JPS61136591A - Conversion of heavy hydrocarbon oil into light oil - Google Patents

Conversion of heavy hydrocarbon oil into light oil

Info

Publication number
JPS61136591A
JPS61136591A JP25657484A JP25657484A JPS61136591A JP S61136591 A JPS61136591 A JP S61136591A JP 25657484 A JP25657484 A JP 25657484A JP 25657484 A JP25657484 A JP 25657484A JP S61136591 A JPS61136591 A JP S61136591A
Authority
JP
Japan
Prior art keywords
oil
hydrogen
heavy
heavy oil
donating solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25657484A
Other languages
Japanese (ja)
Inventor
Junichi Kubo
純一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP25657484A priority Critical patent/JPS61136591A/en
Publication of JPS61136591A publication Critical patent/JPS61136591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove heavy metal at a high removal rate and to convert a heavy oil feed stock into light oil at a reduced solvent ratio with reduced consumption of hydrogen, by mixing the heavy hydrocarbon oil feed stock with a specified amt. of a hydrogen-donating solvent followed by heavy oil cracking in the presence of a solid catalyst. CONSTITUTION:A heavy hydrocarbon oil contg. 1.0wt% or more asphaltene is converted into a light oil by cracking the heavy oil feed stock in the presence of 10-200wt%, based on the heavy hydrocarbon oil, hydrogen-donating solvent such as a hydrogenated hydrocarbon of b.p. of 150-500 deg.C and contg. 20wt% or more polycyclic aromatics, hydrogen gas and a solid catalyst such as a catalyst used for the treatment of other heavy oil, and removing at least 50wt% heavy metal contained in the heavy oil feed stock. It is pref. to keep a temp. of 380-470 deg.C and a hydrogen gas pressure of 20-150kg/cm<2>.g in the above reaction and to use said solid catalyst in the form of a fixed bed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重質油、殊にアスフアルテン分、すな〔従来の
技術及び発明が解決しようとする問題点〕従来、重質油
を水素化分解して軽質化し、高価値の製品に交換するこ
とは知られており、多数の方法が実施されあるいは提案
されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to hydrogenation of heavy oil, particularly asphaltenes, [problems to be solved by the prior art and the invention] It is known to disassemble, lighten, and replace it with high-value products, and a number of methods have been implemented or proposed.

ここで重質油とは沸点350℃以上の留分を50重重量
以上含む炭化水素油で例えば原油から得られる常圧蒸留
残油、減圧蒸留残油あるいは石炭、オイルサンド、オイ
ルシェール、ピテユーメン等から得られる油を意味する
。またここでいう軽費化とは、上記重質油を水素添加を
伴なった分解を行なわせてナフサ、ガソリン留分、灯軽
油留分等を含む軽質油を得ることを目的とするものであ
る。
Here, heavy oil is a hydrocarbon oil containing 50 weight or more of a fraction with a boiling point of 350°C or higher, such as atmospheric distillation residue obtained from crude oil, vacuum distillation residue, coal, oil sand, oil shale, pitumene, etc. means oil obtained from Furthermore, the term "lightweighting" mentioned here refers to the purpose of cracking the above-mentioned heavy oil with hydrogenation to obtain light oil containing naphtha, gasoline fraction, kerosene fraction, etc. be.

上記の重質油の水素化分解において重要な問題の一つは
、触媒の活性低下である。すなわち重質油中にはアスフ
アルテン分が含まれ、さらにこの中ニバナジウム、ニッ
ケル等の重金属が含まれ、これらによる触媒の被毒が著
しく、これが経済的な長期連続運転を妨げる要因となっ
ている。この問題を解決するために、触媒改良の努力が
続けられ、多くの優れた触媒が提唱されているが、未だ
満足すべき状態とは言い難い。
One of the important problems in the above-mentioned hydrocracking of heavy oil is a decrease in catalyst activity. In other words, heavy oil contains asphaltene, which also contains heavy metals such as vanadium and nickel, which significantly poison the catalyst, which is a factor that prevents economical long-term continuous operation. . In order to solve this problem, efforts have been made to improve catalysts, and many excellent catalysts have been proposed, but the situation is still far from satisfactory.

また水素処理における別の重要な問題は水素コストが高
いことである。重質油の水素化処理においては、原料油
が重質になればなるほど水素消費量が増大し、これに要
する費用は膨大なものとなる。
Another important problem in hydrogen processing is the high cost of hydrogen. In the hydroprocessing of heavy oil, the heavier the feedstock oil, the greater the amount of hydrogen consumed, and the cost required for this increases enormously.

