JPS6113679A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS6113679A
JPS6113679A JP13208484A JP13208484A JPS6113679A JP S6113679 A JPS6113679 A JP S6113679A JP 13208484 A JP13208484 A JP 13208484A JP 13208484 A JP13208484 A JP 13208484A JP S6113679 A JPS6113679 A JP S6113679A
Authority
JP
Japan
Prior art keywords
discharge
electrodes
capacitances
auxiliary
main discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13208484A
Other languages
Japanese (ja)
Inventor
Tadashi Takahashi
忠 高橋
Katsuyuki Kakizaki
柿崎 克行
Osamu Morimiya
森宮 脩
Setsuo Suzuki
節男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13208484A priority Critical patent/JPS6113679A/en
Publication of JPS6113679A publication Critical patent/JPS6113679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation
    • H01S3/09716Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation by ionising radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain discharge at large power density by mounting a stable auxiliary discharge section on the upstream side of the main discharge of a laser gas, generating plasma and injecting plasma to a main discharge section. CONSTITUTION:A laser gas current 2 flows in a duct 1, and a plurality of electrodes 3 for main discharge are fitted in the duct 1. Ballast capacitances 4 are each connected to these electrodes 3, and the electrodes 3 are connected to an AC power supply 5 through these capacitances 4. Auxiliary discharge electrodes 7 are mounted on the upstream sides of the electrodes 3. Ballast capacitances 8 are connected to the electrodes 7, and connected to a power supply 5 through the capacitances 8. The capacitances 8 are brought to values sufficiently smaller than the capacitances 4 at that time. Discharge currents are limited by the impedance of the capacitance, and do not shift to an arc. When plasma having small density generated in the auxiliary discharge regions is injected to a section, in which main discharge is generated, together with the flow of the gas 1, the electrode drop voltage of the electrodes 3 reduces, and the increase of electric fields in the vicinity of the electrodes 3 is prevented. Accordingly, stable glow is obtained even when current density increases.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスレーザ装置に係り、特にIKW以上の大出
力ガスレーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas laser device, and particularly to a high output gas laser device of IKW or higher.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の大出力ガスレーザ、特に出力を実質的に連続とす
る方式においては、そのレーザガスの励起には直流放電
を用いてきた。直流放電を安定化させるためには陽極ま
たは陰極を分割し、これら電極に放電安定化抵抗(パラ
スト抵抗)を接続している。このパラスト抵抗の消費す
る電力は、レーザガスを励起するために投入される放電
電力とほぼ同じ量であるので、レーザ装置の実効効率を
著しく低下させる。
Conventional high-output gas lasers, particularly those with substantially continuous output, have used DC discharge to excite the laser gas. In order to stabilize DC discharge, the anode or cathode is divided and a discharge stabilizing resistor (parast resistor) is connected to these electrodes. The power consumed by this parast resistor is approximately the same amount as the discharge power input to excite the laser gas, so it significantly reduces the effective efficiency of the laser device.

このためパラスト抵抗を必要としない交流放電方式が提
案された。第4図に従来提案されていた交流放電式の電
極構成を示す。すなわち、ダクト(1)内を循環して流
れるレーザガス(2)の流れ方向に対し放電の方向が直
交するような配置で複数の放電電極(3)が設けられて
いる。この各々にパラスト容量4が接続されている。パ
ラスト容量(4)を介して交流電源(放電電源)(5)
に接続されている。なお、上記構成ではさらにレーザビ
ーム(6)の光軸がレーザガス(1)の流れ方向と放電
方向とにそれぞれ直交するように折り返し形の共振器ミ
ラーC図示せず)が対向して設けられている。上記構成
ではバラスト容量(4)での電力損失は無いのでレーザ
装置全体の効率は向上する。しかし単位体積当りの投入
電力は約5w/−程度が安定限界で直流放電式とほぼ同
程度であり、大電力密度の放電が得られなかった。
For this reason, an alternating current discharge method that does not require a parasitic resistor was proposed. FIG. 4 shows an electrode configuration of an AC discharge type that has been proposed in the past. That is, a plurality of discharge electrodes (3) are arranged so that the direction of discharge is perpendicular to the flow direction of the laser gas (2) circulating in the duct (1). Parast capacitors 4 are connected to each of these. AC power supply (discharge power supply) (5) via pallast capacitance (4)
It is connected to the. In addition, in the above configuration, folded resonator mirrors C (not shown) are further provided to face each other so that the optical axis of the laser beam (6) is perpendicular to the flow direction and the discharge direction of the laser gas (1). There is. In the above configuration, there is no power loss in the ballast capacitor (4), so the efficiency of the entire laser device is improved. However, the input power per unit volume was about 5 W/- at the stability limit, which was about the same as that of the DC discharge type, and a discharge with a high power density could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解消するためになされたもので
レーザガスへの投入電力を5W/cd以上安定に行える
装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a device that can stably supply power to a laser gas of 5 W/cd or more.

