JPS61189649A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS61189649A
JPS61189649A JP60029811A JP2981185A JPS61189649A JP S61189649 A JPS61189649 A JP S61189649A JP 60029811 A JP60029811 A JP 60029811A JP 2981185 A JP2981185 A JP 2981185A JP S61189649 A JPS61189649 A JP S61189649A
Authority
JP
Japan
Prior art keywords
film
deposited film
compound
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60029811A
Other languages
Japanese (ja)
Inventor
Shunichi Ishihara
俊一 石原
Shigeru Ono
茂 大野
Masahiro Kanai
正博 金井
Toshimichi Oda
小田 俊理
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60029811A priority Critical patent/JPS61189649A/en
Publication of JPS61189649A publication Critical patent/JPS61189649A/en
Priority to US07/113,414 priority patent/US4772486A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To facilitate the control of deposited-film formation, by a method wherein a deposited film is formed over the substrate by introducing two specific compounds which are raw materials for forming the deposited film and an activation seed chemically reacting with at least one of them to the film-forming space to form the deposited film over the substrate. CONSTITUTION:In the film-forming space to form a deposited film over a substrate, compounds serving as raw materials for forming the deposited film, which are expressed each by general formulas I and II [(m) indicates positive integers equal to or integral multiples of the valence numbers of R; (n) positive integers equal to or integral multiples of the valence numbers of M; M elements belonging to the II group of the periodic table; and R hydrogen H, halogen X, or hydrogen carbide radicals; besides, (a) indicates positive integers equal to or integral multiples of the valence numbers of B; (n) positive integers equal to or integral multiples of the valence numbers of A; X elements belonging to the VI group of the periodic table; and B hydrogen H, halogen X, or hydrogen carbide radicals.] and an activation seed chemically reacting with at least one of these compounds are introduced, thereby forming a deposited film over the substrate.

Description

【発明の詳細な説明】 〔従来の技術〕 本発明は、半導体膜、絶縁体膜、導体膜等の非品性の或
いは結晶性の機能性薄膜、殊に能動性或いは受動性の半
導体デバイス、光半導体デバイス或いは太陽電池や電子
写真用の感光デバイスなどの用途に有用な堆積膜の形成
法に関する。
[Detailed Description of the Invention] [Prior Art] The present invention relates to non-quality or crystalline functional thin films such as semiconductor films, insulator films, and conductor films, especially active or passive semiconductor devices, optical The present invention relates to a method for forming deposited films useful for applications such as semiconductor devices, solar cells, and photosensitive devices for electrophotography.

堆積膜の形成には、真空蒸着法、プラズマCVD法、熱
CVD法、光CVD法1反応性スパッタリング法、イオ
ンブレーティング法などが試みられており、一般的には
、プラズマCVD法が広く用いられ、企業化されている
Vacuum evaporation method, plasma CVD method, thermal CVD method, photo CVD method 1 reactive sputtering method, ion blating method, etc. have been tried to form the deposited film, and in general, plasma CVD method is widely used. It has become a corporate entity.

丙午ら、これ等堆積膜形成法によって得られる堆積膜は
より高度の機能が求められる電子デバイスや光電子デバ
イスへの適用が求められていることから電気的、光学的
特性及び、繰返し使用での疲労特性あるいは使用環境特
性、更には均一性。
As the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices and optoelectronic devices that require higher functionality, it is difficult to improve electrical and optical properties and fatigue due to repeated use. Characteristics or usage environment characteristics, and even uniformity.

再現性を含めて生産性、量産性の点において更に総合的
な特性の向上を図る余地がある。
There is room for further improvement in overall characteristics in terms of productivity and mass production, including reproducibility.

従来から一般化されているプラズマCVD法による堆積
膜の形成においての反応プロセスは、従来の所謂、熱C
VD法に比較してかなり複雑であり、その反応機構も不
明な点が少なくなかった。又、その堆積膜の形成パラメ
ーターも多く(例えば、基体温度、導入ガスの流量と比
、形成時の圧力、高周波電力、電極構造1反応容器の構
造、排気速度、プラズマ発生方式など)、これらの多く
のパラメータの組み合せによるため。
The reaction process in forming a deposited film by the conventional plasma CVD method is the conventional so-called thermal carbon
It is considerably more complicated than the VD method, and the reaction mechanism is still unclear. In addition, there are many formation parameters for the deposited film (for example, substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure 1 reaction vessel structure, pumping speed, plasma generation method, etc.). Because it depends on a combination of many parameters.

時にはプラズマが不安定な状態になり、形成された堆積
膜に著しい悪影響を与えることが少なくなかった。その
うえ、装置特有のパラメーターを装置ごとに選定しなけ
ればならず、したがって製造条件を一般化することがむ
ずかしいというのが実状であった。
At times, the plasma becomes unstable, which often has a significant negative effect on the deposited film. Furthermore, the actual situation is that parameters unique to each device must be selected for each device, making it difficult to generalize manufacturing conditions.

その中でも、例えば電気的、光学的特性が各用途を十分
に満足させ得るものを発現させることが出来るという点
で、アモルファスシリコン膜の場合には現状ではプラズ
マCVD法によって形成することが最良とされている。
Among these, for example, in the case of amorphous silicon films, it is currently considered best to form them using the plasma CVD method, since it is possible to develop electrical and optical properties that fully satisfy each application. ing.

