JPH05230474A - Treatment of heavy hydrocarbon oil - Google Patents

Treatment of heavy hydrocarbon oil

Info

Publication number
JPH05230474A
JPH05230474A JP3487392A JP3487392A JPH05230474A JP H05230474 A JPH05230474 A JP H05230474A JP 3487392 A JP3487392 A JP 3487392A JP 3487392 A JP3487392 A JP 3487392A JP H05230474 A JPH05230474 A JP H05230474A
Authority
JP
Japan
Prior art keywords
oil
reduced pressure
treatment
weight
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3487392A
Other languages
Japanese (ja)
Inventor
Kenichi Ii
憲一 伊井
Takanori Ono
高範 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP3487392A priority Critical patent/JPH05230474A/en
Priority to TW081107984A priority patent/TW231309B/zh
Publication of JPH05230474A publication Critical patent/JPH05230474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide the title process whereby a naphtha fraction and a kerosene and gas oil fraction can be obtained from a heavy hydrocarbon oil in high yields at good efficiency. CONSTITUTION:The title process comprises subjecting a heavy hydrocarbon oil successively to hydrotreatment including hydrodemetallization, hydrocracking, hydrodesulfurization and hydrodenitrification, subjecting the hydrotreated oil to atmospheric and vacuum distillation to separate a vacuum gas oil I and a vacuum residual oil I, subjecting the vacuum residual oil I to thermal hydrocracking in a suspended bed, subjecting the thermally hydrocracked oil to atmospheric and vacuum distillation to separate a vacuum gas oil II and a vacuum residual oil II, and recycling the obtained vacuum gas oil II or both the vacuum gas oil II and at least part of the vacuum residual oil II together with the above vacuum gas oil I to the above heavy hydrocarbon oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重質炭化水素油の処理方
法に関し、詳しくは重質炭化水素油を、水素化処理およ
び懸濁床での熱水素化分解処理とを組み合わせ、さらに
工夫を加えて処理することによって、付加価値の高い輸
送用燃料を効率的に得ることができる重質炭化水素油の
処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a heavy hydrocarbon oil, and more specifically, combining a heavy hydrocarbon oil with a hydrotreatment and a thermal hydrocracking treatment in a suspension bed to further improve the method. The present invention relates to a method for treating heavy hydrocarbon oil, which is capable of efficiently obtaining a transportation fuel with high added value by additionally treating it.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】石油の
用途としては、燃料用(特に加熱用,輸送用)および石
油化学原料用がある。今後、加熱用の需要は他のエネル
ギー源によって代替されることが予想されるが、輸送用
燃料油であるガソリン,軽油,ジェット燃料油の需要に
は、かなりの伸びが予想される。また、近時、原油価格
の高騰や原油の重質化により、重質炭化水素油からなる
残渣油を分解処理して、輸送用燃料を効率よく生産する
ことができる技術に対するニーズが大きくなると考えら
れている。特に、季節や場所によって製品構成を変える
ことができる生産のフレキシビリティーは、需要の変化
に対応するために重要である。これに対しては、既に各
種のプロセスが提案されている。例えば、先ず、常圧残
渣油を直接脱硫処理工程(RH)と残油流動床接触分解
処理工程(R−FCC)とを組合わせて処理する方法が
提案されている。しかるに、この方法では、RHでの分
解が少ないために、処理能力の大きいR−FCCが必要
になるという欠点を有する。また、価値の低い接触分解
軽油、すなわちセタン指数が低く、直接輸送用軽油(例
えばジーゼルエンジン用燃料)とはならない接触分解軽
油が多く生産される欠点を有する。また、常圧残渣油を
減圧蒸留して分別した後、得られる減圧軽油を、減圧蒸
留残渣油を水素化処理して減圧軽油とともに、水素化脱
硫処理し、この処理油をR−FCC処理する方法も提案
されている。この方法は、比較的重質の原料油を処理す
ることができるが、主たる生成物がFCCガソリンとな
り、同時に、価値の低い接触分解軽油,接触分解残油が
併産される欠点がある。そして、FCCガソリン以外に
は品質の高い軽油留分を生産することができない欠点が
ある。さらに、上記と同様の減圧蒸留残渣油を固定床で
脱硫処理した後、R−FCC処理する方法も提案されて
いる。この方法では、固定床での脱硫処理を長期間運転
することに問題を有するとともに、減圧蒸留残渣油を原
料とした分解生成油であるため、R−FCC処理での反
応性が著しく低下することが懸念される。さらに、FC
Cガソリン以外には、品質の低い接触分解軽油,接触分
解残油が多量に併産される欠点がある。この他、特公昭
59−31559号公報,特公昭61−8120号公
報,特公平1−15559号公報,特公平1−3843
3号公報あるいは特開昭63−258985号公報等に
関連技術が開示されているが、アスファルテンの処理あ
るいは処理工程が複雑になる等種々の難問題を抱えてい
る。このように、残渣油を分解処理して、ナフサ留分や
輸送用燃料として軽油留分を効率よく生産することがで