〔発明の概要〕[Summary of the invention]

レーザガスの主放電の上流側で安定な補助放電部を設け
、プラズマ生成し、これを主放電部に注入することによ
り、電極近傍の電界を増大するととを防いだ。
By providing a stable auxiliary discharge section upstream of the main discharge of the laser gas, generating plasma, and injecting it into the main discharge section, increasing the electric field near the electrodes was prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を示す図面に基いて説明する。な
お、上記第4図に示す構成と同一のものには同一符号を
付し説明は詳略する。
Hereinafter, the present invention will be explained based on drawings showing examples. Components that are the same as those shown in FIG. 4 are designated by the same reference numerals, and detailed explanations will be omitted.

第1図は本発明の一実施例でレーザガス流(2)がダク
ト(1)内を流れ、ダクト(1)内に複数の主放電用電
極(3)が設けられている。これらの電極(3)には各
々パラスト容量(4)が接続されていて、このパラスト
容量(4)を介して交流電源(6)に接続されている。
FIG. 1 shows an embodiment of the present invention in which a laser gas flow (2) flows in a duct (1), and a plurality of main discharge electrodes (3) are provided in the duct (1). Each of these electrodes (3) is connected to a parast capacitor (4), and is connected to an AC power source (6) via this parast capacitor (4).

主放電電極(3)の上流側に補助放電電極(力が設けら
れている。この電極(力にはパラスト容量(8)が接続
されている。パラスト容量(8)を介して交流電源(5
)K接続されている。
An auxiliary discharge electrode (force) is provided on the upstream side of the main discharge electrode (3). A pallast capacitor (8) is connected to this electrode (force).
)K connected.

ここで、パラスト容量(8)は主放電用のパラスト容量
(4)K比して十分小さ表値にされている。このインピ
ーダンスにより放電電流は制限されアークには移行しな
い。この補助放電領域で生成された密度の薄いプラズマ
をレーザガス(1)の流れに乗せて主放電を生じる部分
に注入すると、主放電電極(3)の電極降下電圧が減少
し電極近傍の電界の増大が防止された。
Here, the parast capacity (8) is set to a sufficiently small value compared to the main discharge parast capacity (4)K. This impedance limits the discharge current and prevents it from turning into an arc. When the low-density plasma generated in this auxiliary discharge region is carried by the flow of laser gas (1) and injected into the area where the main discharge occurs, the electrode drop voltage of the main discharge electrode (3) decreases and the electric field near the electrode increases. was prevented.

このため主放電部の電流密度が本補助放電を用いること
により、補助放電のない場合に比べて2〜3倍の値でも
安定なグローが得られることが判明した。
Therefore, it has been found that by using this auxiliary discharge, a stable glow can be obtained even when the current density of the main discharge portion is 2 to 3 times higher than that without the auxiliary discharge.

