JPS61136682A - Laser cvd - Google Patents

Laser cvd

Info

Publication number
JPS61136682A
JPS61136682A JP25665884A JP25665884A JPS61136682A JP S61136682 A JPS61136682 A JP S61136682A JP 25665884 A JP25665884 A JP 25665884A JP 25665884 A JP25665884 A JP 25665884A JP S61136682 A JPS61136682 A JP S61136682A
Authority
JP
Japan
Prior art keywords
gas
substrate
deposition
mixing ratio
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25665884A
Other languages
Japanese (ja)
Other versions
JPH0529636B2 (en
Inventor
Fumihiko Uesugi
文彦 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25665884A priority Critical patent/JPS61136682A/en
Publication of JPS61136682A publication Critical patent/JPS61136682A/en
Publication of JPH0529636B2 publication Critical patent/JPH0529636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Abstract

PURPOSE:To deposit a thin film having a desired width on a substrate by a laser CVD method by using a gaseous mixture composed of H2 and N2 for the carrier gas of an alkyl compd. and changing the mixing ratio of the gaseous mixture to change the decomposition temp. of the alkyl compd. CONSTITUTION:Laser light 12 is irradiated through a window 22 to the deposition part 13 on a substrate 11 on the surface of which the patterns of Si 20 and SiO2 21 intermingle to heat the substrate. The Al(CH3)3 transported by the gaseous mixture composed of gaseous H2 14 and gaseous N2 15 is decomposed and Al is deposited on the substrate 11. The substrate 11 and a cell 16 for deposition are slid on a stage 18 by a motor 19 so that the Al is deposited straightly. The mixing ratio is set at about H2:N2=1:1 and the total flow rate at about 700cc/min in the case of deposition on the Si 20 and the mixing ratio is set at H2:N2=1:9 in the case of deposition on the SiO2 21. The straight and uniform deposition of the Al at about 3mu width is thus made possible with substantially no change in the line width of the Al at the boundary line between the Si 20 and the SiO2 21 by changing the mixing ratio on the Si 20 and the SiO2 21 in the above-mentioned manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光CVD方法、待に直描形レーザCVD方法に
おいて、異種材料によりパターン化された基板上に所望
の幅で薄膜を堆積させる方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for depositing a thin film with a desired width on a substrate patterned with different materials in an optical CVD method and a direct writing laser CVD method. It is related to.

(従来技術とその問題点) 従来レーザCVDにおいては、原料ガスとキャリアガス
の混合ガスを堆積用セルに導入し、基板上を選択的にレ
ーザ光で照射し、その熱で原料ガスを分解して金属や半
導体等所望の膜を堆積させていた。線の直描は、レーザ
光に対し基板を装着した堆積用セルを移動機構により相
対的に移動させながら行うことができる。
(Prior art and its problems) In conventional laser CVD, a mixed gas of source gas and carrier gas is introduced into a deposition cell, the substrate is selectively irradiated with laser light, and the source gas is decomposed by the heat. The desired film, such as metal or semiconductor, was deposited using the method. The direct drawing of the line can be performed while moving the deposition cell mounted with the substrate relative to the laser beam using a moving mechanism.

例えば、エーリッヒ(D、 J、 Ehrlich)ら
によりアプライド・フィジクス・レターズ誌(Appl
、 Phys、  Lett、)第39巻の957ペー
ジから959ページに掲載された論文では、5i02熱
酸化膜を一部取り除いたSLウェハ上にSiH4からS
iを堆積させるため、5i02を除去した部分を含んで
Ar+レーザ光を走査してウェハを加熱し、SiH4を
熱分解してSiを堆積させている。しかしながら、線状
に堆積させたSiの線幅は、熱伝導率の大きなSi上よ
りも小さな5i02上の方が広がり、異なる下地材料の
上では均一な幅でSiを堆積できなかった。そのため、
このSiの線幅の広がりを見込んで配線間隔を太き(と
らねばならず、こ九が高集積化にとって大きな問題点で
あった。また、At(CH3)3からA/を堆積させる
場合も同様の問題点があった。
For example, in Applied Physics Letters (Appl.
In the paper published on pages 957 to 959 of Volume 39 (Phys, Lett, ), SiH4 to S
In order to deposit 5i02, the wafer is heated by scanning the wafer with an Ar+ laser beam including the portion where 5i02 has been removed, thermally decomposing SiH4, and depositing Si. However, the line width of linearly deposited Si was wider on 5i02, which has a smaller thermal conductivity, than on Si, which has a higher thermal conductivity, and Si could not be deposited with a uniform width on different underlying materials. Therefore,
In anticipation of the broadening of the Si line width, the wiring spacing had to be thickened, which was a major problem in achieving high integration.Also, when depositing A/ from At(CH3)3, I had a similar problem.

