JPS6149649A - Rotor for superconducting rotary electric machine - Google Patents

Rotor for superconducting rotary electric machine

Info

Publication number
JPS6149649A
JPS6149649A JP59170186A JP17018684A JPS6149649A JP S6149649 A JPS6149649 A JP S6149649A JP 59170186 A JP59170186 A JP 59170186A JP 17018684 A JP17018684 A JP 17018684A JP S6149649 A JPS6149649 A JP S6149649A
Authority
JP
Japan
Prior art keywords
rotor
short
cylindrical body
copper
cylindrical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59170186A
Other languages
Japanese (ja)
Inventor
Kazuharu Hattori
服部 和治
Toshiaki Murakami
俊明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59170186A priority Critical patent/JPS6149649A/en
Publication of JPS6149649A publication Critical patent/JPS6149649A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a rotor for resisting a great electromagnetic force generated at the short-circut time of a generator, by a method wherein a plurality of copper rods are inserted at equal intervals through the thickness section of the cylindrical unit made of non-magnetic substance of high strength for the outer shell for a rotor and wherein the ends of the copper rods are formed to be jointed by short-circuit rings. CONSTITUTION:An outer shell 30 for a rotor provided outside the rotor for shielding magnetic flux from outside is formed with a cylindrical unit 31 made of non-magnetic substance of high strength. And a plurality of slots 32 or grooves are provided at equal intervals for the thickness section of the cylindrical unit 31 and copper rods 33 are inserted through the slots or grooves, and the both ends of each copper rod are arranged to be integrated together by short- circuit rings 34. As a result, any deformation, exfoliation, or the like is not generated also at the short-circuited time of a generator, and the reliability is heightened because an electromagnetic shield effect is applied to the squirrel- cage copper rods 34 and mechanical strength is applied to the cylindrical unit 31.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は冷却剤として液体ヘリウムを使用する超電導回
転型(大における回転子に係り、特にこの回転子におけ
る回転子外筒体の構造の改良に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a superconducting rotor using liquid helium as a coolant, and particularly relates to an improvement in the structure of a rotor outer cylinder in this rotor. .

[発明の技術的背景1 既にli’i!案されているこの種の超電導タービン発
電前のような超電導回転型IAに組込まれる回転子は、
外部からの磁束の外乱に対して遮へい様能を有する回転
子外筒体を構成している。この回転子外筒体は、短絡時
に大きな電磁力を受けるため、三層のダンパー構成にな
っている。
[Technical background of the invention 1 Already li'i! The rotor to be incorporated into a superconducting rotary type IA, such as the one before this kind of superconducting turbine power generation, is
The rotor outer cylindrical body has a shielding function against magnetic flux disturbances from the outside. This rotor outer cylinder receives a large electromagnetic force in the event of a short circuit, so it has a three-layer damper structure.

即ち、既に提案されているこの種の超電導回転型開の回
転子は、第4図及び第5図に示されるように構成されて
いる。すなわち、1は、回転子における冷却媒体として
の液体ヘリウム2を内蔵した回転子内筒体であって、こ
の回転子内筒体1の外周には、常温ダンパー3aとこの
常温ダンパー3aを内外周から補強する補強筒体3b 
、3cとで構成される回転子外筒体3が間隙を存して設
けられており、上記回転子内筒体1の一端部に付設され
たトルクチューブ4aは、例えば、固定ボルト(図示さ
れず)で−芳の継ぎシャフト13aに固着されている。
That is, this type of superconducting rotating open rotor that has already been proposed is constructed as shown in FIGS. 4 and 5. That is, reference numeral 1 denotes a rotor inner cylindrical body containing liquid helium 2 as a cooling medium in the rotor, and a room temperature damper 3a is provided on the outer periphery of the rotor inner cylindrical body 1. Reinforcement cylinder 3b reinforced from
, 3c are provided with a gap in between, and a torque tube 4a attached to one end of the rotor inner cylinder 1 is secured to a fixing bolt (not shown), for example. ) is fixed to the joint shaft 13a.