丙午ら、堆積膜の応用用途によっては、大面積化、膜厚
の均一性、膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、プラズマCVD
法による堆積膜の形成においては、量産装置に多大な設
備投資が必要となり、またその量産の為の管理項目も複
雑になり、管理許容幅も狭くなり、装置の調整も微妙で
あることから、これらのことが、今後改善すべき問題点
として指摘されている。
According to Heigo et al., depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniformity of film thickness, and uniformity of film quality, and mass production with reproducibility.
Forming a deposited film by the method requires a large amount of equipment investment for mass production equipment, the control items for mass production are complicated, the control tolerance is narrow, and the adjustment of the equipment is delicate. These have been pointed out as problems that should be improved in the future.

他方、通常のCVD法による従来の技術では、高温を必
要とすると共に、企業的なレベルでは必ずしも満足する
様な特性を有する堆積膜が得られていなかった。
On the other hand, the conventional technique using the normal CVD method requires high temperatures and has not been able to provide a deposited film with characteristics that are necessarily satisfactory at a commercial level.

これ等のことは、殊にn−vt族化合物の薄膜を形成す
る場合においては、より大きな問題として残されている
These problems remain as a bigger problem, especially when forming a thin film of n-vt group compounds.

上述の如く、機能性膜の形成において、その実用可能な
特性の確保と、均一性を維持させながら低コストな装置
で量産化できる堆積膜の形成方法を開発することが切望
されている。
As mentioned above, in forming a functional film, there is a strong desire to develop a method for forming a deposited film that can be mass-produced using low-cost equipment while ensuring practical properties and maintaining uniformity.

〔目  的〕〔the purpose〕

本発明は、上述した従来の堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
The present invention eliminates the drawbacks of the conventional deposited film forming methods described above, and at the same time provides a novel deposited film forming method that does not rely on conventional forming methods.

本発明の目的は1機能性膜の特性を容易に管理化出来、
少なくとも従来法で得た良質の膜の特性を保持すると共
に、堆積速度の向上を図りながら、膜形成条件の管理の
簡素化、膜の量産化を容易に達成させることの出来る堆
積膜の形成法を提供することである。
The purpose of the present invention is to be able to easily control the characteristics of a monofunctional membrane,
A method for forming a deposited film that maintains at least the characteristics of a high-quality film obtained by conventional methods, improves the deposition rate, simplifies the management of film formation conditions, and facilitates mass production of films. The goal is to provide the following.

〔構  成〕〔composition〕

本発明の堆積膜形成法は基体上に堆積膜を形成する為の
成膜空間に、堆積膜形成用の原料となる下記の一般式(
A)及びCB)で夫々表わされる化合物(A)と化合物
(B)と、これ等該化合物の少なくとも一方と化学反応
する活性種とを導入することによって、前記基体上に堆
積膜を形成することを特徴とするものである・ Rn M m ・・・・・・・・・・(A )A a 
B  b −一−−−−−−−−(B )但し、mはR
の価数に等しいか又は整数倍の正整数、nはMの価数に
等しいか又は整数倍の正整数、Mは周期律表の第■族に
属する元素、Rは水素(H)、ハロゲン(X)、炭化水
素基を夫々示す。
In the deposited film forming method of the present invention, the following general formula (
Forming a deposited film on the substrate by introducing a compound (A) and a compound (B) represented by A) and CB), respectively, and an active species that chemically reacts with at least one of the compounds. It is characterized by・Rn M m・・・・・・・・・(A)A a
B b -1----------(B) However, m is R
n is a positive integer equal to or an integral multiple of the valence of M, M is an element belonging to Group Ⅰ of the periodic table, R is hydrogen (H), halogen (X) each represents a hydrocarbon group.

aはBの価数に等しいか又は整数倍の正整数、nはAの
価数に等しいか又は整数倍の正整数。
a is a positive integer equal to or an integral multiple of the valence of B, and n is a positive integer equal to or an integral multiple of the valence of A.

Aは周期律表の第■族に属する元素、Bは水素(H)、
ハロゲン(X)、炭化水素基を夫々示す。
A is an element belonging to Group Ⅰ of the periodic table, B is hydrogen (H),
Each represents a halogen (X) and a hydrocarbon group.

本発明の方法では、所望の機能性の堆積膜を形成するに
際して、堆積膜の形成パラメーターが、導入する前記一
般式(A)及び(B)で夫々示される化合物(A)と(
B)及びこれ等の化合物の少なくともいずれか一方と化
学反応する活性種の導入量、基体及び成膜空間内の温度
、成膜空間内の内圧となり、従って、堆積膜形成のコン
トロールが容易になり、再現性、量産性のある機能性の
堆積膜を形成させることができる。
In the method of the present invention, when forming a deposited film with desired functionality, the formation parameters of the deposited film are set such that the compound (A) represented by the general formulas (A) and (B), respectively, and (
B) and the amount of introduced active species that chemically reacts with at least one of these compounds, the temperature in the substrate and film-forming space, and the internal pressure in the film-forming space, thus making it easier to control the deposited film formation. , it is possible to form a functional deposited film that is reproducible and mass-producible.

本発明で云う「活性種」とは、前記化合物(A)ヌは/
及び化合物(B)と化学的相互作用を起して例えば前記
化合物(A)又は/及び(B)にエネルギーを与えたり
、化合物(A)又は/及び(B)と化学的に反応したり
して、化合物(A)又は/及びCB)を堆積膜を形成す
ることが出来る状態にする役目を荷うものを云う。
The "active species" as used in the present invention refers to the compound (A)
and chemically interacts with the compound (B) to give energy to the compound (A) or/and (B), or chemically reacts with the compound (A) or/and (B). In other words, a substance that plays a role in bringing the compound (A) and/or CB) into a state in which a deposited film can be formed.