(発明の目的) 本発明の目的は、上述のような従来の欠点を除去し、種
々の下地材料がパターン化され錯綜している基板上に、
直描形レーザCVDにより金属や半導体等を所望の幅で
線状に堆積させる方法を提供することにある。
(Object of the Invention) The object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to provide a method for forming a substrate on which various underlying materials are patterned and intricate.
An object of the present invention is to provide a method for linearly depositing metals, semiconductors, etc. with a desired width by direct laser CVD.

(発明の構成) 本発明はアルキル化合物を含むCVD原料ガスを用いて
基板上に選択的に薄膜を形成するレーザCVD方法にお
いて、前記アルキル化合物のキャリヤガスにN2と不活
性(又はN2)ガスとの混命ガスを使用し、かつ前記混
合ガスの混合比を変えて分解温度を制御することを特徴
とする。
(Structure of the Invention) The present invention provides a laser CVD method for selectively forming a thin film on a substrate using a CVD source gas containing an alkyl compound, in which N2 and an inert (or N2) gas are used as a carrier gas for the alkyl compound. The present invention is characterized in that the decomposition temperature is controlled by using a hybrid gas and changing the mixing ratio of the mixed gas.

(発明の作用・原理) 本発明は上述の方法をとることにより、従来技術の問題
点を解決した。本発明の発明者の熟CVDX験において
、原料ガスであるアルキル化合物のうち、メチル基と結
合している化合物の不活性ガス又はN2ガス中での熱分
解はラジカル反応であり、N2ガス中では水素化反応で
、水素化反応の方がより低温で起きることがわかった。
(Operation/Principle of the Invention) The present invention solves the problems of the prior art by using the method described above. In the extensive CVDX experiments conducted by the inventor of the present invention, thermal decomposition of a compound bonded to a methyl group in an inert gas or N2 gas among alkyl compounds that are raw material gases is a radical reaction; It was found that hydrogenation reactions occur at lower temperatures.

またエチル基、プロピル基およびブチル基と結合してい
る化合物の不活性(又はN2)ガスやN2ガス中での熱
分解は、いわゆるp−エリミネーションのメカニズムで
生じ、この場合にもN2ガス中の反応の方がより低温で
起きることが判明した。
In addition, thermal decomposition of compounds bonded to ethyl, propyl, and butyl groups in inert (or N2) gas or N2 gas occurs by the so-called p-elimination mechanism; The reaction was found to occur at lower temperatures.

アルキル化合物の分解反応温度がキャリヤガスの種類に
よって異なるというこのような新しい知見を利用すると
、キャリアガスを複数種混合し混合比率を変えることに
よって、分解反応温度を上限と下限の間で意図的に制御
できるという新規な工業的手法が可能となる。第1図(
a) (b)に原料ガスにAe (C2H5)a、Ga
(CH3)a、Ga(C2Hs)aを用いた例を示す。
Utilizing this new knowledge that the decomposition reaction temperature of alkyl compounds differs depending on the type of carrier gas, it is possible to intentionally adjust the decomposition reaction temperature between the upper and lower limits by mixing multiple types of carrier gas and changing the mixing ratio. A new industrial method of control becomes possible. Figure 1 (
a) In (b), Ae (C2H5)a, Ga is added to the raw material gas.
An example using (CH3)a and Ga(C2Hs)a will be shown.