きる技術には満足の行くものがないのが実情であり、該
技術の開発が強く望まれている。
2. Description of the Related Art Applications of petroleum include fuels (especially for heating and transportation) and petrochemical raw materials. Although it is expected that the demand for heating will be replaced by other energy sources in the future, demand for gasoline, light oil and jet fuel oil, which are fuel oils for transportation, is expected to increase considerably. In addition, due to the recent rise in crude oil prices and heavier crude oil, it is expected that there will be an increasing need for technologies that can efficiently produce residual fuel consisting of heavy hydrocarbon oil to produce fuel for transportation. Has been. In particular, the flexibility of production, which can change the product composition depending on the season and the place, is important for responding to changes in demand. For this, various processes have already been proposed. For example, first, a method has been proposed in which a normal pressure residual oil is treated in combination with a direct desulfurization treatment step (RH) and a residual oil fluidized bed catalytic cracking treatment step (R-FCC). However, this method has a drawback that R-FCC having a large processing capacity is required because decomposition by RH is small. Further, there is a disadvantage that catalytic cracking gas oil of low value, that is, catalytic cracking gas oil that has a low cetane index and does not serve as direct transportation gas oil (for example, diesel engine fuel) is produced in large quantities. Further, after the atmospheric residual oil is distilled under reduced pressure and fractionated, the resulting reduced pressure gas oil is hydrotreated with the reduced pressure residual oil to be hydrodesulfurized together with the reduced pressure gas oil, and this processed oil is subjected to R-FCC treatment. Methods have also been proposed. This method can process relatively heavy feedstocks, but has a drawback that the main product is FCC gasoline, and at the same time, low-value catalytic cracking gas oil and catalytic cracking residual oil are co-produced. And, there is a drawback that it is not possible to produce a high-quality gas oil fraction other than FCC gasoline. Furthermore, a method has also been proposed in which the same vacuum distillation residue oil as described above is desulfurized in a fixed bed and then subjected to R-FCC. In this method, there is a problem in operating the desulfurization treatment in a fixed bed for a long period of time, and since it is a cracked product oil obtained by using vacuum distillation residue oil as a raw material, the reactivity in the R-FCC treatment remarkably decreases. Is concerned. Furthermore, FC
In addition to C gasoline, a large amount of low quality catalytically cracked gas oil and catalytically cracked residual oil are produced. In addition, Japanese Patent Publication No. 59-31559, Japanese Patent Publication No. 61-8120, Japanese Patent Publication No. 1-15559, Japanese Patent Publication No. 1-3843.
Although the related art is disclosed in Japanese Patent Laid-Open No. 3 or Japanese Patent Laid-Open No. 63-258985, it has various problems such as complicated asphaltene treatment or a complicated treatment process. As described above, the fact that there is no satisfactory technology that can efficiently produce a naphtha fraction or a light oil fraction as a transportation fuel by decomposing residual oil, and the development of the technique Is strongly desired.