従って、「活性種」としては、形成される堆積膜を構成
する構成要素に成る構成要素を含んでいても良く、或い
はその様な構成要素を含んでいなくとも良い。
Therefore, the "active species" may include constituent elements constituting the deposited film to be formed, or may not include such constituent elements.

本発明において使用される前記一般式(A)及び(B)
の夫々で示される化合物(A)及び(B)としては、成
膜される基体が存在する空間において、前記の活性種と
分子的衝突を起して化学反応を起し、基体上に形成され
る堆積膜の形成に寄与する化学種を自発的に発生するも
のを選択するのがより望ましいものであるが1通常の存
在状態では、前記の活性種とは不活性であったり、或は
、それ程の活性々がない場合には、化合物(A)及び(
B)に該化合物(A)及び(B)が前記一般式(A)及
び(B)中のM及びAを完全解離しない程度の強さの励
起エネルギーを成膜前又は成膜時に与えて、化合物(A
)及びCB)を活性種と化学反応し得る励起状態にする
ことが必要であり、又、その様な励起状態にし得る化合
物を、本発明の方法に使用される化合物(A)及び(B
)の1種として採用するものである。
The above general formulas (A) and (B) used in the present invention
Compounds (A) and (B) represented by each of these compounds are formed on the substrate by causing a chemical reaction by molecular collision with the above-mentioned active species in the space where the substrate on which the film is to be formed exists. It is more desirable to select a chemical species that spontaneously generates chemical species that contribute to the formation of a deposited film; If the activity is not that great, compounds (A) and (
B) applying excitation energy strong enough to prevent the compounds (A) and (B) from completely dissociating M and A in the general formulas (A) and (B) before or during film formation, Compound (A
) and CB) are required to be brought into an excited state capable of chemically reacting with the active species, and the compounds capable of bringing them into such an excited state are the compounds (A) and (B) used in the method of the present invention.
) is adopted as one of the types.

尚、本発明においては、化合物が前記の励起状態になっ
ているものを以後「励起種」と呼称することにする。
In the present invention, a compound in the above-mentioned excited state will hereinafter be referred to as an "excited species".

本発明において、前記一般式(A)及び(B)で夫々示
される化合物(A)RnMm及び化合物(B)AaBb
として、有効に使用されるものとしては以下の化合物を
挙げることが出来る。
In the present invention, the compound (A) RnMm and the compound (B) AaBb respectively represented by the above general formulas (A) and (B)
The following compounds can be mentioned as those which can be effectively used.

即ちrlldJとして周期律表の第■族に属する元素、
具体的にはZn、Cd、Hgの第■族Bに属する元素r
AJとして周期律表の第■族に属する元素、具体的には
、0.S、Se、Teの第■族Bに属する元素を有する
化合物を夫々、化合物(A)及び(B)として挙げるこ
とが出来る。
That is, an element belonging to group Ⅰ of the periodic table as rlldJ,
Specifically, elements belonging to group B of Zn, Cd, and Hg r
AJ is an element belonging to Group Ⅰ of the periodic table, specifically, 0. Compounds containing elements belonging to Group ⅠB of S, Se, and Te can be cited as compounds (A) and (B), respectively.

rH4及びrf3J としては、直鎖状及び側鎖状の飽
和炭化水素や不飽和炭化水素から誘導される一価、二価
及び三価の炭化水素基、或いは、飽和又は不飽和の単環
状の及び多環状の炭化水素より誘導される一価、二価及
び三価の炭化水素基を挙げることが出来る。
rH4 and rf3J include monovalent, divalent and trivalent hydrocarbon groups derived from linear and side chain saturated hydrocarbons and unsaturated hydrocarbons, or saturated or unsaturated monocyclic and Mention may be made of monovalent, divalent and trivalent hydrocarbon groups derived from polycyclic hydrocarbons.

不飽和の炭化水素基としては、炭素・炭素の結合は単一
種の結合だけでなく、−重結合、二重結合、及び三重結
合の中の少なくとも2種の結合を有しているものも本発
明の目的の達成に違うものであれば有効に採用され得る
Unsaturated hydrocarbon groups include not only a single type of carbon-carbon bond but also those having at least two types of bonds among - double bonds, double bonds, and triple bonds. If it is different from achieving the purpose of the invention, it can be effectively adopted.

又、二重結合を複数布する不飽和炭化水素基の場合、非
集積二重結合であっても集積二重結合であっても差支え
ない。
Further, in the case of an unsaturated hydrocarbon group having a plurality of double bonds, it does not matter whether the double bonds are non-integrated double bonds or integrated double bonds.

非環状炭化水素基としてはアルキル基、アルケニル基、
アルキニル基、アルキリデン基、アルケニリデン基、ア
ルキニリデン基、アルキリジン基、アルケニリジン基、
アルキニリジン基等を好ましいものとして挙げることが
出来、殊に、炭素数としては、好ましくは1〜10、よ
り好ましくは炭素数1〜7、最適には炭素数1〜5のも
のが望ましい。
Examples of acyclic hydrocarbon groups include alkyl groups, alkenyl groups,
Alkynyl group, alkylidene group, alkenylidene group, alkynylidene group, alkylidine group, alkenylidine group,
Preferred examples include alkynylidine groups, and in particular, those having 1 to 10 carbon atoms, more preferably 1 to 7 carbon atoms, and most preferably 1 to 5 carbon atoms.