又、上記回転子内筒体1の他端部に付設されたトルクチ
ューブ4bは、熱膨張を吸収する、例えば、ベローズに
よる熱伸縮材5を介して他方の継ぎシャフト13bに連
結されている。さらに、上記回転子内筒体1内に内蔵さ
れる液体ヘリウム2は、上記継ぎシャフト1 ’3 a
内を引き通された液体ヘリウムの供給管6を通して供給
されており、この回転子内筒体1内に供給された液体ヘ
リウムは、上記回転子内筒体1及びこれらの真空室を冷
却して仕事をした後、図示されないjW流管を通してυ
買外l\流出するようになっている。
Further, the torque tube 4b attached to the other end of the rotor inner cylindrical body 1 is connected to the other joint shaft 13b via a thermal expansion/contraction member 5, such as a bellows, which absorbs thermal expansion. Further, the liquid helium 2 contained in the rotor inner cylinder 1 is supplied to the joint shaft 1'3a.
The liquid helium is supplied through a liquid helium supply pipe 6 drawn through the interior of the rotor, and the liquid helium supplied into the rotor inner cylinder 1 cools the rotor inner cylinder 1 and these vacuum chambers. After doing the work, υ is passed through the jW flow tube (not shown).
Purchases are starting to flow out.

一方、上記回転子内筒体1内には、第5図に拡大して示
されるように、多数のコイル溝7が放射方向に一定のピ
ッチ間隔を存して形成されており、口の各コイル溝7に
は、櫟体9や絶縁スペーサ10を備えた超電導コイル8
が挿入されている。
On the other hand, in the rotor inner cylinder 1, as shown in an enlarged view in FIG. A superconducting coil 8 having a rectangular body 9 and an insulating spacer 10 is placed in the coil groove 7.
is inserted.

又、上記回転子内筒体1の両端部に設けられた一対の超
電導コイル11は、遠心力や電磁力に対して強固な保持
筒体12によって固着されており。
Further, a pair of superconducting coils 11 provided at both ends of the rotor inner cylinder 1 are fixed by a holding cylinder 12 that is strong against centrifugal force and electromagnetic force.

この保持環12の外側に位買する上記回転子外筒体3の
両端部は、上記両継ぎシャツl−13a、13bに固定
ボルト(図示せず)によって固着されている。
Both ends of the rotor outer cylindrical body 3 located outside the retaining ring 12 are fixed to the double-jointed shirts l-13a and 13b by fixing bolts (not shown).

さらに、上記回転子外筒体3は、真空室を形成した真空
容器を兼ねており、しかも、外部からの交流磁界の浸透
や負荷変動時の磁束の外乱に対して遮蔽し得るダンパー
構造をなしており、この回転子外筒体3は、第7図の応
力分布のベクトルに示されるように、円筒状をなす常温
ダンパー38の内周及び外周に各補強筒体3b、3cを
爆着又は焼嵌によって一体的に積層して構成されている
Further, the rotor outer cylindrical body 3 also serves as a vacuum container forming a vacuum chamber, and has a damper structure capable of shielding against penetration of external alternating magnetic fields and disturbances in magnetic flux during load fluctuations. The rotor outer cylindrical body 3 has reinforcing cylindrical bodies 3b and 3c bonded or bonded to the inner and outer peripheries of a cylindrical room-temperature damper 38, as shown by the vector of stress distribution in FIG. They are integrally laminated by shrink fitting.

特に、上記常温ダンパー3aは、発電機の短絡時に大き
な電磁力Pを受ける。
In particular, the normal temperature damper 3a receives a large electromagnetic force P when the generator is short-circuited.

即ち、これを数式で表わすと、 P=Pt +P2 CO32θ 但し、Prは定常圧力であり、P2は、第6図の常温ダ
ンパー38の受ける電磁力であって、これは、上記常温
ダンパー38の一周に対して円周方向の角度をθとし、
cos 2θで分布する圧力である。
That is, to express this mathematically, P=Pt +P2 CO32θ However, Pr is the steady pressure, and P2 is the electromagnetic force received by the room temperature damper 38 in FIG. Let the angle in the circumferential direction be θ,
It is a pressure distributed in cos 2θ.