【0003】[0003]

【課題を解決するための手段】そこで、本発明者等は、
従来の上記課題を解決し、簡単な管理で安定した運転を
行うことができ、しかも付加価値の高い輸送用燃料油を
効率的に得ることができる重質炭化水素油の処理方法を
開発すべく鋭意研究を重ねた。その結果、水素化脱金
属処理,水素化分解処理,水素化脱硫及び水素化脱
窒素処理を順次行う水素化処理および懸濁床での熱水素
化分解処理とを巧みに組み合わせ、さらに工夫を加える
ことによって、上記の目的を達成できることを見出し
た。本発明は、かかる知見に基づいて完成したものであ
る。
Therefore, the present inventors have
To develop a method for treating heavy hydrocarbon oil that solves the above-mentioned conventional problems, can perform stable operation with simple management, and can efficiently obtain fuel oil for transportation with high added value We have earnestly studied. As a result, the hydrodemetallization treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment are sequentially combined, and thermal hydrocracking treatment in a suspended bed is skillfully combined to make further improvements. By doing so, they have found that the above-mentioned object can be achieved. The present invention has been completed based on such findings.

【0004】すなわち、本発明は、重質炭化水素油を触
媒の存在下で、水素化脱金属処理,水素化分解処
理,水素化脱硫及び水素化脱窒素処理を順次行う水素
化処理し、次いで、得られた水素化処理油を常圧・減圧
蒸留して減圧軽油Iと減圧残油Iを分離し、しかる後
に、該減圧残油Iを懸濁床で熱水素化分解処理し、続い
て熱水素化分解処理油を常圧・減圧蒸留して減圧軽油II
と減圧残油IIを分離し、得られた減圧軽油IIを前記減圧
軽油Iとともに前記重質炭化水素油に還流してリサイク
ルすることを特徴とする重質炭化水素油の処理方法を提
供するものである。また、本発明は、重質炭化水素油を
触媒の存在下で、水素化脱金属処理,水素化分解処
理,水素化脱硫及び水素化脱窒素処理を順次行う水素
化処理し、次いで、得られた水素化処理油を常圧・減圧
蒸留して減圧軽油Iと減圧残油Iを分離し、しかる後
に、該減圧残油Iを懸濁床で熱水素化分解処理し、続い
て熱水素化分解処理油を常圧・減圧蒸留して減圧軽油II
と減圧残油IIを分離し、得られた減圧軽油IIと前記減圧
軽油Iを、前記減圧残油IIの少なくとも一部とともに前
記重質炭化水素油に還流してリサイクルすることを特徴
とする重質炭化水素油の処理方法をも提供するものであ
る。
That is, according to the present invention, heavy hydrocarbon oil is hydrotreated in the presence of a catalyst in the order of hydrodemetallizing treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment. The obtained hydrotreated oil is subjected to atmospheric pressure / vacuum distillation to separate a reduced pressure gas oil I and a reduced pressure residual oil I, and thereafter, the reduced pressure residual oil I is subjected to thermal hydrocracking treatment in a suspension bed, and subsequently, Reduced pressure gas oil by distilling the hydrohydrolysis treated oil under normal pressure and reduced pressure II
And a reduced pressure residual oil II are separated, and the obtained reduced pressure gas oil II is recycled together with the reduced pressure gas oil I to the heavy hydrocarbon oil for recycling, and a method for treating heavy hydrocarbon oil is provided. Is. Further, the present invention is a heavy hydrocarbon oil, in the presence of a catalyst, hydrodemetallization treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment is carried out in order, and then obtained. The hydrotreated oil was distilled under atmospheric pressure and reduced pressure to separate the reduced pressure gas oil I and the reduced pressure residual oil I, after which the reduced pressure residual oil I was subjected to thermal hydrocracking treatment in a suspension bed, followed by thermal hydrogenation. Decompressed oil is distilled under normal pressure and reduced pressure to produce reduced pressure gas oil II
And the reduced pressure residual oil II are separated, and the obtained reduced pressure gas oil II and the reduced pressure gas oil I are recycled together with at least a part of the reduced pressure residual oil II to the heavy hydrocarbon oil for recycling. It also provides a method for treating a heavy hydrocarbon oil.

【0005】先ず、本発明において対象とする原料油
は、各種の重質炭化水素油であって、例えば、原油の常
圧蒸留残渣油及び減圧蒸留残渣油,重質軽油,減圧軽
油,溶剤脱レキ油,脱メタル油,接触分解残渣油,ビス
ブレーキング油,タールサンド油,オイルシェール等の
重質炭化水素油を挙げることができる。これらの重質炭
化水素油の一般的性状は、次の通りである。 沸点 343℃以上の留分を90重量%以上
含む メタル含量 20〜150ppm 硫黄含量 1.0〜5.0重量% 残留炭素 2〜18重量%アスファルテン 濃度 1〜10重量%
[0005] First, the feedstock to be used in the present invention is various heavy hydrocarbon oils, for example, crude oil at atmospheric distillation residue oil and vacuum distillation residue oil, heavy gas oil, vacuum gas oil, solvent dewatering. Heavy hydrocarbon oils such as rake oil, demetallized oil, catalytic cracking residual oil, visbreaking oil, tar sand oil, and oil shale can be mentioned. The general properties of these heavy hydrocarbon oils are as follows. Boiling point: Contains more than 90% by weight of a fraction having a boiling point of 343 ° C. Metal content: 20 to 150 ppm Sulfur content: 1.0 to 5.0% by weight Residual carbon: 2 to 18% by weight Asphaltene concentration: 1 to 10% by weight