従って、種々の下地材料が錯綜している基板上に直描形
レーザ熱CVDで種々の薄膜を堆積させる場合、熱伝導
の小さな物質や構造からなる基板上ではN2ガス含有率
を小さくしてアルキル化合物の分解反応温度を上限に近
づける。逆に熱伝導の大きな物質や構造からなる基板上
では、含有率を大きくして分解反応温度を下限に近づけ
る。こうして例えばSiや5iQ2などが錯綜している
ウェハ上に、金属や半導体等を下地の材料や構造によら
ず均一な幅で堆積させることができる。また同一基板上
であっても含有率を変えることにより、意図的に堆積の
幅を変えることもできる。
Therefore, when depositing various thin films by direct laser thermal CVD on substrates containing a variety of underlying materials, the N2 gas content may be reduced to reduce the N2 gas content on substrates made of materials or structures with low thermal conductivity. Bring the decomposition reaction temperature of the compound closer to the upper limit. On the other hand, on a substrate made of a material or structure with high thermal conductivity, the content is increased to bring the decomposition reaction temperature closer to the lower limit. In this way, metals, semiconductors, etc. can be deposited with a uniform width on a wafer in which Si, 5iQ2, etc. are mixed, regardless of the underlying material or structure. Further, even on the same substrate, the width of deposition can be intentionally changed by changing the content rate.

(実施例) 以下、本発明について実施例を示す図面を参照して説明
する。
(Example) Hereinafter, the present invention will be described with reference to drawings showing examples.

第2図は本発明を適用した一実施例を示すものである。FIG. 2 shows an embodiment to which the present invention is applied.

表面でSiと5i02のパターンが錯綜している基板1
1上の堆積部分13を窓22を通してレーザ光12で照
射して加熱し、N2ガス14とN2ガス15の混合ガス
中で輸送されてきたAmCHs)sを分解してArヲ堆
積させた。N2ガス14とN2ガス15を均一に混ぜる
ために、堆゛積用セル16にバッフル17をつけた。基
板11と堆積用セル16を移動ステージ駆動用モータ1
9によって、移動ステージ18でスライドさせてA(を
直描で堆積させる。移動ステージ18は約10pm/s
でスライドさせた。レーザ光パワーは約0.5Wであっ
た。AeCCHa)aの蒸気圧約10 Torrをキャ
リヤガスと共にフローさせた。このキャリヤガスはN2
ガス14とN2ガス15の混合ガスで、Si20上に堆
積させる場合はN2 : N2 x 1 : 1、全流
量約700cc/分とし、5i0221上に堆積させる
場合はN2 : N2−1:9とした。このようにSi
20上と5i0221上とで混合比を変えることによっ
て、8.20と5i0221の境界線でAeの線幅をほ
とんど変えることなく約3pm幅で均一に直描で堆積さ
せることができた。キャリヤガスの混合比は、マス70
−コントローラ23とパルプ24を使ってN2ガス14
とN2ガス15の流量を変えることによって制御した。
Substrate 1 with intricate patterns of Si and 5i02 on the surface
The deposited portion 13 on 1 was heated by irradiating it with a laser beam 12 through a window 22, and AmCHs)s transported in a mixed gas of N2 gas 14 and N2 gas 15 was decomposed and Ar was deposited. In order to uniformly mix N2 gas 14 and N2 gas 15, a baffle 17 was attached to the deposition cell 16. Stage drive motor 1 for moving the substrate 11 and deposition cell 16
9, A is deposited by direct drawing by sliding on the moving stage 18. The moving stage 18
I slid it. The laser light power was about 0.5W. A vapor pressure of about 10 Torr of AeCCHa)a was flowed together with the carrier gas. This carrier gas is N2
A mixed gas of gas 14 and N2 gas 15 was used: N2:N2 x 1:1 when depositing on Si20, the total flow rate was about 700 cc/min, and when depositing on 5i0221, it was N2:N2-1:9. . In this way, Si
By changing the mixing ratio between 8.20 and 5i0221, it was possible to uniformly deposit Ae with a width of about 3 pm at the boundary line between 8.20 and 5i0221 by direct drawing without changing the line width. The carrier gas mixing ratio is mass 70
- N2 gas 14 using controller 23 and pulp 24
This was controlled by changing the flow rate of N2 gas 15.

ガス混合比を変えてから堆積用セル16内でガスが一定
になるまで遅れ時間が生じるが、堆積用セル16の体積
が小さいこと、及びガスの混合比を変えるときに流量を
上げることで解決できた。
There is a lag time after changing the gas mixture ratio until the gas becomes constant in the deposition cell 16, but this can be solved by the small volume of the deposition cell 16 and by increasing the flow rate when changing the gas mixture ratio. did it.