第2図、第3図は本発明の他の補助放電形式である。第
2図では補助放電電極Onは中心部が導体a1)から成
りその周辺部を誘電体02で被覆された電極である。こ
のような電極構成ではいわゆる無声放電が生じ稀薄なプ
ラズマを生成する。このプラズマをレーザガス(1)に
乗せ主放電域に送り込むことにより主放電域の電界を緩
和し、放電の安定域を放電電流域の大きな方に拡げるこ
とが可能となった0 第3図は補助放電電極(1′3を針状電極とし高抵抗0
4を介し交流電源(5)に接続した構成になっている。
FIGS. 2 and 3 show other auxiliary discharge types of the present invention. In FIG. 2, the auxiliary discharge electrode On is an electrode whose center portion is made of a conductor a1) and whose peripheral portion is covered with a dielectric material 02. In such an electrode configuration, a so-called silent discharge occurs and a dilute plasma is generated. By placing this plasma on the laser gas (1) and sending it into the main discharge region, it became possible to relax the electric field in the main discharge region and expand the stable discharge region to the larger discharge current region. Discharge electrode (1'3 is a needle electrode with high resistance 0)
It has a configuration in which it is connected to an AC power source (5) via 4.

針状電極の先端より生ずるコロナ放電で出来た稀薄プラ
ズマをレーザガス(2)の流れに乗せ主放電電極域に注
入することにより主放電を高電流密度でも安定に動作さ
せることが出来る。
The main discharge can be stably operated even at high current density by injecting the dilute plasma produced by the corona discharge generated from the tip of the needle electrode into the main discharge electrode area along with the flow of the laser gas (2).

〔発明の効果〕〔Effect of the invention〕

主放電を交流放電としたので、直流放電式の場合のバラ
スト抵抗による電力損失が無く、装置の電力効率が向上
し、しかも従来の交流放電式に比較してグロー放電の安
定域を高電力密度側に拡げることが可能となったので大
出力機を小形に製作することが可能となった。
Since the main discharge is an AC discharge, there is no power loss due to ballast resistance in the case of a DC discharge type, and the power efficiency of the device is improved.Moreover, compared to the conventional AC discharge type, the stable region of glow discharge can be reduced to a higher power density. Since it became possible to expand to the side, it became possible to manufacture a large output machine in a small size.

なお、本発明の効果は容量を介して接続されている放電
電極の形状が板状、ビン状、棒状のいずれか、あるいは
組合せでも変らない。
Note that the effects of the present invention do not change even if the shape of the discharge electrodes connected through the capacitance is plate-shaped, bottle-shaped, rod-shaped, or a combination thereof.

ガス流の上流側から順次補助放電部、主放電部を交互に
複数組配置しても本発明の効果は変らない〇 補助放電部の電源と主放電部の交流電源とを別電源とし
ても本発明の効果は変らない。補助放電部は主放電の安
定化とともに主放電の放電開始電圧を低減する効果を有
する。このため主放電電源と補助放電電源とを別にする
と主放電電源の容量を小さくすることが可能である。補
助放電電源パルス電源、直流電源としても良い。
The effects of the present invention do not change even if multiple sets of auxiliary discharge sections and main discharge sections are arranged alternately from the upstream side of the gas flow.〇The effects of the present invention do not change even if a plurality of sets of auxiliary discharge sections and main discharge sections are arranged sequentially from the upstream side of the gas flow. The effect of the invention remains the same. The auxiliary discharge section has the effect of stabilizing the main discharge and reducing the firing voltage of the main discharge. Therefore, by separating the main discharge power source and the auxiliary discharge power source, it is possible to reduce the capacity of the main discharge power source. The auxiliary discharge power source may be a pulse power source or a DC power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式図、第2図および
第3図は本発明の他の実施例を示す模式図、第4図は従
来例を示す模式図である。 (1)・・・ダクト、(2)・・・レーザガス、(3)
・・・主放電用電極、 (5)・・・交流電源、(6)
・・・レーザビーム、 (力・・・補助放電電極、(4
) 、 (8)・・・パラスト容量。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第1図 第2図 寸        菌   ←
FIG. 1 is a schematic diagram showing one embodiment of the present invention, FIGS. 2 and 3 are schematic diagrams showing other embodiments of the present invention, and FIG. 4 is a schematic diagram showing a conventional example. (1)...Duct, (2)...Laser gas, (3)
... Main discharge electrode, (5) ... AC power supply, (6)
...Laser beam, (force...auxiliary discharge electrode, (4
), (8)...Palast capacity. Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Dimensions Bacteria ←

