が形成されることになる。
Thereafter, the low melting point metal 19 is melted by heating and flows out to the outside, thereby forming the cooling duct groove 16 in this portion.

このように上記実施例による輻射シールドの製造方法に
よれば、心金18の剛性を大とすることにより輻射シー
ルドの内径寸法は第2図に示すように起爆側及び線爆側
については爆着時の圧力の作用が不十分で中央部に対し
て0.5%〜1%程度の径変化が生ずるが、中央部は一
様な変形状態を示していることがわかる。
As described above, according to the method of manufacturing the radiation shield according to the above embodiment, by increasing the rigidity of the mandrel 18, the inner diameter of the radiation shield can be adjusted as shown in FIG. It can be seen that although the pressure at the time is insufficient and the diameter changes by about 0.5% to 1% with respect to the center, the center shows a uniform deformation state.

この値は例えば径をΦ1000fflとすれば5111
11〜10m+の直径変化があることになり、高遠心力
場の回転体としてみた場合は小さな数値ではない。
For example, if the diameter is Φ1000ffl, this value is 5111
This means that there is a diameter change of 11 to 10 m+, which is not a small value when viewed as a rotating body in a high centrifugal force field.

しかしながら端部をそれぞれ10%程度切断すればこの
外径寸法は0.05%以下と十分許容値内に入っている
However, if each end portion is cut by about 10%, the outer diameter is 0.05% or less, which is well within the allowable value.

また第3図に示すように爆着を実施した後、外周面から
長音波深傷試験を実施した結果を円周方向に展開すると
、図中のハツチング部が不着部を示すが、種々の実験か
らこの不着部の長さは起爆側及び線爆側それぞれ全長の
3%程度に限定されることがわかった。その他の部位に
ついては完全に良好な接着状態を示している。
In addition, as shown in Figure 3, when the results of a long-sonic deep damage test conducted from the outer circumferential surface after explosive bonding are developed in the circumferential direction, the hatched areas in the figure indicate non-bonded areas. It was found from this that the length of this non-adhesive part is limited to about 3% of the total length on each of the detonation side and the radiation detonation side. The other parts showed a completely good adhesion state.

したがって、両端部を10%程度切断することのみでは
寸法も良好で且つ良好な接着状態を示す輻射シールドが
得られ、また爆着後加熱して溝部に入った低融点金属1
9を溶かし出すことにより良好な冷却用のダクト溝16
が形成することが出来る。
Therefore, by only cutting off about 10% of both ends, a radiation shield with good dimensions and good adhesion can be obtained.
Duct groove 16 for good cooling by melting 9
can be formed.

第1図(b)は本実施例方法による冷却用ダクト溝を誇
張して示す拡大断面図である。
FIG. 1(b) is an enlarged sectional view showing an exaggerated cooling duct groove according to the method of this embodiment.

次に本発明の他の実施例による輻射シールドの製造方法
について説明する。
Next, a method of manufacturing a radiation shield according to another embodiment of the present invention will be described.

第4図(a)においては心金18として溝なしのものを
用い、内、外層となる筒状の薄肉輻射シールド体148
.14b間に存する間隙に配設された低融点金属19の
体積を利用して爆着時に内、外層となる筒状の薄肉輻射
シールド体148.14bの両方が変形する如く圧力を
作用させ、第4図(b)に示すような冷却用のダクト溝
16を形成して輻射シールドを製造するようにしたもの
である。
In FIG. 4(a), a grooveless metal core 18 is used, and a thin cylindrical radiation shield body 148 serves as the inner and outer layers.
.. Using the volume of the low melting point metal 19 disposed in the gap between the inner and outer layers 148 and 14b, pressure is applied so that both the inner and outer layers of the cylindrical thin radiation shield body 148 and 14b are deformed at the time of explosion. A radiation shield is manufactured by forming cooling duct grooves 16 as shown in FIG. 4(b).