本発明においては、有効に使用される化合物(A)及び
(B)として、標準状態で気体状であるか或いは使用環
境下において容易に気化し得るものが選択される様に、
上記に列挙したrRJ と「M」及び「A」と「B」と
の選択において、適宜所望に従って、「R」と「M」及
びrAJとrBJ との組合せの選択がなされる。
In the present invention, the compounds (A) and (B) to be effectively used are selected from those that are gaseous under standard conditions or that can be easily vaporized under the usage environment.
In the selection of rRJ and "M" and "A" and "B" listed above, combinations of "R" and "M" and rAJ and rBJ are selected as desired.

本発明において、化合物(A)として、有効に使用され
る具体的なものとしては、Z n M e 3  、 
Cd M e 3  、 Z n E t 3  。
In the present invention, specific compounds that can be effectively used as compound (A) include Z n Me 3 ,
Cd M e 3 , Z n E t 3 .

CdEt3等を、化合物(B)として、有効に使用され
る具体的なものとしては、Me2O。
A specific example of CdEt3 etc. that can be effectively used as the compound (B) is Me2O.

Me2 S、Me2Se、Me2Te、Et20゜Et
2 S、Et2 Se、Et2 Te、X20゜SX2
 、SXa 、SX6.5eX2.5eXa 。
Me2S, Me2Se, Me2Te, Et20゜Et
2 S, Et2 Se, Et2 Te, X20°SX2
, SXa, SX6.5eX2.5eXa.

5eX6 、TeX6H20,H2S、H2Se。5eX6, TeX6H20, H2S, H2Se.

H2Te等を挙げることが出来る。Examples include H2Te.

上記において、Xはハロゲン(F、C1゜Br、I)、
Meはメチル基、Etはエチル基を示す。
In the above, X is halogen (F, C1°Br, I),
Me represents a methyl group, and Et represents an ethyl group.

本発明で使用される活性種の寿命は、化合物(A)又は
/及び(B)との反応性を考慮すれば短い方が良く、成
膜時の取扱い易さ及び成膜空間への輸送等を考慮すれば
長い方が良い、又、活性種の寿命は、成膜空間の内圧に
も依存する。
The lifetime of the active species used in the present invention is preferably shorter in consideration of reactivity with compound (A) and/or (B), ease of handling during film formation, transportation to the film formation space, etc. In consideration of this, the longer the better, and the lifetime of the active species also depends on the internal pressure of the film forming space.

従って使用される活性種は、所望する特性を有する機能
性膜が生産効率も加味して効果的に得られる様に選択さ
れて決定される他の成膜条件との関連性において、適当
な寿命を有する活性種が適宜選択されて使用される。
Therefore, the active species used should be selected and determined in such a way that a functional film with the desired properties can be effectively obtained, taking production efficiency into account. An active species having the following properties is appropriately selected and used.

本発明において使用される活性種は、その寿命として、
と記の点を鑑みて適宜選択された寿命を有する活性種が
具体的に使用される化合物(A)又は/及びCB)との
化学的親和性の適合範囲内の中より所望に徒って適宜選
択されるが、好ましくは、その寿命としては、本発明の
適合範囲の環境下においてlXl0−4秒以上、より好
ましくはI X l O−3秒以上、最適には1×1O
L2秒以上であるのが望ましい。
The active species used in the present invention has a lifetime of:
The active species with a lifespan appropriately selected in view of the above points is selected from within the compatible range of chemical affinity with the compound (A) or/and CB) to be specifically used. It is selected as appropriate, but preferably, its life is 1×10−4 seconds or more, more preferably I×10−3 seconds or more, and optimally 1×10−3 seconds or more in an environment within the scope of the present invention.
It is desirable that the time is L2 seconds or more.

本発明において使用される活性種は、化合物(A)又は
/及び(B)との化学反応が連鎖的に起こる場合には所
謂開始剤(1nitiater )としての働きを最小
限にすれば良いことから、成膜空間に導入される導入量
としては、化学反応が連鎖的に効率良く起こる程度の量
が確保されれば良い。
The active species used in the present invention can minimize its function as a so-called initiator when a chemical reaction with compound (A) or/and (B) occurs in a chain reaction. The amount introduced into the film forming space may be such that a chemical reaction can occur efficiently in a chain reaction.

本発明において使用される活性種は成膜空間(A)で堆
積膜を形成する際、同時に成膜空間(A)に導入され、
形成される堆積膜の主構成成分となる構成要素を含む前
記化合物(A)及び(B)又は/及び該化合物(A)G
の励起種(A)又は/及び化合物(B)の励起種(B)
と容易に形成される。
The active species used in the present invention are simultaneously introduced into the film forming space (A) when forming a deposited film in the film forming space (A),
The compound (A) and (B) or/and the compound (A)G containing a component that will be the main component of the deposited film to be formed
Excited species (A) or/and excited species (B) of compound (B)
is easily formed.

本発明によれば成膜空間(A)の雰囲気温度、基体温度
を所望に従って任意に制御する事により、より安定した
CVD法とする事ができる。
According to the present invention, a more stable CVD method can be achieved by arbitrarily controlling the ambient temperature and substrate temperature of the film forming space (A) as desired.