Claims (4)

【特許請求の範囲】[Claims] (1)レーザガス流と主放電の放電路とレーザビームの
各軸方向がほぼ互に直交する三軸直交形に配設し、かつ
上記レーザガス流の流れ方向において上記主放電の部分
の上流側に補助放電装置を設け、上記主放電を二以上の
容量を介して行う交流放電とし、上記補助放電装置によ
る補助放電を主放電電源もしくは補助電源に高インピー
ダンスを介して行うようにしたことを特徴とするガスレ
ーザ装置。
(1) The laser gas flow, the main discharge discharge path, and the laser beam are arranged in a triaxial orthogonal configuration in which each axial direction is substantially orthogonal to each other, and on the upstream side of the main discharge portion in the flow direction of the laser gas flow. An auxiliary discharge device is provided, the main discharge is an alternating current discharge performed through two or more capacities, and the auxiliary discharge by the auxiliary discharge device is performed through a high impedance to the main discharge power source or the auxiliary power source. gas laser equipment.
(2)補助放電は上記容量よりも小さい容量を介されて
行われるように構成されていることを特徴とする特許請
求の範囲第1項記載のガスレーザ装置。
(2) The gas laser device according to claim 1, wherein the auxiliary discharge is performed through a capacitance smaller than the above-mentioned capacitance.
(3)補助放電は誘電体を介して行われる交流放電にな
ることを特徴とする特許請求の範囲第1項記載のガスレ
ーザ装置。
(3) The gas laser device according to claim 1, wherein the auxiliary discharge is an alternating current discharge performed through a dielectric.
(4)高インピーダンスが少なくとも抵抗成分を有して
いることを特徴とする特許請求の範囲第1項記載のガス
レーザ装置。
(4) The gas laser device according to claim 1, wherein the high impedance has at least a resistance component.
JP13208484A 1984-06-28 1984-06-28 Gas laser device Pending JPS6113679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13208484A JPS6113679A (en) 1984-06-28 1984-06-28 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13208484A JPS6113679A (en) 1984-06-28 1984-06-28 Gas laser device

Publications (1)

Publication Number Publication Date
JPS6113679A true JPS6113679A (en) 1986-01-21

Family

ID=15073122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13208484A Pending JPS6113679A (en) 1984-06-28 1984-06-28 Gas laser device

Country Status (1)

Country Link
JP (1) JPS6113679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077623A1 (en) * 2012-11-16 2014-05-22 주식회사 지아이티 Plasma processing device comprising multiple ballast modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077623A1 (en) * 2012-11-16 2014-05-22 주식회사 지아이티 Plasma processing device comprising multiple ballast modules

Similar Documents

Publication Publication Date Title
JPS58155643A (en) Glow-like discharge generator
JPS6113679A (en) Gas laser device
Harry et al. Multiple electrode system for high power CO2 laser excitation
JPH07183603A (en) Pulse gas laser device
JP2996706B2 (en) Pulse laser oscillation device
US5033059A (en) Gas laser apparatus
JPS63228776A (en) Gas laser device
JPS6358884A (en) Silent discharge type gas laser device
JPH01276783A (en) Gas laser oscillation device
JPH0333086Y2 (en)
JPS61208883A (en) Alternate current discharge type gas laser apparatus
JPH0484474A (en) Laser apparatus
JPS63227074A (en) Gas laser device
JPS6321882A (en) Excimer laser
JPS60260171A (en) Gas laser oscillator
JPS5915516Y2 (en) gas laser equipment
JPH02130973A (en) Laser oscillator
RU2089981C1 (en) Set of electrodes for shaping self-maintained space discharge
JPH05327091A (en) Pulse laser apparatus
JPS62243379A (en) Gas pulse laser
JPS61188979A (en) Gas laser device
JPS6179278A (en) Gas laser device
JPS6339113B2 (en)
JPS5848487A (en) Gas laser oscillator
JPH06275897A (en) Discharge excited gas laser device