この水素コストの問題を解決するための一つの方法とし
て多環芳香族化合物を水素化し九水素供与性を有する化
合物を用いる水素化方法が知られておシ(例えば米国特
許第4430197号)、かような水素供与化合物を用
いて重質油を水素化分解する場合には、必ずしも触媒は
必要とせず、また水素ガスも比較的低圧で分解反応が進
行することもよぐ知られている(例えばUS4,294
,686号および oil  & Gas  Jour
nal  Nov。
As one method to solve this problem of hydrogen cost, a hydrogenation method is known in which a polycyclic aromatic compound is hydrogenated and a compound having nine hydrogen donating properties is used (for example, U.S. Pat. No. 4,430,197), It is well known that when heavy oil is hydrocracked using a hydrogen donor compound such as the US4,294
, No. 686 and Oil & Gas Jour
nal Nov.

22.1982.1111〜116)。22.1982.1111-116).

ここに水素供与性溶剤(んydro(Hn  dono
r )とは例えばナフタリン、アントラセン等のような
多環芳香族環を有する炭化水素化合物に水素添加した化
合物であって、このような水素供与体は高温(例えば3
80℃以上)にすることによって水素を放出する性質を
有することはよく知られており、この性質を工業的に利
用しようという試みも多くなされている(例えば米国特
許第2953513号)。
Hydrogen-donating solvent (Hn dono)
r) is a compound obtained by hydrogenating a hydrocarbon compound having a polycyclic aromatic ring such as naphthalene, anthracene, etc., and such a hydrogen donor is heated at a high temperature (for example, 3
It is well known that carbon dioxide has the property of releasing hydrogen when heated to 80° C. or higher, and many attempts have been made to utilize this property industrially (for example, US Pat. No. 2,953,513).

また熱分解油、接触分解油および水素化分解油中にはこ
のような水素供与性を有する物質が含まれ、それ自体有
効な水素供与性溶剤として働くこともよく知られている
(例えばU、S、λ97o。
It is also well known that pyrolysis oil, catalytic cracking oil, and hydrocracked oil contain such hydrogen-donating substances, and that they themselves act as effective hydrogen-donating solvents (for example, U, S, λ97o.

545号)。また、特公昭59−35955号公報には
脱れき残渣の水素化処理方法が開示されているが、ここ
で用いているアルキルナフタレンを主成分とする溶媒は
重質油に水素を与えるいわゆる水素供与体として働くの
ではなく、単に重質油を溶解する溶媒として働いている
No. 545). In addition, Japanese Patent Publication No. 59-35955 discloses a method for hydrotreating deasphalting residue, but the solvent used here, whose main component is alkylnaphthalene, is a so-called hydrogen donor that gives hydrogen to heavy oil. Rather than acting as a body, it simply acts as a solvent to dissolve heavy oil.

本発明の目的は、高い除去率で原料油中に含まれる重金
属類を除去することができ、溶剤比及び水素消費量を低
減し、かつ運転条件を緩和し得る、アス7アルテン分L
O重量%以上を含有する重質油の、水素供与無性溶剤を
用いた水素化処理方法を提供するにある。
The purpose of the present invention is to remove heavy metals contained in feedstock oil with a high removal rate, reduce the solvent ratio and hydrogen consumption, and ease the operating conditions.
The present invention provides a method for hydrotreating heavy oil containing at least 0% by weight using a hydrogen-donating inert solvent.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的はアスフアルテン分を1.0重量%以
上含有する重質炭化水素油を水素化分解して軽質化する
方法において、原料重質油に対して10〜200重量%
の水素供与性溶剤、水素ガス及び固体触媒の存在下で分
解し、かつ重質炭化水嚢油中に含有される重金属類の5
0重量%以上除去することを特徴とする重質炭化水素油
の軽質化方法によって達成される。
The object of the present invention is to provide a method for lightening heavy hydrocarbon oil containing asphaltene content of 1.0% by weight or more based on raw material heavy oil by hydrocracking.
of the heavy metals contained in the heavy hydrocarbon water sac oil.
This is achieved by a method for lightening heavy hydrocarbon oil, which is characterized by removing 0% by weight or more.

上記本発明の方法の一つの特徴は、水素供与性溶剤を用
いた重質油の分解を、固体触媒の存在下に行う点にある
One feature of the method of the present invention is that the decomposition of heavy oil using a hydrogen-donating solvent is carried out in the presence of a solid catalyst.