このため、上記常温ダンパー38及び上記両補強筒体3
b、3cから構成される上記回転子外筒体3は、楕円形
に変形する動きをし、第6図に示されるA点及び8点で
反転する曲げ応力が生じる。
Therefore, the normal temperature damper 38 and both reinforcing cylinders 3
The rotor outer cylindrical body 3 constituted by b and 3c deforms into an elliptical shape, and bending stress is generated which is reversed at points A and 8 shown in FIG.

この曲げ応力は、商用機ベースの電磁力を用いて計粋し
て、第7図に示されるように、常温ダンパー3aに対し
ては、約20〜30Kg/mm2程度であり、又、上記
各補強筒体3b’、3’cには、約70〜80句/ m
m 2程度である。
This bending stress is approximately 20 to 30 Kg/mm2 for the normal temperature damper 3a, calculated using electromagnetic force based on a commercial machine, as shown in FIG. Approximately 70 to 80 lines/m are applied to the reinforcing cylinders 3b' and 3'c.
It is about m2.

そこで、これらの最大応力に耐えるためには、上記常温
ダンパー38については、高強度の析出硬化形(7) 
fM金合金降伏応力(7V :40 K9 / mm 
2’j:i度)を使用し、上記各補強筒体3b、3cに
ついては、高強度の非磁!l1l(降伏応力σy=10
0Kg、′履2程度)を用いられている。
Therefore, in order to withstand these maximum stresses, the room-temperature damper 38 must be made of a high-strength precipitation hardened type (7).
fM gold alloy yield stress (7V: 40 K9/mm
2'j:i degree), and each of the above-mentioned reinforcing cylinders 3b and 3c are made of high-strength non-magnetic material! l1l (yield stress σy=10
0kg, about 2 feet) is used.

なお、上記常温ダンパー38の肉厚dは、下記の式で求
められる。
Note that the wall thickness d of the normal temperature damper 38 is determined by the following formula.

但し、W:2πt、「 :周波数、μ:透磁率、σ:3
4電率 を示す。
However, W: 2πt, ": frequency, μ: magnetic permeability, σ: 3
Indicates the 4-electricity rate.

従って、上記常温ダンパー3aの肉厚dは、交流磁界に
対して、約10H2以上をカットするとして、約25〜
35s程度とし、上記両補強筒体3b 、3cの肉厚は
、短絡力に対する剛性を受は持つ関係上、約25〜35
s程度の肉厚に1選定されている。
Therefore, the wall thickness d of the room-temperature damper 3a is approximately 25~25 mm, assuming that it cuts approximately 10H2 or more against the alternating current magnetic field.
The thickness of both reinforcing cylinders 3b and 3c is approximately 25 to 35 seconds, since the reinforcing cylinders 3b and 3c have rigidity against short circuit force.
A wall thickness of approximately 1.5 mm was selected.

このように、三重層で構成された上記回転子外筒体3の
製造方法としては、(1)、予め、常温タンパ−3aと
なる1tflと両補強筒体3b、3cとなる非磁性板を
重ねて、爆着又は接着し、これを円筒状に丸めて接合面
を接合する方法、(′2J、予め、一本の銅筒体とこれ
に嵌合する2本の磁性筒体とを用意し、これらを嵌合し
て三重層を形成するように爆着して一体に接合する方法
、(3)、上記三筒体を嵌装した後、焼嵌又はロー付に
よって接合する方法が提案されている。
As described above, the method for manufacturing the rotor outer cylinder body 3 composed of three layers is as follows: (1) In advance, 1tfl, which will become the room temperature tamper 3a, and non-magnetic plates, which will become the reinforcing cylinders 3b and 3c, are prepared. A method of stacking them, explosively bonding or gluing them, rolling them into a cylindrical shape, and joining the joining surfaces ('2J, prepare in advance one copper cylinder and two magnetic cylinders that fit into it) (3) A method is proposed in which these three cylinders are fitted and then joined together by shrink fitting or brazing after fitting to form a triple layer. has been done.