本発明の方法が従来のCVD法と違う点の1つは、あら
かじめ、成膜空間(A)とは異なる〔活性化空間(C)
〕において活性化された活性種を使うことである。この
事により、従来のCVD法より堆積速度を飛躍的に伸ば
す事ができ、加えて堆積膜形成の際の基体温度も一層の
低温化を図ることが可能になり、膜品質の安定した。管
理化された膜特性を有する堆積膜を工業的に大量に、し
かも低コストで提供出来る。
One of the differences between the method of the present invention and the conventional CVD method is that the activation space (C) is different from the film forming space (A).
] The method is to use active species activated in ]. As a result, the deposition rate can be dramatically increased compared to the conventional CVD method, and in addition, the substrate temperature during the formation of the deposited film can be further lowered, resulting in stable film quality. Deposited films with controlled film properties can be provided industrially in large quantities at low cost.

本発明において活性化空間(C)で生成される活性種は
放電、光、熱等のエネルギーで或いはそれ等の併用によ
って励起されて活性化されるばかりではなく、触媒など
との接触、あるいは添加により生成されてもよい。
In the present invention, the active species generated in the activation space (C) are not only excited and activated by energy such as electric discharge, light, heat, etc., or a combination thereof, but also by contact with a catalyst, etc., or by addition. It may be generated by

本発明において、活性化空間(C)に導入され、活性種
を生成させる原料としては、好ましくは気体状の又は容
易に気化し得る物質で、水素ラジカルを生成する物質を
挙げることが出来、具体的にはH2、D2 、HD等が
挙げられ、その他、He、Ar等の稀ガスも挙げること
が出来る。
In the present invention, the raw material introduced into the activation space (C) to generate active species is preferably a gaseous or easily vaporizable substance, and can include a substance that generates hydrogen radicals. Specific examples thereof include H2, D2, HD, and other rare gases such as He and Ar.

上述したものに、活性化空間(C)で熱、光。In addition to the above, heat and light are applied in the activation space (C).

放電などの活性化エネルギーを加えることにより、活性
種が生成される。この活性種を成膜空間(A)へ導入す
る。この際、活性種の寿命が望ましくはI X 10−
’抄上上であることが必要で、その様な寿命を有するこ
とで堆積効率及び堆積速度の上昇を促進させ、成膜空間
(A)に導入される化合物(A)との化学反応の効率を
増す。
Activated species are generated by applying activation energy such as electric discharge. This active species is introduced into the film forming space (A). At this time, the lifespan of the active species is preferably I x 10-
It is necessary to have such a long life to promote the increase in deposition efficiency and deposition rate, and to increase the efficiency of the chemical reaction with the compound (A) introduced into the film forming space (A). increase.

活性化空間(C)において活性種生成物質に活性化作用
を起す活性化エネルギーとしては、具体的には抵抗加熱
、赤外線加熱等による熱エネルギー、レーザー光、水銀
ランプ光、ハロゲンランプ光等の光エネルギー、マイク
ロ波、RF、低周波、DC等の放電を利用する電気エネ
ルギー等々を挙げることが出来、これ等の活性化エネル
ギーは活性化空間(C)において単独で活性種生成物質
に作用させても良く、又、2種以上を併用して作用させ
ても良い、成膜空間(A)に導入される化合物(A)、
化合物(B)及び活性種とじては、そのままでも分子レ
ベル的相互衝突によって化学反応を生起し、所望の気体
とに機能成膜を堆積させることが出来るものを前記に列
挙したものの中より夫々選択することが出来るが、化合
物(A)、化合物(B)及び活性種の夫々の選択の仕方
によって、前記の化学反応性に乏しい場合、或いは一層
効果的に化学反応を行わせて、効率良く堆積膜を気体上
に生成する場合には、成膜空間(A)において、化合物
(A)、化合物(B)又は/及び活性種に作用する反応
促進エネルギー、例えば前述の活性化空間(C)におい
て使用される活性化エネルギーを使用しても差支えない
ものである。又は成膜空間(A)に導入する前に化合物
(A)及び化合物(B)を他の活性化空間(B)におい
て、化合物(A)及び化合物(B)を前述した励起状態
にする為に励起エネルギーを作用させても良い。
Specifically, the activation energy that causes an activation effect on the active species generating substance in the activation space (C) includes thermal energy such as resistance heating and infrared heating, and light such as laser light, mercury lamp light, and halogen lamp light. Energy, microwave, RF, low frequency, electric energy using discharge such as DC, etc. can be mentioned, and these activation energies are applied alone to the active species generating substance in the activation space (C). A compound (A) introduced into the film-forming space (A), which may also be used in combination of two or more,
The compound (B) and the active species are selected from those listed above, which can cause a chemical reaction by mutual collision at the molecular level even as they are, and can deposit a functional film with the desired gas. However, depending on the selection of the compound (A), the compound (B), and the active species, the above chemical reactivity may be poor, or the chemical reaction may be carried out more effectively to achieve efficient deposition. When a film is formed on a gas, reaction promoting energy acting on the compound (A), the compound (B), or/and the active species in the film formation space (A), for example, in the activation space (C) described above, The activation energy used is acceptable. Or, before introducing the compound (A) and the compound (B) into the film forming space (A), in another activation space (B), in order to bring the compound (A) and the compound (B) into the above-mentioned excited state. Excitation energy may also be applied.

本発明において成膜空間(A)に導入される化合物(A
)と化合物(B)の総量と活性化空間(C)から導入さ
れる活性種の量の割合は、堆積に従って決められるが好
ましくは1000:1〜1:10(導入流量比)が適当
であり、より好ましくは500 : l〜1:5とされ
るのが望ましい。
In the present invention, the compound (A) introduced into the film forming space (A)
) and the total amount of compound (B) and the amount of active species introduced from the activation space (C) is determined according to the deposition, but preferably 1000:1 to 1:10 (introduction flow rate ratio) is appropriate. , more preferably 500:1 to 1:5.