従来の水素供与性溶剤を用いた分解においては、反応を
空塔において行なうのが一般的である。すなわち水素供
与性溶剤および原料油を高温の状態で充てん物等のない
塔または容器に導き、水素供与性溶剤が放出し九水素を
用いて分解させるものである。これに対し、本発明の方
法では固体触媒の存在下に水素供与性溶剤および水素を
用い、殊に気相の水素を有効に利用して重質油を水素化
分解することに゛よって溶剤比を減少せしめ、かつ触触
上に原料油中に含まれる金属を付着せしめることを特徴
とするものでめる。
In conventional decomposition using hydrogen-donating solvents, the reaction is generally carried out in an empty column. That is, a hydrogen-donating solvent and a raw material oil are introduced into a tower or a container without a packing in a high-temperature state, and the hydrogen-donating solvent is released and decomposed using nine hydrogen atoms. In contrast, the method of the present invention uses a hydrogen-donating solvent and hydrogen in the presence of a solid catalyst, and in particular effectively utilizes hydrogen in the gas phase to hydrocrack heavy oil. This product is characterized by reducing the amount of carbon dioxide and causing metals contained in the raw oil to adhere to the surface of the material.

一般に水素供与性溶剤を用いた分解は触媒を必要とせず
、無触媒で行なうのが普通である。しかし、本発明者ら
は実験によって次のような事実・を見出した。すなわち
、(1)わずかな触媒作用ならびに圧縮された水素の存
在によって水素供与性溶剤の量が大巾に軽減できる。(
2]上記水素供与性溶剤の使用量の軽減は活性の高い触
媒を少量存在せしめることによっても可能通、また活性
の低い触媒例えばすでに使用された触媒等によっても可
能である。(3)上記固体触媒の存在下において水素供
与性溶剤を用いて重質油の分解を行なった場合、恭 原料中に含まれる重金属の大部分は触媒によって除去さ
れる。さらに詳細に説明するならば(1)については、
触媒の存在下、水素供与性溶剤が圧縮された水素ガスに
よシ再生され、系内により多くの水素供与性を有する状
態の溶剤が存在することになり、結果として溶剤比を減
少してもすぐれた効果を発揮することになる。(2)に
ついては、例えばすでに数千時間以上使用した重質油の
直接脱硫触媒、脱金属触媒または分解触媒等はすでに活
性の大部分を失なっているが、このような触媒でも溶剤
比の低減に対して有効である。(3)については、水素
供与性溶剤を用いて分解率50%以上の分解を行なった
場合、原料中に含まれるバナジウム、ニッケル等の金属
は非常に除去され易い状態になっており、触媒等の多孔
性物質の存在によシ、容易に除去される。
Generally, decomposition using a hydrogen-donating solvent does not require a catalyst and is usually carried out without a catalyst. However, the present inventors discovered the following facts through experiments. That is, (1) the amount of hydrogen-donating solvent can be greatly reduced by a slight catalytic action and the presence of compressed hydrogen. (
2] The amount of the hydrogen-donating solvent used can be reduced by allowing a small amount of a highly active catalyst to be present, or by using a less active catalyst, such as a catalyst that has already been used. (3) When heavy oil is decomposed using a hydrogen-donating solvent in the presence of the solid catalyst, most of the heavy metals contained in the raw material are removed by the catalyst. To explain in more detail, regarding (1),
In the presence of a catalyst, the hydrogen-donating solvent is regenerated by compressed hydrogen gas, and as a result, even if the solvent ratio is reduced, there will be more hydrogen-donating solvent in the system. It will have excellent effects. Regarding (2), for example, direct desulfurization catalysts, demetallization catalysts, or cracking catalysts for heavy oil that have been used for several thousand hours or more have already lost most of their activity, but even such catalysts have a low solvent ratio. Effective for reducing Regarding (3), when decomposition is performed with a decomposition rate of 50% or more using a hydrogen-donating solvent, metals such as vanadium and nickel contained in the raw materials are in a state where they are very easily removed, and the catalyst etc. Due to the presence of porous material, it is easily removed.