【0006】本発明においては、これらの重質炭化水素
油は、前記減圧軽油Iと前記減圧軽油IIとともに、ある
いは前記減圧軽油I,前記減圧軽油IIおよび前記減圧残
油IIの少なくとも一部(一部乃至全部)とともに、水素
と混合し、触媒の存在下で水素化処理,熱水素化分解処
理される。ここで、この減圧軽油Iと減圧軽油II,ある
いは減圧軽油I,減圧軽油IIおよび減圧残油IIを重質炭
化水素油とともに水素化処理するには、先ず、重質炭化
水素油を水素化処理,熱水素化分解処理して減圧軽油
I,減圧軽油IIおよび減圧残油IIが得られるようになっ
たら、これらの減圧軽油I,減圧軽油IIおよび減圧残油
IIを水素化脱金属処理の前又は後に還流してリサイクル
すればよい。このように減圧軽油Iと減圧軽油IIとを、
あるいは減圧軽油I,減圧軽油IIおよび減圧残油IIとを
水素化脱金属処理の前に混合した重質炭化水素油の一般
的性状は、次の通りである。 比重 0.90〜1.01 動粘度(50℃) 50〜15,000cSt 硫黄含量 0.5〜5.0重量% 窒素含量 300〜4,000ppm 残留炭素 20重量%以下 バナジウム分含量 250ppm 以下 ニッケル分含量 250ppm 以下 本発明では、減圧軽油Iと減圧軽油IIとを、あるいは減
圧軽油I,減圧軽油IIおよび減圧残油IIとを混合した重
質炭化水素油を触媒の存在下で、水素化脱金属処理,
水素化分解処理,水素化脱硫及び水素化脱窒素処理
をこの順序で行って水素化処理する。ここで、水素化脱
金属処理は、重質炭化水素油と水素ガスとを混合し、こ
の混合物を水素化脱金属処理装置に送り処理する。水素
化脱金属処理は、一塔乃至複数塔の反応塔からなる装置
で処理される。この水素化脱金属処理工程は、固定床,
沸騰床,移動床,アップフロー,ダウンフロー,溶剤抽
出等は問わない。この場合、固定床では、各反応塔は、
複数の触媒床に分割され、各触媒床には、反応物を冷却
するために流体が導入される。そして、固定床の場合に
使用される水素化脱金属触媒は、アルミナ,シリカ,シ
リカ−アルミナ又はセピオライト等の多孔性無機酸化物
を担体として、周期律表第VIA族及び同第VIII族の金属
あるいは金属化合物(以下、単に金属ということがあ
る。)の一種又は複数を酸化物の状態で担持させた、商
業的に入手可能な脱金属触媒のいずれであってもよい。
この水素化脱金属処理の処理条件としては、反応温度3
00〜450℃,水素分圧30〜200kg/cm2 ,LH
SV(液時空間速度)=0.1〜10hr-1,水素/油比3
00〜2,000Nm3/kl、好ましくは反応温度360〜
420℃,水素分圧100〜180kg/cm2 ,LHSV
=0.3〜5.0hr-1,水素/油比500〜1,000Nm3/
klである。
In the present invention, these heavy hydrocarbon oils are used together with the reduced pressure gas oil I and the reduced pressure gas oil II, or at least a part of the reduced pressure gas oil I, the reduced pressure gas oil II and the reduced pressure residual oil II. Part or all), mixed with hydrogen, and subjected to hydrotreatment and thermal hydrocracking treatment in the presence of a catalyst. Here, in order to hydrotreat the reduced pressure gas oil I and the reduced pressure gas oil II, or the reduced pressure gas oil I, the reduced pressure gas oil II and the reduced pressure residual oil II together with the heavy hydrocarbon oil, first, the heavy hydrocarbon oil is hydrotreated. , Reduced pressure gas oil I, reduced pressure gas oil II and reduced pressure residue oil II are obtained by thermal hydrocracking, and these reduced pressure gas oil I, reduced pressure gas oil II and reduced pressure residue oil are obtained.
II may be recycled by refluxing before or after the hydrodemetalization treatment. In this way, the reduced pressure gas oil I and the reduced pressure gas oil II are
Alternatively, the general properties of the heavy hydrocarbon oil obtained by mixing the reduced pressure gas oil I, the reduced pressure gas oil II, and the reduced pressure residual oil II before the hydrodemetallizing treatment are as follows. Specific gravity 0.90 to 1.01 Kinematic viscosity (50 ° C) 50 to 15,000 cSt Sulfur content 0.5 to 5.0 wt% Nitrogen content 300 to 4,000 ppm Residual carbon 20 wt% or less Vanadium content 250 ppm or less Nickel content In the present invention, hydrogenated demetallization is carried out in the present invention in the presence of a catalyst, which is a reduced pressure gas oil I and a reduced pressure gas oil II, or a heavy hydrocarbon oil obtained by mixing a reduced pressure gas oil I, a reduced pressure gas oil II and a reduced pressure residual oil II. processing,
Hydrocracking, hydrodesulfurization, and hydrodenitrogenation are performed in this order for hydrotreatment. Here, in the hydrodemetallizing treatment, heavy hydrocarbon oil and hydrogen gas are mixed, and this mixture is sent to a hydrodemetallizing apparatus for treatment. The hydrodemetallizing treatment is carried out by an apparatus composed of one to a plurality of reaction towers. This hydrodemetallization process uses a fixed bed,
Boiled bed, moving bed, up-flow, down-flow, solvent extraction, etc. can be used. In this case, in the fixed bed, each reaction tower is
The catalyst bed is divided into a plurality of catalyst beds, and a fluid is introduced into each catalyst bed to cool the reactants. The hydrodemetallizing catalyst used in the case of a fixed bed is a metal of Group VIA and Group VIII of the Periodic Table, using a porous inorganic oxide such as alumina, silica, silica-alumina or sepiolite as a carrier. Alternatively, it may be any of commercially available demetallization catalysts in which one or more metal compounds (hereinafter, sometimes referred to as a metal) are supported in an oxide state.
The treatment conditions for this hydrodemetallization treatment include a reaction temperature of 3
00-450 ℃, hydrogen partial pressure 30-200kg / cm 2 , LH
SV (liquid hourly space velocity) = 0.1-10 hr -1 , hydrogen / oil ratio 3
00-2,000 Nm 3 / kl, preferably reaction temperature 360-
420 ℃, hydrogen partial pressure 100-180kg / cm 2 , LHSV
= 0.3 to 5.0 hr -1 , hydrogen / oil ratio 500 to 1,000 Nm 3 /
kl.