また第5図(a)に示すように筒状の爆着用心金18内
に前記外側層となる輻射シールド体14bと内層となる
輻射シールド体14aとを同心的に配して挿入すると共
にこれらの間に存する間隙に冷却用ガイド溝16を形成
するための線条の低融点金属19を軸方向に複数本配し
、また前記内層となる輻射シールド体14aの内周部を
包囲物で覆ってその中に火薬20を充填するようにした
ものである。この場合低融点金属19しては爆発時の熱
により溶けないようにするため、被覆物で覆われたもの
が用いられる。したがって、このような状態で火薬20
を爆発させることによりその爆発時の圧力を利用して前
記外層となる輻射シールド体14bと内層となる輻射シ
ールド体14aとを爆着させると同時に前記線条の低融
点金属20により第5図(b)に示すような冷却用のダ
クト溝16を形成することができる。
Further, as shown in FIG. 5(a), the radiation shield body 14b serving as the outer layer and the radiation shield body 14a serving as the inner layer are arranged concentrically and inserted into the cylindrical explosion core 18. A plurality of linear low-melting point metals 19 are arranged in the axial direction to form cooling guide grooves 16 in the gaps existing between the two, and the inner peripheral part of the radiation shield body 14a serving as the inner layer is covered with a surrounding material. The gunpowder 20 is then filled in it. In this case, the low melting point metal 19 is covered with a coating to prevent it from melting due to the heat of the explosion. Therefore, in such a state, 20 gunpowder
By detonating the metal, the radiation shield body 14b serving as the outer layer and the radiation shield body 14a serving as the inner layer are explosively bonded using the pressure at the time of the explosion, and at the same time, the filamentous low melting point metal 20 is used as shown in FIG. A cooling duct groove 16 as shown in b) can be formed.

この池水発明はその要旨を変更しない範囲内で適宜実施
することができることは勿論のことである。
It goes without saying that this pond water invention can be practiced as appropriate without changing its gist.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、回転子内筒と回転子
外筒との間に存する間隙に設けられる回転子外筒から回
転子内筒への熱浸入を防止するための筒状の内、外2層
構成の輻射シールドを高信頼度をもって簡単且つ安価に
製造することができる超電導回転N機の回転子における
輻射シールドの製造方法を提供することができる。
As described above, according to the present invention, a cylindrical tube is provided in the gap between the rotor inner cylinder and the rotor outer cylinder to prevent heat from penetrating from the rotor outer cylinder to the rotor inner cylinder. It is possible to provide a method for manufacturing a radiation shield for a rotor of a superconducting rotary N machine, which allows a radiation shield having a two-layer structure, an inner layer and an outer layer, to be manufactured easily and inexpensively with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導回転電機の回転子における
輻射シールドの製造方法の一実施例を示す構成説明図、
第2図は同実施例の方法により得られた爆着後の輻射シ
ールドの寸法変化を示す図、第3図は同じく爆着後の幅
割シールドの超音波探傷試験結果を示す図、第4図およ
び第5図は本発明の池の実施例をそれぞれ示す構成説明
図、第6図および第7図は従来の超電導回転電機の回転
子の代表的な構成例を示すもので、第6図は縦断面図、
第7図は第6図のA−A線に沿う矢?J!断面図、第8
図は第6図に示す輻射シールドが取付けられるトルクチ
ューブの温度分布を示す図、第9図は輻射シールドの構
造を示す斜視図である。 1・・・・・・液体ヘリューム、2・・・・・・回転子
内筒、3・・・・・・回転子外筒、3a・・・・・・常
温ダンパー、3b。 3C・・・・・・内沿う、外沿う補強リング、4・・・
・・・トルクチューブ、5・・・・・・熱伸縮吸収体、
6・・・・・・回転2雫管、7・・・・・・回転子コイ
ル溝、9・・・・・・回転子くさび、10・・・・・・
絶縁スペーサ、11・・・・−・コイルエンド部、12
・・・・・・促持環、13・・・・・・継ぎシャフト、
14・・・・・・輻射シールド、14a、14b・・・
・・・内層。 外層輻射シールド体、15・・・・・・輻射シールド取
付は座、16・・・・・・冷却用ダグ1−溝、17・・
・・・・心金溝、18・・・・・・心金、19・・・・
・・低融点金属、20・・・・・・爆着用火薬。 出願人代理人 弁理士 鈴江武彦 (a)   第1図 第2図 第3図 第4図 (a)
FIG. 1 is a configuration explanatory diagram showing an embodiment of a method for manufacturing a radiation shield in a rotor of a superconducting rotating electric machine according to the present invention;
Figure 2 is a diagram showing the dimensional change of the radiation shield after explosion bonding obtained by the method of the same example, Figure 3 is a diagram showing the ultrasonic flaw detection test results of the width-divided shield after explosion bonding, and Figure 4 Figures 6 and 5 are explanatory configuration diagrams showing embodiments of the pond of the present invention, respectively, and Figures 6 and 7 are representative configuration examples of the rotor of a conventional superconducting rotating electric machine. is a longitudinal section,
Is Figure 7 an arrow along line A-A in Figure 6? J! Sectional view, No. 8
This figure is a diagram showing the temperature distribution of the torque tube to which the radiation shield shown in FIG. 6 is attached, and FIG. 9 is a perspective view showing the structure of the radiation shield. DESCRIPTION OF SYMBOLS 1...Liquid helium, 2...Rotor inner cylinder, 3...Rotor outer cylinder, 3a...Normal temperature damper, 3b. 3C... Reinforcement ring along the inside and outside, 4...
... Torque tube, 5 ... Heat expansion and contraction absorber,
6...Rotating 2-drop tube, 7...Rotor coil groove, 9...Rotor wedge, 10...
Insulating spacer, 11... Coil end part, 12
・・・・・・Help ring, 13・・・・Joint shaft,
14...Radiation shield, 14a, 14b...
...inner layer. Outer radiation shield body, 15...Radiation shield mounting seat, 16...Cooling dug 1-groove, 17...
... Core metal groove, 18... Core metal groove, 19...
...Low melting point metal, 20...Explosive powder. Applicant's representative Patent attorney Takehiko Suzue (a) Figure 1 Figure 2 Figure 3 Figure 4 (a)