本発明において用いられる水素供与性溶剤の好適例の一
つは多環の芳香族炭化水素の水素化物である。該多環の
芳香族炭化水素の例としては2〜6環、好ましくは2〜
4環の芳香族炭化水素又はこれらの誘導体dE6けられ
る。該芳香族炭化水素は1種又は2種以上を併用できる
。該芳香族炭化水JEの具体例としてはナフタレン、ア
ントラセン、7エナントレン、ピレン、ナフタセン、ク
リセン、ベンゾピレン、ペリレン、ビセン等又はこれら
の誘導体があげられる。
One of the preferred examples of the hydrogen-donating solvent used in the present invention is a hydride of polycyclic aromatic hydrocarbon. Examples of the polycyclic aromatic hydrocarbon include 2 to 6 rings, preferably 2 to 6 rings.
4-ring aromatic hydrocarbons or their derivatives dE6. These aromatic hydrocarbons can be used alone or in combination of two or more. Specific examples of the aromatic hydrocarbon JE include naphthalene, anthracene, 7-enanthrene, pyrene, naphthacene, chrysene, benzopyrene, perylene, bicene, etc., or derivatives thereof.

また、沸点が150℃〜500℃で、前記の多環の芳香
族炭化水素含有量が20wt%以上の炭化水素油の水素
化物も本発明の水素供与性溶剤として用いるに適する。
Hydrogenated hydrocarbon oils having a boiling point of 150° C. to 500° C. and having a polycyclic aromatic hydrocarbon content of 20 wt % or more are also suitable for use as the hydrogen-donating solvent of the present invention.

該炭化水素油の具体例としては接触分解装置(FCC)
のサイクル油、接触改質装置の塔底油、ナフサの熱分解
油等の石油から得られる各種の製品またはタール油、ア
ントラセン油、タレオノート油、石炭液化油等の石炭か
ら得られる各種製品等があげられる。
A specific example of the hydrocarbon oil is a catalytic cracker (FCC)
Various products obtained from petroleum such as cycle oil, bottom oil of catalytic reforming equipment, pyrolysis oil of naphtha, etc., and various products obtained from coal such as tar oil, anthracene oil, taleonaute oil, coal liquefied oil, etc. can give.

本発明においてはナフタレン、アントラセン等を主成分
とするFCCサイクル油、ナフサの熱分解油のなかから
選ばれるものが好ましく用いられる。
In the present invention, an oil selected from FCC cycle oil and naphtha pyrolysis oil containing naphthalene, anthracene, etc. as main components is preferably used.

本発明において前記の多環の芳香族炭化水素およぴ炭化
水素油は前以って水素化して本装置に張込んでもよいが
、本装置に水素ガスが共存するので本装置内で水素化さ
れて水素供与性溶剤となるから必ずしも前以て水素化し
なくてもよい。
In the present invention, the above-mentioned polycyclic aromatic hydrocarbons and hydrocarbon oils may be hydrogenated in advance and charged into this apparatus, but since hydrogen gas coexists in this apparatus, hydrogenation may be carried out within this apparatus. Since it becomes a hydrogen-donating solvent, it is not necessarily necessary to hydrogenate it in advance.

本発明の方法に使用する原料油はアスクアルテン分(ベ
ンタン不溶分)をi、 o%以上、好ましくは5〜30
%含み、沸点350℃以上の留分が50%以上を占める
重質油で、例えば原油から得られる常圧残渣油および減
圧残渣油あるいは石炭、オイルサンド、オイルシェール
、ピヂューメン等から得られる油等である。
The raw material oil used in the method of the present invention has an asqualtene content (bentane insoluble content) of i,o% or more, preferably 5 to 30%.
%, and the fraction with a boiling point of 350°C or higher accounts for 50% or more, such as atmospheric residual oil and vacuum residual oil obtained from crude oil, or oil obtained from coal, oil sand, oil shale, pidgemen, etc. It is.

本発明の反応塔に使用する固体触媒は重質油の分解に寄
与するだけでなく、分解によって除去され易くなった金
属を捕集、付着することが目的であり、固体触媒の性質
としては金属付着能力が大きいことが好ましい。
The purpose of the solid catalyst used in the reaction tower of the present invention is not only to contribute to the decomposition of heavy oil, but also to collect and attach metals that are easily removed by decomposition. It is preferable that the adhesion capacity is high.

固体触媒は特に制約はなく、他の重質油処理プロセス、
例えば重質油の水素化分解、水素化脱金属、水素化脱硫
等に使用した使用済触媒を使用することができる。また
、これら新触媒を少量混合することもできるし、あるい
は比較的活性の低い触媒を上記使用触媒の代りに使用す
ることもできる。
There are no particular restrictions on the solid catalyst, and it can be used in other heavy oil processing processes,
For example, a used catalyst used for hydrocracking, hydrodemetalization, hydrodesulfurization, etc. of heavy oil can be used. Further, a small amount of these new catalysts can be mixed, or a catalyst with relatively low activity can be used in place of the catalyst used above.