[背景技術の問題点] 上記の回転子外筒体3は、常温ダンパー3aの内周及び
外周に補強筒体3b、3cを爆着又は焼嵌又はロー付等
の単−又は組合せにより製造されているが、補強筒体3
b、3cおよび常温ダンパー3aの密着性については信
頼性に欠ける。特に商用別となると6m程度の長尺にな
り全面を完全に密着させることはさらに難かしくなる。
[Problems with Background Art] The rotor outer cylinder 3 described above is manufactured by bonding reinforcing cylinders 3b and 3c on the inner and outer peripheries of the normal temperature damper 3a, either singly or in combination, such as by explosion bonding, shrink fitting, or brazing. However, the reinforcing tube 3
The adhesion between b, 3c and the room temperature damper 3a is unreliable. Especially when it comes to commercial use, the length is about 6 meters, making it even more difficult to completely adhere the entire surface.

補強筒体3t]、3cと常温ダンパー3aの密着性が悪
い場合、短絡時に第7図の様な応力が負荷され、常温ダ
ンパー3aが塑性変形し、回転バランスがくずれ使用不
能となる。
If the adhesion between the reinforcing cylinders 3t and 3c and the room-temperature damper 3a is poor, stress as shown in FIG. 7 will be applied at the time of short circuit, and the room-temperature damper 3a will be plastically deformed, losing its rotational balance and becoming unusable.

[発明の目的] 本発明は上記した問題点を解決するためなされたもので
、発電敗の短絡時に生じる大きな電磁力に抗しうる信頼
性の高い超電導回転礪の回転子を提供することを目的と
する。
[Object of the invention] The present invention was made to solve the above-mentioned problems, and its purpose is to provide a highly reliable superconducting rotor that can withstand the large electromagnetic force that occurs during a short circuit during power generation failure. shall be.

[発明の概要コ 本発明は上記目的を達成するために回転子外筒体として
、高強度非磁性材からなる円筒体の肉厚部に、軸方向に
複数個の孔又は溝を等間隔に形成し、この番孔又は合溝
に銅棒を挿入し、この各銅棒の端部に短?8環を接合し
たごとを特徴とする超電導回転電量の回転子である。
[Summary of the Invention] In order to achieve the above object, the present invention provides a rotor outer cylindrical body in which a plurality of holes or grooves are formed at equal intervals in the axial direction in the thick part of a cylindrical body made of a high-strength non-magnetic material. Insert a copper rod into this hole or matching groove, and attach a short hole to the end of each copper rod. This is a superconducting rotating current rotor characterized by eight rings joined together.

[発明の実施例] 以下、本発明について図面を参照して説明する。[Embodiments of the invention] Hereinafter, the present invention will be explained with reference to the drawings.

第1図および第2図は本発明の一実施例の回転子外筒体
を軸方向端部から見た図および軸方向断面図であ゛る。
1 and 2 are a view of a rotor outer cylinder according to an embodiment of the present invention as viewed from an axial end and an axial cross-sectional view.

すなわち、回転子外筒体30は、高強度非磁性材(例え
ばインコネル合金、A286を冷間加工後時硬処理した
もの)からなる円筒体31の肉厚中央部に、この軸方向
にトレバニングi百等により所定断面積以上の円形孔3
2を複数@等間隔に形成し、この番孔32に銅棒33を
それぞれ挿入し、各銅棒の両端部に短′!B環34をそ
れぞれ接合したものである。
That is, the rotor outer cylindrical body 30 is made of a high-strength non-magnetic material (for example, Inconel alloy, A286, which is cold-worked and then hardened). Circular hole 3 with a predetermined cross-sectional area or more by 100 etc.
2 are formed at equal intervals, and each copper rod 33 is inserted into the hole 32, and a short hole is formed at both ends of each copper rod. The B rings 34 are joined together.