Claims (2)

【特許請求の範囲】[Claims] (1)内部に冷却媒体を収容する回転子内筒とこの回転
子内筒の外側に予定の間隙を存して同心的に設けられる
常温ダンパーを備えた回転子外筒との間に存する間隙に
設けられ且つ前記回転子外筒から前記回転子内筒への熱
浸入を防止するための筒状の内、外2層構成の輻射シー
ルドを製造する超電導回転電機の回転子における輻射シ
ールドの製造方法において、外層となる輻射シールド体
と同心的に設けられた内層となる輻射シールド体の中空
部に爆着用心金を挿入し且つこれら内層、外層となる輻
射シールド体の間に存する間隙に冷却用ガイド溝を形成
するための線条の低融点金属を複数本配し、また前記外
層となる輻射シールド体の外周部を火薬で覆う構成とし
てこの火薬を爆発させることによりその爆発時の圧力を
利用して前記外層となる輻射シールド体と内層となる輻
射シールド体とを爆着させ、しかる後加熱により前記線
条の低融点金属を溶融流出せしめてこの部分に冷却用ダ
クト溝を形成するようにしたことを特徴とする超電導回
転電機の回転子における輻射シールドの製造方法。
(1) Gap between the rotor inner cylinder that houses the cooling medium therein and the rotor outer cylinder that is provided with a room temperature damper that is concentrically provided with a predetermined gap outside the rotor inner cylinder. Manufacturing a radiation shield for a rotor of a superconducting rotating electric machine, which is provided in a rotor and has a cylindrical inner and outer two-layer structure for preventing heat infiltration from the rotor outer cylinder to the rotor inner cylinder. In this method, an explosion core is inserted into the hollow part of the radiation shield body, which is the inner layer, which is provided concentrically with the radiation shield body, which is the outer layer, and is cooled in the gap between the inner layer and the radiation shield body, which is the outer layer. A plurality of low melting point metal strips are arranged to form guide grooves for the radiation shield, and the outer periphery of the radiation shield body is covered with gunpowder. The radiation shielding body serving as the outer layer and the radiation shielding body serving as the inner layer are explosively bonded to each other using the heating method, and then heated to melt and flow out the low melting point metal of the filaments to form a cooling duct groove in this portion. A method for manufacturing a radiation shield in a rotor of a superconducting rotating electrical machine, characterized by:
(2)内部に冷却媒体を収容する回転子内筒とこの回転
子内筒の外側に予定の間隙を存して同心的に設けられた
常温ダンパーを備えた回転子外筒との間に存する間隙に
設けられ且つ前記回転子外筒から前記回転子内筒への熱
浸入を防止するための筒状の内、外2層構成の輻射シー
ルドを製造する超電導回転電機の回転子における輻射シ
ールドの製造方法において、中空部を有する爆着用心金
内に前記外層となる輻射シールド体と内層となる輻射シ
ールド体とを同心的に配して挿入すると共にこれらの間
に存する間隙に冷却用ガイド溝を形成するための線条の
低融点金属を複数本配し、また前記内層となる輻射シー
ルド体の内周部を火薬で覆う構成としてこの火薬を爆発
させることによりその爆発時の圧力を利用して前記外筒
となる輻射シールド体と内層となる輻射シールド体とを
爆着させ、しかる後加熱により前記線条の低融点金属を
溶融流出せしめてこの部分に冷却用ダクト溝を形成する
ようにしたことを特徴とする超電導回転電機の回転子に
おける輻射シールドの製造方法。
(2) Existing between the rotor inner cylinder that houses the cooling medium therein and the rotor outer cylinder that is equipped with a room temperature damper that is concentrically provided with a predetermined gap on the outside of the rotor inner cylinder. A radiation shield for a rotor of a superconducting rotating electric machine, which is provided in a gap and has a cylindrical inner and outer two-layer structure for preventing heat infiltration from the rotor outer cylinder to the rotor inner cylinder. In the manufacturing method, a radiation shielding body serving as an outer layer and a radiation shielding body serving as an inner layer are arranged concentrically and inserted into an explosion core metal having a hollow portion, and a cooling guide groove is provided in a gap between them. A plurality of filamentous low melting point metals are arranged to form a radiation shield, and the inner periphery of the radiation shield body serving as the inner layer is covered with gunpowder, and the pressure at the time of explosion is utilized by exploding this gunpowder. Then, the radiation shield body serving as the outer cylinder and the radiation shield body serving as the inner layer are explosively bonded, and then heated to melt and flow out the low melting point metal of the filaments to form a cooling duct groove in this portion. A method for manufacturing a radiation shield in a rotor of a superconducting rotating electrical machine, characterized by:
JP26106684A 1984-12-11 1984-12-11 Production of radiation shield in rotor of superconduction rotary electric machine Pending JPS61137692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26106684A JPS61137692A (en) 1984-12-11 1984-12-11 Production of radiation shield in rotor of superconduction rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26106684A JPS61137692A (en) 1984-12-11 1984-12-11 Production of radiation shield in rotor of superconduction rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61137692A true JPS61137692A (en) 1986-06-25