固体触媒としてはアルミナ、シリカ、シリカ−アルミナ
、アルミナ−ボリア、シリカ−アルミナ−マグネシア、
シリカ−アルミナ−チタニア等の無機多孔質物質にニッ
ケル、コバルト等の第■族議及びモリブデン、タングス
テン等の第ViB族の金属酸化物又は硫化物を担持した
触媒が例示できる。触媒の性状、形状は従来用いられて
いるうちは一般に、原料重質油、水素供与性溶剤および
水素ガスを加熱器で加熱したのち固体触媒の存在する反
応塔に張込んで反応させることによシ行われる。反応は
温度が380〜470°C1水素ガス圧’%d:20〜
150kp/ffl・y、原料重質油の張込量(LII
SV)(んr−1)が0.1〜λ01水素ガスの供給量
(Wゴ/kl原料油)が200〜1500、水素供与性
溶剤の供給量が原料重質油に対して10〜200重量%
、好ましくは10〜100重量%の範囲で行うことが好
ましい。
Solid catalysts include alumina, silica, silica-alumina, alumina-boria, silica-alumina-magnesia,
Examples include catalysts in which Group I metals such as nickel and cobalt and Group ViB metal oxides or sulfides such as molybdenum and tungsten are supported on an inorganic porous material such as silica-alumina-titania. Conventionally, the properties and shape of the catalyst are generally determined by heating the raw material heavy oil, hydrogen-donating solvent, and hydrogen gas in a heater, and then charging the mixture into a reaction tower containing a solid catalyst for reaction. will be carried out. The reaction temperature is 380-470°C1 hydrogen gas pressure'%d:20-
150 kp/ffl・y, loading amount of raw material heavy oil (LII
SV) (nr-1) is 0.1 to λ01, hydrogen gas supply amount (Wgo/kl raw material oil) is 200 to 1500, and hydrogen donating solvent supply amount is 10 to 200 to raw material heavy oil. weight%
, preferably in the range of 10 to 100% by weight.

上記の反応において、原料重質油に含まれ5バナジウム
、ニッケル等の金属は除去され触媒上に付着する。水素
供与性溶剤は塔内において水素を放出するが、圧縮され
た水素ガスならびに触媒作用の存在により、気相の水素
ガスと反応して再生される。反応塔型式は固定床、移動
床および流動床のいずれを用いてもよいが、特に固定床
を用いることが好ましい。
In the above reaction, metals such as vanadium and nickel contained in the raw material heavy oil are removed and deposited on the catalyst. The hydrogen-donating solvent releases hydrogen in the column, but due to the presence of compressed hydrogen gas and a catalyst, it is regenerated by reacting with gaseous hydrogen gas. As for the type of reaction column, any of fixed bed, moving bed and fluidized bed may be used, but it is particularly preferable to use fixed bed.

次に、反応塔からの反応生成物は気・液分離装置で気液
を分離し、液は蒸留等の分離操作によってガソリンナフ
サ留分、灯油留分、軽油留分、重油留分等の所望の留分
に分留し製品を回収する。
Next, the reaction product from the reaction tower is separated into gas and liquid by a gas/liquid separator, and the liquid is separated into desired products such as gasoline naphtha fraction, kerosene fraction, light oil fraction, heavy oil fraction, etc. through separation operations such as distillation. The product is recovered by fractional distillation.

〔実施例〕〔Example〕

実施例 本発明の方法により、ヘビイ・アラビアン減圧麓残油の
軽質化を目的に実験を行なった。反応塔には、すでに工
業的に約7.000時間使用された常圧残油の直接脱硫
触媒を下向流固定床として用いた。反応装置としては内
径40龍φ、長さ1.300mの反応塔を用い、上記触
媒を充てん長さ1,000wになるよう充てんした。第
1表に示す原料油、水素供与性溶剤および水素ガスを加
熱器で加熱したのち、下向流で反応塔へ張込んだ。
EXAMPLE An experiment was conducted for the purpose of lightening heavy Arabian vacuum residue oil using the method of the present invention. In the reaction column, a direct desulfurization catalyst for atmospheric residual oil, which had already been used industrially for about 7,000 hours, was used as a downward flow fixed bed. As the reactor, a reaction tower with an inner diameter of 40 mm and a length of 1.300 m was used, and the above catalyst was filled to a length of 1,000 W. The raw material oil, hydrogen-donating solvent, and hydrogen gas shown in Table 1 were heated with a heater and then charged into the reaction tower in a downward flow.