上記回転子外筒体30は外部からの電磁シールドに主眼
をおくと、この肉厚として最低8 rraあればよいと
言われている。したがって、上記のように銅棒の構造に
する場合、軸方向の銅の断面積の合計が同じになる様に
、一本一本の断面積および本数を設定する。
It is said that the rotor outer cylindrical body 30 should have a wall thickness of at least 8 rra when focusing on electromagnetic shielding from the outside. Therefore, when constructing a copper rod structure as described above, the cross-sectional area and number of each rod are set so that the total cross-sectional area of copper in the axial direction is the same.

例えば、従来の構造回転子外筒体の外径を800mmと
すると、回転子外筒体の断面積はπ(4002−(40
0−8)2) 19905mm2となる。
For example, if the outer diameter of the conventional structural rotor outer cylinder is 800 mm, the cross-sectional area of the rotor outer cylinder is π(4002-(40
0-8)2) 19905mm2.

この断面積を、16本の銅1133で置き換える199
05 ÷1 6−1 244酬2(1244÷:114
15)   −19,9一本の銅棒33の直径は40m
m以上が必要である。銅W!33の数を倍の32本にす
ると1本の銅t*33の直径は28 mm以上となる。
199 to replace this cross-sectional area with 16 pieces of copper 1133
05 ÷1 6-1 244 reward 2 (1244÷:114
15) -19,9 The diameter of one copper rod 33 is 40 m.
m or more is required. Copper W! If the number of 33 is doubled to 32, the diameter of one copper t*33 will be 28 mm or more.

以上述べた構造の回転子外局体30によれば次の効果が
得られる。従来の3層構造の回転子外局体では密着性に
関し、信頼性に欠けるところがあったが、上記した回転
子外筒体30は強度面は円筒体31で受は持ち、gA捧
33はその円筒体31の孔32に挿入されているのみで
ある。したがって、テ、σ格時においても円筒体31を
だ円にする様な応力が負荷されても強度的に必要な肉厚
を有しておれば何ら心配ない。又、銅棒33と円筒体3
1は最初から挿入されているのみで、密着していない。
According to the rotor external body 30 having the structure described above, the following effects can be obtained. Conventional rotor outer cylinders with a three-layer structure lacked reliability in terms of adhesion, but the rotor outer cylinder 30 described above has a cylindrical body 31 with a support, and the gA support 33 has the same strength. It is simply inserted into the hole 32 of the cylindrical body 31. Therefore, even if stress is applied to the cylindrical body 31 to make it into an ellipse in the case of Te or σ, there is no need to worry as long as the thickness is sufficient for strength. In addition, the copper rod 33 and the cylindrical body 3
1 has only been inserted from the beginning and is not in close contact.

故に円筒体31が変形しないかぎり、回転バランスがく
ずれることはなく、はく離の心配はなく、よりfH頼性
が高くなる。
Therefore, as long as the cylindrical body 31 is not deformed, the rotational balance will not be lost, there will be no fear of peeling, and the fH reliability will be higher.

第3図は本発明の他の実施例の回転子外筒体を軸方向端
部から児た図である。すなわち、円筒体31が、長尺に
なり孔明は作業が困難な場合1円筒体31内面側から中
央部に向けてスリット溝35を複数個加工し、このスリ
ット溝35に新面矩形状の銅棒36をそれぞれ挿入し、
この後、各銅棒36を固定するためにそれぞれフタ37
を挿入し、ボルト38で固定したものである。この場合
、孔明は加工と異なり、その形状は断面円形ばかり、で
なく、長方形とか扇形とがだ円形とが三角形等種々の形
状の銅棒を使用することができる。
FIG. 3 is a view of a rotor outer cylindrical body according to another embodiment of the present invention, viewed from the axial end. That is, when the cylindrical body 31 is long and drilling is difficult, a plurality of slit grooves 35 are machined from the inner surface of the cylindrical body 31 toward the center, and a new rectangular copper plate is formed in the slit groove 35. Insert each rod 36,
After this, in order to fix each copper rod 36, a lid 37 is attached to each
is inserted and fixed with bolts 38. In this case, unlike machining, the shape of the copper rod is not limited to a circular cross section, but various shapes such as rectangular, fan-shaped, elliptical, triangular, etc. can be used.