活性種が化合物(A)又は/及び化合物(B)と連鎖的
化学反応を起さない場合には、上記の導入量の割合は、
好ましくはlo:1−1:10、より好ましくは4:l
〜2:3とされるのが望ましい、成膜時における成膜室
f!1 (A)の内圧としては、化合物(A)、化合物
(B)及び活性種の選択される種類及び堆積条件等に従
って適宜決定されるが、好ましくはlXl0−2〜5X
103Pa、より好ましくは5X10−2〜1X103
Pa、最適にはlXl0” 〜5X102Paとされる
のが望ましい、又、成膜時に基体を加熱する必要がある
場合には基体温度としては好ましくは、50〜1000
℃、より好ましくは100〜900℃、最適にはioo
〜750℃とされるのが望ましい。
If the active species does not cause a chain chemical reaction with compound (A) or/and compound (B), the above introduction amount ratio is
Preferably lo:1-1:10, more preferably 4:l
It is desirable that the ratio is ~2:3 in the film forming chamber f! 1 The internal pressure of (A) is appropriately determined according to the selected types of compound (A), compound (B) and active species, deposition conditions, etc., but is preferably 1X10-2 to 5X
103Pa, more preferably 5X10-2 to 1X103
Pa, preferably 1X10" to 5X102Pa, and if it is necessary to heat the substrate during film formation, the substrate temperature is preferably 50 to 1000
°C, more preferably 100-900 °C, optimally ioo
It is desirable that the temperature be 750°C.

成膜空間(A)に化合物(A)、化合物(B)及び活性
種を導入する際の導入の仕方は、成膜空間(A)に連結
されている輸送管を通じて導入しても良いし、或いは成
膜空間(A)に設置しである基体の成膜表面近くまで前
記の輸送管を延在させて、先端をノズル状となして導入
しても良とし、輸送管を二重にして内側の管で一方を、
外側の管で他方を、例えば内側の管で活性種を、外側の
管で化合物(A)及び化合物(B)を夫々輸送して成膜
空間(A)中に導入しても良い。
The compound (A), the compound (B), and the active species may be introduced into the film forming space (A) through a transport pipe connected to the film forming space (A); Alternatively, the transport pipe may be installed in the film forming space (A) and extended to near the film forming surface of the substrate, and the tip may be introduced with a nozzle shape, or the transport pipe may be doubled. one side with the inner tube,
The other may be transported into the film forming space (A) using the outer pipe, for example, the active species may be transported using the inner pipe, and the compound (A) and the compound (B) may be transported using the outer pipe.

又、輸送管に連結されている3木のノズルを用意し、該
3木のノズルの先端を成膜空間(A)に既に設置されて
いる基体の表面近傍に配して、基体の表面近くにおいて
夫々のノズルより吐出される化合物(A)と化合物(B
)と活性種とが混合される様にし、て導入しても良い。
In addition, three wooden nozzles connected to the transport pipe are prepared, and the tips of the three wooden nozzles are placed near the surface of the substrate already installed in the film forming space (A). Compound (A) and compound (B) discharged from respective nozzles in
) and the active species may be mixed and introduced.

この場合には、・性 基体上に選択的に機能成膜を形成することが可能なので
成膜と同時にパターン化が出来る為に好都合である。
In this case, it is possible to selectively form a functional film on the substrate, which is advantageous because patterning can be performed at the same time as film formation.

以下1本発明を実施例によって具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 第1図のガス導入管102より、H2ガス200SCC
Mを石英ガラス管によりできている活性化室103に導
入し、活性化源5としての活性化室103上におかれた
導波管より280Wのマイクロ波を活性化室103に作
用させ、活性化室103中にHラジカルを発生させた0
発生したHラジカルは石英ガラス管より出来ている輸送
管102−2を介して、ノズルl 00−3より成膜室
104に導入された。
Example 1 200 SCC of H2 gas was supplied from the gas introduction pipe 102 in Fig. 1.
M is introduced into an activation chamber 103 made of a quartz glass tube, and a 280 W microwave is applied to the activation chamber 103 from a waveguide placed above the activation chamber 103 as an activation source 5 to activate it. 0 that generated H radicals in the reaction chamber 103
The generated H radicals were introduced into the film forming chamber 104 from a nozzle l00-3 via a transport pipe 102-2 made of a quartz glass tube.

これと同時にガス導入管Lot−2を通じてHeガスに
よりバブリングされた(C2H5) 2Znがl O+
smol/winの割合でノズル100−2より成膜室
104に導入された。他方、ガス導入管tot−tを通
じてH2Sガスをl Ommol/win(7)割合で
ノズル100−10より成膜室104に導入された。こ
の場合(C2H5)2 Zn及びH2SはHラジカルの
作用によって活性化されてZn、Sを分解し、基体ヒー
ター109により約220℃に加熱されたAl2O3の
基体に、lO8に1,5時間で30cmX30cmの面
積に約2.2μmの膜厚のZnS膜が形成された。
At the same time, (C2H5) 2Zn was bubbled with He gas through gas introduction pipe Lot-2.
It was introduced into the film forming chamber 104 through the nozzle 100-2 at a ratio of smol/win. On the other hand, H2S gas was introduced into the film forming chamber 104 from the nozzle 100-10 at a ratio of 1 Ommol/win (7) through the gas introduction pipe tot-t. In this case, (C2H5)2 Zn and H2S are activated by the action of H radicals to decompose Zn and S, and are heated to about 220° C. by a substrate heater 109 on an Al2O3 substrate, and a 30 cm x 30 cm in 1.5 hours is added to lO8. A ZnS film with a thickness of about 2.2 μm was formed over an area of .