AC(CHa)aの代わりにAe(C2H5)aを使う
ことによってもAeを均一の幅で堆積させることができ
た。またAr(iso −C4H9)3を使っても同様
にAeを均一の幅で堆積させることができた。もちろん
Ae以外にもZn、 Cd 、 In、 Ga、 Te
、 Sb、 A、 、 Hg、 P 、 Si 、 I
nPのアルキル化合物を使えば、これらの金属や半導体
、ドーピング用物質を本発明を適用して堆積させること
もできる。
Ae could also be deposited with a uniform width by using Ae(C2H5)a instead of AC(CHa)a. Furthermore, even when Ar(iso-C4H9)3 was used, Ae could be similarly deposited with a uniform width. Of course, in addition to Ae, there are also Zn, Cd, In, Ga, Te.
, Sb, A, , Hg, P, Si, I
If nP alkyl compounds are used, these metals, semiconductors, and doping substances can also be deposited by applying the present invention.

また、CVDガスとしてアルキル化合物にN20やNH
3を混合すると、酸化物や窒化物の誘電体を直描で本発
明の方法を適用して、堆積させることができるのはいう
までもない。
In addition, N20 and NH are added to alkyl compounds as CVD gases.
It goes without saying that by mixing 3, it is possible to directly deposit an oxide or nitride dielectric by applying the method of the present invention.

また、本発明は下地の材料や構造による熱伝導特性の違
いに基づく、境界での堆積特性の不連続性を解消する点
に効果を発揮するものであるが、堆積形状を意図的に変
えることまでも何ら妨げるものではない。すなわち基板
上の所定の一部分で堆積の幅を太く、あるいは高くする
ために照射する光強度を強くすることはもちろん可能で
あり、  ′また本発明の特徴を生かして、CVDガス
の分解温度を下げることにより、上記の目的を達するこ
とができるのも言うまでもない。またここでは基板とし
てSiを用いた例で説明したが、本発明の適用が半導体
基板にとどまらないことは言うまでもない。
Furthermore, although the present invention is effective in eliminating discontinuities in the deposition characteristics at the boundary due to differences in thermal conductivity due to underlying materials and structures, it is not possible to intentionally change the deposition shape. There is no hindrance whatsoever. In other words, it is of course possible to increase the intensity of the irradiated light in order to increase the width or height of the deposition on a predetermined portion of the substrate.'It is also possible to make use of the features of the present invention to lower the decomposition temperature of the CVD gas. Needless to say, the above purpose can be achieved by doing so. Furthermore, although an example in which Si is used as the substrate has been described here, it goes without saying that the application of the present invention is not limited to semiconductor substrates.

(発明の効果) 以上、本発明のレーザCVD方法を適用することにより
、各種下地材料が錯綜している基板上に、下地の違いに
よる影響を受けずに各種薄膜を所望の幅で精度良く堆積
させることができる。
(Effects of the Invention) As described above, by applying the laser CVD method of the present invention, various thin films can be deposited with desired widths with high accuracy on a substrate on which various underlying materials are mixed, without being affected by differences in the underlying materials. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は原料ガスの分解温度が混合キャ
リアガスの混合比によって変わる例を示した図、第2図
は本発明を適用した一実施例に用いる装置の模式図であ
る。 11・・・・・基板        12・・・・・レ
ーザ光13・・・・・堆積部分     14・・・・
・H2ガス15・・・・・N2ガス      16・
・・・・堆積用セル17・・・・・バッフル     
18・・・・・移動ステージ19・・・・・移動ステー
ジ駆動用モータ20 ”・Si          2
1 ”・810222・・・・・窓 23・・・・・マスフローコントローラ24・・・・・
パルプ TEAからのAZの検出率
Figures 1 (a) and (b) are diagrams showing an example in which the decomposition temperature of the raw material gas changes depending on the mixing ratio of the mixed carrier gas, and Figure 2 is a schematic diagram of an apparatus used in an embodiment to which the present invention is applied. . 11...Substrate 12...Laser beam 13...Deposition part 14...
・H2 gas 15...N2 gas 16・
... Deposition cell 17 ... Baffle
18...Moving stage 19...Moving stage driving motor 20''・Si 2
1 ”・810222...Window 23...Mass flow controller 24...
Detection rate of AZ from pulp TEA