Family

ID=17356600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26106684A Pending JPS61137692A (en) 1984-12-11 1984-12-11 Production of radiation shield in rotor of superconduction rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61137692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021686A1 (en) * 2014-08-07 2016-02-11 川崎重工業株式会社 Superconducting rotating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021686A1 (en) * 2014-08-07 2016-02-11 川崎重工業株式会社 Superconducting rotating machine
JP2016039704A (en) * 2014-08-07 2016-03-22 川崎重工業株式会社 Superconducting rotary machine
US10367406B2 (en) 2014-08-07 2019-07-30 Kawasaki Jukogyo Kabushiki Kaisha Superconducting rotating machine

Similar Documents

Publication Publication Date Title
US5197628A (en) Reservoir for storing a pressurized fluid and a method of manufacturing same
US3595025A (en) Rocket engine combustion chamber
US4171494A (en) Electric rotary machine having superconducting rotor
EP0831154B1 (en) A method of making a fibre reinforced metal component
CA1193528A (en) Explosive tube expansion
EP0451967B1 (en) Method of explosively bonding composite metal structures
EP0013367A1 (en) Armor-piercing projectile
US3044256A (en) Rocket motor casings
US5259547A (en) Method of manufacturing bi-metallic tubing
JPS61137692A (en) Production of radiation shield in rotor of superconduction rotary electric machine
EP0527268B1 (en) Method for producing a composite pipe
CN208401655U (en) A kind of rotor structure and motor
US4333597A (en) Method of explosively forming bi-metal tubeplate joints
CA1201744A (en) Radiant heat shield for a superconducting generator
US20060118273A1 (en) Reduced shedding regenerator and method
US5207848A (en) Method of fabricating fiber reinforced metal tubes
US4646044A (en) Bobbinless solenoid coil
JPS58159656A (en) Rotary electric machine with radition heat shield for superconductive rotor
RU2036063C1 (en) Method of making laminate metallic tubes
US4333223A (en) Shielding cylinder and method of manufacture
JPS6149649A (en) Rotor for superconducting rotary electric machine
SU747584A1 (en) Method of connecting different metal tubes
EP0117153A1 (en) Apparatus for forming an explosively expanded tube-tube sheet joint including a fibre reinforced insert having a closed end
JPS6185038A (en) Manufacture of rotor unit
RU2064386C1 (en) Method for manufacturing laminate tubes by explosion welding