水素供与性溶剤としてテトラリンを原料油に対し50w
t%の割合で加えた。反応塔からの反応生成物は気液分
離装置で気液を分離し、液は蒸留装置でテトラリンおよ
びナフタリンを分離したのち製品とした。運転時間は連
続1.500時間行なった。
Tetralin was added as a hydrogen-donating solvent to the raw oil at 50w.
It was added at a rate of t%. The reaction product from the reaction tower was separated into gas and liquid in a gas-liquid separator, and the liquid was used as a product after separating tetralin and naphthalene in a distillation device. The operation time was 1,500 hours continuously.

原料油の性状および製品の性状を第1表にヤして、運転
条件を第2表に示した。また分解率の時間的変化を第1
図に示した。ここで分解率は次のとおり定義した。
The properties of the raw material oil and the properties of the product are shown in Table 1, and the operating conditions are shown in Table 2. In addition, the temporal change in the decomposition rate is
Shown in the figure. Here, the decomposition rate was defined as follows.

α:原料油中の565℃以上 α−b      の留分の割合(wt%)α    
 b:製品中の565℃以上の留分の割合(wt%) なお、反応塔での脱金属率を第4表に示した。
α: Proportion of fraction (wt%) of α-b above 565°C in raw oil α
b: Proportion of fraction of 565° C. or higher in the product (wt%) Table 4 shows the metal removal rate in the reaction tower.

比較例 1 従来の固定床方式反応装置により、実施例と同一原料を
同一装置を用いて水素化分解した。ただし反応塔にはシ
リカ−アルミナ担体(細孔容積0.53CC/、9、表
面積200 rrl/11.平均細孔半径6 oi)に
コバルト(18wt%)、モリブデン(1t、owt%
)を担持した71インチ押出し成型触媒を予備晟化した
のち使用した。系内への水素供与性溶剤の添加は行なわ
ず、水素および触した。運転条件は第2表に、製品性状
および物質収支をそれぞれ第1表およびwE3表に示し
た。また分解率の時間的変化を第1図に示した。
Comparative Example 1 The same raw material as in the example was hydrocracked using a conventional fixed bed reactor. However, in the reaction tower, cobalt (18wt%) and molybdenum (1t, owt%
) was used after pre-wetting. No hydrogen-donating solvent was added to the system, and the system was exposed to hydrogen. The operating conditions are shown in Table 2, and the product properties and material balance are shown in Table 1 and Table wE3, respectively. Figure 1 also shows the change in decomposition rate over time.

なお、原料油および水素ガスの反応塔への張込みは実施
例と同じく下向流とした。また反応塔出口での分解率お
よび脱金属率を第4表に示した。
Note that feed oil and hydrogen gas were charged into the reaction tower in a downward flow as in the example. Table 4 also shows the decomposition rate and metal removal rate at the outlet of the reaction tower.

比較例 2 実施例と同一原料を同一装置を用いて実験を行なつ九。Comparative example 2 The experiment was conducted using the same raw materials and the same equipment as in Example 9.

ただし反応塔での触媒作用の効果をみるために、反応塔
には金属を担持していない触媒担体を充てんした。その
他の条件は実施例と同じであるが、水素供与性溶剤の添
加量は第2表に示すとおシ実施例と異なっている。製品
性状および物質収支をそれぞれ第1表および第3表に、
また分〔発明の効果〕 実施例および比較例の結果から本発明は以下のような効
果を有することが明らかである。
However, in order to examine the effect of the catalytic action in the reaction tower, the reaction tower was filled with a catalyst carrier that did not support any metal. Other conditions were the same as in the examples, but the amount of hydrogen-donating solvent added was different from the examples as shown in Table 2. Product properties and material balance are shown in Tables 1 and 3, respectively.
[Effects of the Invention] From the results of Examples and Comparative Examples, it is clear that the present invention has the following effects.

(1)  分解率が高い。(1) High decomposition rate.

第3図および第4表から明らかなとおり、実施例の分解
率は比較例1に比較して高い。これは水素供与性溶剤に
よる分解が効果的に行なわれていることを示している。
As is clear from FIG. 3 and Table 4, the decomposition rate of the example is higher than that of comparative example 1. This indicates that the decomposition by the hydrogen-donating solvent is effectively carried out.

(2)運転条件が緩和される。(2) Operating conditions are relaxed.