Claims (1)

【特許請求の範囲】[Claims] アルキル化合物を含むCVD原料ガス中に設置した基板
上に、レーザ光を選択的に照射してこの照射した領域に
薄膜を形成するレーザCVD方法において、前記アルキ
ル化合物のキャリアガスにH_2と不活性ガスとの混合
ガス、又はH_2とN_2の混合ガスを使用し、かつ前
記混合ガスの混合比を変えて原料ガスの分解温度を変え
ることを特徴とするレーザCVD方法。
In a laser CVD method in which a substrate placed in a CVD source gas containing an alkyl compound is selectively irradiated with laser light to form a thin film on the irradiated area, H_2 and an inert gas are used as a carrier gas for the alkyl compound. A laser CVD method characterized by using a mixed gas of H_2 and N_2 or a mixed gas of H_2 and N_2, and changing the mixing ratio of the mixed gas to change the decomposition temperature of the source gas.
JP25665884A 1984-12-05 1984-12-05 Laser cvd Granted JPS61136682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25665884A JPS61136682A (en) 1984-12-05 1984-12-05 Laser cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25665884A JPS61136682A (en) 1984-12-05 1984-12-05 Laser cvd

Publications (2)

Publication Number Publication Date
JPS61136682A true JPS61136682A (en) 1986-06-24
JPH0529636B2 JPH0529636B2 (en) 1993-05-06

Family

ID=17295668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25665884A Granted JPS61136682A (en) 1984-12-05 1984-12-05 Laser cvd

Country Status (1)

Country Link
JP (1) JPS61136682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459771A2 (en) * 1990-05-31 1991-12-04 Canon Kabushiki Kaisha Electrode for semiconductor device and method for producing the same
US5288327A (en) * 1992-03-12 1994-02-22 Bell Communications Research, Inc. Deflected flow in chemical vapor deposition cell
CN107043920A (en) * 2016-02-08 2017-08-15 伊利诺斯工具制品有限公司 Method and system for the local deposits of metal on the surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583075A (en) * 1990-05-13 1996-12-10 Canon Kabushiki Kaisha Method for producing a semiconductor device with a particular source/drain and gate structure
EP0459771A2 (en) * 1990-05-31 1991-12-04 Canon Kabushiki Kaisha Electrode for semiconductor device and method for producing the same
US5378914A (en) * 1990-05-31 1995-01-03 Canon Kabushiki Kaisha Semiconductor device with a particular source/drain and gate structure
US5288327A (en) * 1992-03-12 1994-02-22 Bell Communications Research, Inc. Deflected flow in chemical vapor deposition cell
CN107043920A (en) * 2016-02-08 2017-08-15 伊利诺斯工具制品有限公司 Method and system for the local deposits of metal on the surface

Also Published As

Publication number Publication date
JPH0529636B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
EP0252667B1 (en) Chemical vapour deposition methods
US4702936A (en) Gas-phase growth process
US4546008A (en) Method for forming a deposition film
JP3193372B2 (en) Vapor deposition method for depositing an organometallic compound layer on a substrate
US20090117272A1 (en) Layer Depositing Device and Method for Operating it
JP2005513793A (en) Method and apparatus for depositing a crystalline coating on a crystalline substrate
Bedair et al. Laser selective deposition of III–V compounds on GaAs and Si Substrates
JPS61136682A (en) Laser cvd
US5229319A (en) Method for producing compound semiconductors and apparatus therefor
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JP2914992B2 (en) Deposition film formation method
JPS61189649A (en) Formation of deposited film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP3880096B2 (en) Vapor growth method
Tate et al. Photodeposition of GeO2‐SiO2 glass and application to planar optical waveguides
KR900001237B1 (en) Semiconductor device manufacturing method
JPH0618173B2 (en) Thin film formation method
JP3171630B2 (en) Method of forming SiN film
JPS61275135A (en) Formation of borophosphosilicate glass
JPS6054280B2 (en) Gas phase deposition method
JPS61189629A (en) Formation of deposited film
JP2558457B2 (en) Method for forming silicon oxide film
Baranauskas Progress In Laser Chemical Vapor Deposition Of Silicon Thin-Films
JPS6389492A (en) Semiconductor crystal growth device
JPH03190220A (en) Manufacture of semiconductor device