このZnS膜の膜特性を評価したところ、膜厚のfJF
がなく、又、半導体特性も場所による依存性が殆どない
良質な膜であることが確認された。
When the film characteristics of this ZnS film were evaluated, the film thickness fJF
It was confirmed that the film was of good quality and had no locational dependence in semiconductor properties.

実施例2 実施例1においテ(C2Hs ) 2 Z n +及び
H2Sの代りに第1表に示す原料ガスを化合物(、A 
)及び化合物(B)として夫々使用し、化合物(A)と
化合物(B)の導入量を夫々1■■ol看 /winとし、第1表に記載した条件以外は、実施例、
と略々同様にして成膜したところ第1表に示す薄膜が形
成された。
Example 2 In place of the smell of Example 1 (C2Hs)2Zn+ and H2S, the raw material gases shown in Table 1 were used as compounds (, A
) and Compound (B), the amounts of Compound (A) and Compound (B) introduced were each 1 ■■ ol view/win, and the conditions other than those listed in Table 1 were as follows:
When the film was formed in substantially the same manner as above, the thin film shown in Table 1 was formed.

これ等の薄膜に就いて膜特性の評価を行ったところ均−
IMI厚で、均一で良品質の特性に優れた膜であること
が確認された。
When we evaluated the film properties of these thin films, the average
It was confirmed that the film had an IMI thickness, was uniform, had good quality, and had excellent properties.

実施例3 実施例1において、成膜室104の周囲に設置されたR
F放電装置106で13.56MHzc7)高周波で3
Wの電力を成膜室104に投入して反応室104内にプ
ラズマ雰囲気を形成した。この場合、基体106はプラ
ズマ雰囲気には直接触れない様にプラズマ雰囲気の下流
側的lamの位置においた。成膜開始後1時間で約2.
51J、m厚のZnS膜が形成できた。この際の基体温
度は200℃に保った。上記以外は実施例1と同様にし
て行った・ このZnS膜を実施例1と同様に膜特性の評価を行った
ところ、良品質の膜であることが確認された。
Example 3 In Example 1, R installed around the film forming chamber 104
F discharge device 106 13.56MHzc7) high frequency 3
Power of W was applied to the film forming chamber 104 to form a plasma atmosphere within the reaction chamber 104. In this case, the base 106 was placed at a position lam on the downstream side of the plasma atmosphere so as not to directly touch the plasma atmosphere. Approximately 2.5 hours after starting film formation.
51J, a ZnS film with a thickness of m was formed. The substrate temperature at this time was maintained at 200°C. Except for the above, the process was carried out in the same manner as in Example 1. When the film characteristics of this ZnS film were evaluated in the same manner as in Example 1, it was confirmed that the film was of good quality.

又、基体からの剥離もなく機械的にも優れた膜であった
Furthermore, the film was mechanically excellent without peeling from the substrate.

〔発明の効果〕〔Effect of the invention〕

本発明の堆積膜形成法によれば、形成される膜に所望さ
れる電気的、光学的、光導電的及び機械的特性が向上し
、また、成膜における再現性が向上し、膜品質の向上と
膜質の均一化が可能になると共に、膜の大面積化に有利
であり、膜の生産性の向上並びに量産化を容易に達成す
ることができる。
According to the deposited film forming method of the present invention, the desired electrical, optical, photoconductive, and mechanical properties of the formed film are improved, the reproducibility in film formation is improved, and the film quality is improved. In addition to making it possible to improve the film quality and make the film uniform, it is also advantageous for increasing the area of the film, and it is possible to easily achieve improvement in film productivity and mass production.

更に、低温での成膜も可能であるために、耐熱性に乏し
い基体上にも成膜できる、低温処理によって工程の短縮
化を図れる活性種の導入量を制御して形成される堆積膜
の組成比及び特性を管理することが出来るといった効果
が発揮される。
Furthermore, since it is possible to form films at low temperatures, it is possible to form films even on substrates with poor heat resistance, and the process can be shortened by low-temperature processing. The effect is that the composition ratio and properties can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を具現化する製造装置の模式図であ
る。 t o 1−−−一導入管、 102−−−一輸送管、 103−−−一活性化室、 104−−−一成膜室。
FIG. 1 is a schematic diagram of a manufacturing apparatus that embodies the method of the present invention. t o 1----1 introduction pipe, 102----1 transport pipe, 103----1 activation chamber, 104----1 film formation chamber.

Claims (1)