本発明の方法においては、水素供与性溶剤を固体触媒の
作用により再生しながら分解を行なうために分解が効果
的に行なわれる。したがって反応温度の低下、通油量の
増大等が可能となる。反応第3表に示すとおり、実施例
の化学的水素消費量は比較例1および比較例2にくらべ
て小さい。
In the method of the present invention, decomposition is carried out effectively because the hydrogen-donating solvent is decomposed while being regenerated by the action of the solid catalyst. Therefore, it becomes possible to lower the reaction temperature, increase the amount of oil flow, etc. As shown in Reaction Table 3, the chemical hydrogen consumption of Examples is smaller than that of Comparative Examples 1 and 2.

この理由は反応塔において原料重質油への水素の移動が
液相で行なわれるため効率的に行なわれることによるも
のと考えられ、分解率が高いにもかかわらず水素の消費
が少ない。比較例2と比較しても水素消費量が小さいの
は実施例においては触媒の存在により、水素供与性溶剤
の再生が行なわれ水素が効率的に使用されることによる
ものと考えられる。
The reason for this is thought to be that hydrogen is efficiently transferred to the feedstock heavy oil in the reaction tower in the liquid phase, and hydrogen consumption is low despite the high decomposition rate. The reason why the amount of hydrogen consumed is small even when compared with Comparative Example 2 is considered to be because in the example, the hydrogen-donating solvent is regenerated due to the presence of the catalyst, and hydrogen is used efficiently.

反応塔での全水素消費を従来の方法と比較すると同一分
解率ペースで80%以下となる14)  溶剤比が低減
できる 第2表に示すとおり、比較例2と比較して実施例におい
ては溶剤の添加量が少ない。それにもかかわらず分解率
が高く、脱金属率が大きいのは、触媒の存在により水素
供与性溶剤が気相の水素を得て再生されるために、添加
量が小さくても系内に水素供与性を有する溶剤が多く存
在する状態になっているためと考えられる。
Comparing the total hydrogen consumption in the reaction tower with the conventional method, it is less than 80% at the same decomposition rate14) As shown in Table 2, the solvent ratio can be reduced, compared to Comparative Example 2, the Addition amount is small. Despite this, the decomposition rate is high and the metal removal rate is high because the hydrogen-donating solvent obtains gas phase hydrogen due to the presence of the catalyst and is regenerated, so even if the amount added is small, hydrogen is donated to the system. This is thought to be due to the presence of a large amount of solvent that has properties.

水素基供与性溶剤を用いた軽質化において、経済的に最
も重要なのは溶剤補給量ならびに溶剤循環量である。し
たがって溶剤比の低減は、経済的に従来の方法を著しく
改良するものである。
In lightening using a hydrogen group-donating solvent, the most important factors economically are the amount of solvent replenishment and the amount of solvent circulation. The reduction in solvent ratio is therefore a significant economic improvement over conventional methods.

(5)原料油中の金属が除去される 従来の方法においては、水素供与性溶剤を用いた分解は
空塔において行なうのが一般的であるが本発明の方法で
は反応塔に触媒作用を有する多孔質物質を存在せしめる
ので、これによって原料中−)の金属が除去される。
(5) In conventional methods for removing metals from feedstock oil, decomposition using a hydrogen-donating solvent is generally carried out in an empty column, but in the method of the present invention, the reaction column has a catalytic effect. Since a porous material is present, the metal in the raw material is removed.

豹変化を示すグラフである。It is a graph showing leopard change.

Claims (7)