なお、上記フタ37はボルト38に固定せず。Note that the lid 37 is not fixed to the bolt 38.

フタ37の周囲を溶接するようにしてもよい。The periphery of the lid 37 may be welded.

[発明の効果] 本発明によれば回転子外筒体として、高強度非磁性材か
らなる円筒体の肉厚部に、この軸方向に複数個の孔又は
溝を形成し、この番孔又は合溝に銅棒を挿入し、この銅
棒の端部に短格環を接合したので、従来の3層構造の回
転子外筒体の様に短絡時の大きな応力に対し変形しはく
離の心配は全くなく、従ってより信頼性の高い超電導回
転電機の回転子が提供できる。
[Effects of the Invention] According to the present invention, a plurality of holes or grooves are formed in the thick part of the cylindrical body made of a high-strength non-magnetic material as the rotor outer cylinder body in the axial direction, and the holes or grooves are A copper rod is inserted into the matching groove, and a short ring is joined to the end of this copper rod, so unlike the conventional three-layered rotor outer cylinder, there is no risk of deformation or peeling due to large stress during short circuits. Therefore, a more reliable rotor for a superconducting rotating electric machine can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明による超電導回転社けqの
回転子の一実/JI例の回転子外筒体を軸方向端部から
見た図および軸方向断面図、第3図は本発明による他の
実施例の回転子外商体の軸方向端部から見た図、第4図
および第5図は既に提案されたiB雷雷導回転態別回転
子、の軸方向および軸方向とは直角方向に見た概略構成
図、第6図は第4図、第5図の常温ダンパーの短絡時に
受ける電磁力を説明するための図、第7図は第6図のB
点における応力分缶図である。 1・・・液体ヘリウム、2・・・回転子内筒体、3・・
・回転子外筒1本、3a・・・常温ダンパー、31)・
・・補強筒体、3C・・・補強筒体、4a 、4b・・
・トルクチューブ、5・・・熱伸縮材、6・・・供給管
、7・・・コイル溝、8・・・超電導コイル、9・・・
楔体、10・・・絶縁スペーサ、11・・・超電導コイ
ル、12・・・保持筒体、13a。 13b・・・継ぎシャフト、30・・・回転子外筒体、
31・・・円筒体、32・・・孔、33.36・・・m
捧、34・・・短格環、35・・・スリット溝、37・
・・フタ、38・・・ボルト。 出願人代理人 弁理士 鈴江武彦 第 1 図 第2図 第3図 第4図   3 第6図
FIGS. 1 and 2 are views of the rotor outer cylindrical body of the superconducting rotating shaft according to the present invention/JI example as seen from the axial end, and FIG. 3 is an axial cross-sectional view. FIGS. 4 and 5, which are views from the axial end of a rotor body according to another embodiment of the present invention, show the axial direction and the axial direction of the previously proposed iB lightning induction rotor. is a schematic configuration diagram seen in the right angle direction, Figure 6 is a diagram to explain the electromagnetic force received when the normal temperature damper in Figures 4 and 5 is short-circuited, and Figure 7 is B in Figure 6.
It is a stress distribution diagram at a point. 1...Liquid helium, 2...Rotor inner cylinder, 3...
・1 rotor outer cylinder, 3a... normal temperature damper, 31)・
...Reinforcement cylinder, 3C...Reinforcement cylinder, 4a, 4b...
・Torque tube, 5... Heat expandable material, 6... Supply pipe, 7... Coil groove, 8... Superconducting coil, 9...
Wedge body, 10... Insulating spacer, 11... Superconducting coil, 12... Holding cylinder, 13a. 13b... joint shaft, 30... rotor outer cylinder body,
31... Cylindrical body, 32... Hole, 33.36...m
Dedication, 34...Short case ring, 35...Slit groove, 37.
...Lid, 38...volts. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 外部からの磁束を遮へいする回転子外筒体を有する超電
導回転電機の回転子において、上記回転子外筒体は、高
強度非磁性材からなる円筒体の肉厚部に、この軸方向に
複数個の孔又は溝を等間隔に形成し、この各孔又は各溝
に銅棒を挿入し、この銅棒の端部に短格環を接合したこ
とを特徴とする超電導回転電機の回転子。
In a rotor of a superconducting rotating electric machine having a rotor outer cylinder body that shields magnetic flux from the outside, the rotor outer cylinder body has a plurality of rotor cylinders in the thick part of the cylinder made of a high-strength non-magnetic material in the axial direction. 1. A rotor for a superconducting rotating electric machine, characterized in that holes or grooves are formed at equal intervals, a copper rod is inserted into each hole or groove, and a short ring is joined to an end of the copper rod.
JP59170186A 1984-08-15 1984-08-15 Rotor for superconducting rotary electric machine Pending JPS6149649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170186A JPS6149649A (en) 1984-08-15 1984-08-15 Rotor for superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170186A JPS6149649A (en) 1984-08-15 1984-08-15 Rotor for superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS6149649A true JPS6149649A (en) 1986-03-11