【特許請求の範囲】  基体上に堆積膜を形成する為の成膜空間に、堆積膜形
成用の原料となる下記の一般式(A)及び(B)で夫々
表わされる化合物(A)と化合物(B)と、これ等該化
合物の少なくとも一方と化学反応する活性種とを導入す
ることによって、前記基体上に堆積膜を形成することを
特徴とする堆積膜形成法。 RnMm・・・・・・・・・・(A) AaBb・・・・・・・・・・(B) 但し、mはRの価数に等しいか又は整数倍の正整数、n
はMの価数に等しいか又は整数倍の正整数、Mは周期律
表の第II族に属する元素、Rは水素(H)、ハロゲン(
X)、炭化水素基を夫々示す。 aはBの価数に等しいか又は整数倍の正整数、nはAの
価数に等しいか又は整数倍の正整数、Xは周期律表の第
VI族に属する元素、Bは水素(H)、ハロゲン(X)、
炭化水素基を夫々示す。
[Claims] A compound (A) and a compound represented by the following general formulas (A) and (B), respectively, which are raw materials for forming a deposited film, are placed in a film forming space for forming a deposited film on a substrate. (B) and an active species that chemically reacts with at least one of these compounds to form a deposited film on the substrate. RnMm・・・・・・・・・(A) AaBb・・・・・・・・・(B) However, m is a positive integer equal to or an integral multiple of the valence of R, n
is a positive integer equal to or an integral multiple of the valence of M, M is an element belonging to Group II of the periodic table, R is hydrogen (H), halogen (
X) and each represent a hydrocarbon group. a is a positive integer equal to or an integral multiple of the valence of B, n is a positive integer equal to or an integral multiple of the valence of A, and X is a positive integer equal to or an integral multiple of the valence of A.
Elements belonging to group VI, B is hydrogen (H), halogen (X),
The hydrocarbon groups are shown respectively.
JP60029811A 1985-02-18 1985-02-18 Formation of deposited film Pending JPS61189649A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60029811A JPS61189649A (en) 1985-02-18 1985-02-18 Formation of deposited film
US07/113,414 US4772486A (en) 1985-02-18 1987-10-27 Process for forming a deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029811A JPS61189649A (en) 1985-02-18 1985-02-18 Formation of deposited film

Publications (1)

Publication Number Publication Date
JPS61189649A true JPS61189649A (en) 1986-08-23

Family

ID=12286401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029811A Pending JPS61189649A (en) 1985-02-18 1985-02-18 Formation of deposited film

Country Status (1)

Country Link
JP (1) JPS61189649A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300799A2 (en) 1987-07-21 1989-01-25 Canon Kabushiki Kaisha Photovoltaic element with a semiconductor layer comprising non-single crystal material containing at least Zn,Se and H in an amount of 1 to 4 atomic %
EP0301903A2 (en) 1987-07-31 1989-02-01 Canon Kabushiki Kaisha Functional ZnSe1-xTeX: H deposited film
EP0317350A2 (en) 1987-11-20 1989-05-24 Canon Kabushiki Kaisha A pin function photovoltaic element, tandem und triple cells
DE3936666A1 (en) * 1988-11-04 1990-05-23 Canon Kk LAYERED PHOTOVOLTAIC DEVICE WITH ANTI-REFLECTIVE LAYER
JPH02159020A (en) * 1988-12-13 1990-06-19 Fujitsu Ltd Manufacture of semiconductor device
US5028488A (en) * 1987-07-31 1991-07-02 Canon Kabushiki Kaisha Functional ZnSe1-x Tex :H deposited film
JPH04116172A (en) * 1990-08-31 1992-04-16 Energy Conversion Devices Inc Method of directly building up active species on distantly placed substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300799A2 (en) 1987-07-21 1989-01-25 Canon Kabushiki Kaisha Photovoltaic element with a semiconductor layer comprising non-single crystal material containing at least Zn,Se and H in an amount of 1 to 4 atomic %
EP0301903A2 (en) 1987-07-31 1989-02-01 Canon Kabushiki Kaisha Functional ZnSe1-xTeX: H deposited film
US5028488A (en) * 1987-07-31 1991-07-02 Canon Kabushiki Kaisha Functional ZnSe1-x Tex :H deposited film
EP0317350A2 (en) 1987-11-20 1989-05-24 Canon Kabushiki Kaisha A pin function photovoltaic element, tandem und triple cells
DE3936666A1 (en) * 1988-11-04 1990-05-23 Canon Kk LAYERED PHOTOVOLTAIC DEVICE WITH ANTI-REFLECTIVE LAYER
JPH02159020A (en) * 1988-12-13 1990-06-19 Fujitsu Ltd Manufacture of semiconductor device
JPH04116172A (en) * 1990-08-31 1992-04-16 Energy Conversion Devices Inc Method of directly building up active species on distantly placed substrate

Similar Documents

Publication Publication Date Title
CA1146909A (en) Method and apparatus for forming films from vapors using a contained plasma source
JPS6232157B2 (en)
JPH01198481A (en) Formation of deposited film by microwave plasma cvd
JPS5992905A (en) Manufacture of inorganic matter
US4772486A (en) Process for forming a deposited film
JPS61189649A (en) Formation of deposited film
JPS61189650A (en) Formation of deposited film
JPS61222121A (en) Functional deposit-film and method and apparatus for manufacturing said film
US5178904A (en) Process for forming deposited film from a group II through group VI metal hydrocarbon compound
JPS61189629A (en) Formation of deposited film
JPS61189630A (en) Formation of deposited film
JPH07221026A (en) Method for forming quality semiconductor thin film
JPS61189634A (en) Formation of deposited film
JPS61189635A (en) Formation of deposited film
JPS62186528A (en) Deposited film forming method
JPS62150709A (en) Functional deposition film and manufacture thereof
JPS61222113A (en) Forming method for deposit-film
JPH03104871A (en) Production of thin film by magnetic field microwave plasma cvd method
JPS57194521A (en) Manufacture of thin film semiconductor
JPS62145724A (en) Functional deposited film and manufacture of the same
JPS61188929A (en) Formation of deposited film
JPS6190418A (en) Formation of deposited film
JPH11228158A (en) Production of glass film by plasma exciting chemical vapor growth and device therefor
JPS62149119A (en) Functional deposit film and manufacture thereof
JPS62145728A (en) Functional deposited film and manufacture of the same