【特許請求の範囲】[Claims] (1)アスフアルテン分を1.0wt%以上含有する重
質炭化水素油を軽質化する方法において、原料重質油に
対して10〜200重量%の水素供与性溶剤、水素ガス
及び固体触媒の存在下で原料重質油を分解し、かつ原料
重質油中に含有される重金属類の50重量%以上を除去
することを特徴とする重質炭化水素油の軽質化方法。
(1) In a method for lightening heavy hydrocarbon oil containing asphaltene content of 1.0 wt% or more, the presence of a hydrogen-donating solvent, hydrogen gas, and solid catalyst in an amount of 10 to 200 wt% based on the raw material heavy oil. A method for lightening heavy hydrocarbon oil, comprising: decomposing raw material heavy oil and removing 50% by weight or more of heavy metals contained in the raw material heavy oil.
(2)前記反応を380℃〜470℃の温度、20〜1
50kg/cm^2・gの水素ガス圧力に保つて行う特
許請求の範囲第1項記載の方法。
(2) The reaction was carried out at a temperature of 380°C to 470°C, 20 to 1
The method according to claim 1, wherein the method is carried out while maintaining the hydrogen gas pressure at 50 kg/cm^2.g.
(3)前記固体触媒には他の重質油処理プロセスに使用
した触媒を用いる特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the solid catalyst is a catalyst used in another heavy oil treatment process.
(4)前記固体触媒は固定床、の形態で使用される特許
請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the solid catalyst is used in the form of a fixed bed.
(5)前記水素供与性溶剤が多環の芳香族炭化水素の水
素化物である特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the hydrogen-donating solvent is a hydride of a polycyclic aromatic hydrocarbon.
(6)前記水素供与性溶剤が沸点150℃〜500℃で
多環の芳香族含有量20重量%以上の炭化水素油の水素
化物である特許請求の範囲第1項記載の方法。
(6) The method according to claim 1, wherein the hydrogen-donating solvent is a hydrogenated hydrocarbon oil having a boiling point of 150°C to 500°C and a polycyclic aromatic content of 20% by weight or more.
(7)水素供与性溶剤は原料重質油に対して10〜10
0重量%添加する特許請求の範囲第1項記載の方法。
(7) The hydrogen donating solvent is 10 to 10% of the raw material heavy oil.
The method according to claim 1, wherein 0% by weight is added.
JP25657484A 1984-12-06 1984-12-06 Conversion of heavy hydrocarbon oil into light oil Pending JPS61136591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25657484A JPS61136591A (en) 1984-12-06 1984-12-06 Conversion of heavy hydrocarbon oil into light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25657484A JPS61136591A (en) 1984-12-06 1984-12-06 Conversion of heavy hydrocarbon oil into light oil

Publications (1)

Publication Number Publication Date
JPS61136591A true JPS61136591A (en) 1986-06-24

Family

ID=17294527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25657484A Pending JPS61136591A (en) 1984-12-06 1984-12-06 Conversion of heavy hydrocarbon oil into light oil

Country Status (1)

Country Link
JP (1) JPS61136591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243196A (en) * 1987-03-30 1988-10-11 Nippon Oil Co Ltd Conversion f heavy oil to light oil
JPH04120192A (en) * 1990-09-11 1992-04-21 Agency Of Ind Science & Technol Lighting of heavy oil fraction
JP2003049174A (en) * 2001-08-08 2003-02-21 Idemitsu Kosan Co Ltd Method of cracking of heavy oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243196A (en) * 1987-03-30 1988-10-11 Nippon Oil Co Ltd Conversion f heavy oil to light oil
JPH04120192A (en) * 1990-09-11 1992-04-21 Agency Of Ind Science & Technol Lighting of heavy oil fraction
JP2003049174A (en) * 2001-08-08 2003-02-21 Idemitsu Kosan Co Ltd Method of cracking of heavy oil

Similar Documents

Publication Publication Date Title
US5925238A (en) Catalytic multi-stage hydrodesulfurization of metals-containing petroleum residua with cascading of rejuvenated catalyst
US4285804A (en) Process for hydrotreating heavy hydrocarbons in liquid phase in the presence of a dispersed catalyst
US4067799A (en) Hydroconversion process
US4530754A (en) Process for the conversion of heavy hydrocarbon oils into light hydrocarbon oils
US6436279B1 (en) Simplified ebullated-bed process with enhanced reactor kinetics
US5209840A (en) Separation of active catalyst particles from spent catalyst particles by air elutriation
EP0272038B1 (en) Method for hydrocracking heavy fraction oils
AU600421B2 (en) Method for hydrocracking heavy fraction oil
GB1602640A (en) Process for hydrotreating heavy hydrocarbon oil
JPS5850636B2 (en) Desulfurization treatment method for heavy hydrocarbon oil
WO2013166361A1 (en) Integrated ebullated-bed process for whole crude oil upgrading
JPS5898387A (en) Preparation of gaseous olefin and monocyclic aromatic hydrocarbon
US4640765A (en) Method for cracking heavy hydrocarbon oils
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
US4022683A (en) Hydrodenitrogenation of shale oil using two catalysts in parallel reactors
CN108473885A (en) Classification introduces additive in slurry hydrocracking method
US4163707A (en) Asphalt conversion
JPS61136591A (en) Conversion of heavy hydrocarbon oil into light oil
JPS61130394A (en) Method for converting heavy oil into light oil
JP4245218B2 (en) Method for hydrodesulfurization of heavy oil
JPS6162591A (en) Method of converting heavy oil to light oil
CN112745946B (en) Method and system for processing heavy raw oil
WO2023076013A1 (en) Clean liquid fuels hydrogen carrier processes
JPS61235492A (en) Method of converting heavy oil to more volatile oil
JPH05230474A (en) Treatment of heavy hydrocarbon oil