Family

ID=15900276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170186A Pending JPS6149649A (en) 1984-08-15 1984-08-15 Rotor for superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6149649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668237U (en) * 1985-04-17 1994-09-22 住友電気工業株式会社 Optical fiber composite overhead wire
US7078845B2 (en) * 2004-05-26 2006-07-18 General Electric Company Optimized drive train for a turbine driven electrical machine
CN106787512A (en) * 2016-12-26 2017-05-31 株洲九方装备股份有限公司 The accurate positioning method and device of a kind of permanent magnetism rotating shaft processing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668237U (en) * 1985-04-17 1994-09-22 住友電気工業株式会社 Optical fiber composite overhead wire
US7078845B2 (en) * 2004-05-26 2006-07-18 General Electric Company Optimized drive train for a turbine driven electrical machine
CN106787512A (en) * 2016-12-26 2017-05-31 株洲九方装备股份有限公司 The accurate positioning method and device of a kind of permanent magnetism rotating shaft processing
CN106787512B (en) * 2016-12-26 2019-01-29 株洲九方装备股份有限公司 A kind of accurate positioning method and device of the processing of permanent magnetism shaft

Similar Documents

Publication Publication Date Title
US6796739B1 (en) Torsional joint assembly and method of making same
US4039870A (en) Integrated annular supporting structure and damper shield for superconducting rotor assembly of dynamoelectric machine
US5729885A (en) Method for rotor construction for alternating induction motor
JPS6066267U (en) rotating electric machine
US6608409B2 (en) High temperature super-conducting rotor having a vacuum vessel and electromagnetic shield and an assembly method
GB1580920A (en) Electric rotary machines having a superconducting rotor
JP2003070228A (en) High temperature super-conducting synchronous rotor having electromagnetic shield and assembling method therefor
US4063122A (en) Rotor containing a field winding cooled to a low temperature
JPS6149649A (en) Rotor for superconducting rotary electric machine
KR20110129873A (en) Method for producing a magnetic system comprising a pole wheel
JPH03116805A (en) Magnet cartridge for magnetic resonant magnet
US20050073216A1 (en) Electrical machine
US4914328A (en) Electrical machine with a superconducting rotor having an improved warm damper shield and method of making same
JP2003032999A (en) High power density superconducting electrical apparatus
GB2100939A (en) A rotor of a superconductive rotary electric machine.
US4646044A (en) Bobbinless solenoid coil
JP6522272B1 (en) Rotating electrical machine and method of manufacturing the same
US20070103017A1 (en) Superconducting generator rotor electromagnetic shield
JPS58175969A (en) Rotary electric machine with damper
JPH057937B2 (en)
JPH0135599Y2 (en)
JP3017494B1 (en) How to make a blanket
US3065367A (en) Dynamoelectric machine
JPS6059967A (en) Rotor of superconductive rotary electric machine
JPS5849078A (en) Rotor for superconductive rotary electric machine