【0007】次いで、水素化脱金属処理された流出油
は、水素化分解処理工程に送られる。水素化分解処理
は、一塔乃至複数塔の反応塔からなる装置で処理され
る。そして、固定床の場合、各反応塔は、複数の触媒床
に分割され、各触媒床には、反応物を冷却するために流
体が導入される。この水素化分解処理に使用される触媒
は、アルミナ,シリカ,アルミナボリア,ゼオライト等
を担体として、周期律表第VIA族及び同第VIII族の金属
を一種又は複数を酸化物の状態で担持させたものであ
る。また、特公昭60−49131号公報,特公昭61
−24433号公報,特公平3−21484号公報等に
開示されている技術によって造られた、鉄含有ゼオライ
ト20〜80重量%と無機酸化物80〜20重量%から
なる担体に、周期律表第VIA族及び同第VIII族の金属を
一種又は複数を酸化物の状態で担持させたものも使用す
ることができる。更に、特開平2−289419号公報
に開示されている技術によって造られた、鉄含有ゼオラ
イト10〜90重量%と無機酸化物90〜10重量%か
らなる担体に、周期律表第VIA族及び同第VIII族の金属
を一種又は複数を酸化物の状態で担持させたものも使用
することができる。特に、この特開平2−289419
号公報に開示されている、水蒸気処理したスチーミング
ゼオライトを鉄塩水溶液で処理して得られる鉄含有アル
ミノシリケートを使用すると、343℃以上の留分から
343℃以下の留分への分解率を高める点で非常に効果
的である。ここで、周期律表第VIA族の金属としては、
Mo,Wが好ましい。また、同第VIII族の金属として
は、Ni,Coが好ましい。そして、この水素化分解処
理の処理条件としては、反応温度300〜450℃,水
素分圧30〜200kg/cm2 ,LHSV=0.1〜2.0hr
-1,水素/油比300〜2,000Nm3/kl、好ましくは
反応温度380〜420℃,水素分圧100〜180kg
/cm2 ,LHSV=0.2〜1.0hr-1,水素/油比500
〜1,000Nm3/klである。
Next, the hydrodemetallized effluent oil is sent to a hydrocracking process step. The hydrocracking process is carried out by an apparatus composed of one to a plurality of reaction towers. Then, in the case of a fixed bed, each reaction tower is divided into a plurality of catalyst beds, and a fluid is introduced into each catalyst bed in order to cool the reactants. The catalyst used in this hydrocracking treatment is alumina, silica, alumina boria, zeolite or the like as a carrier, and one or more metals of Group VIA and Group VIII of the Periodic Table are supported in an oxide state. It is a thing. Also, Japanese Patent Publication No. 60-49131 and Japanese Patent Publication No. 61
No. 24433 gazette, Japanese Patent Publication No. 3-21484 gazette, etc., and a carrier composed of 20 to 80% by weight of an iron-containing zeolite and 80 to 20% by weight of an inorganic oxide, and a periodic table It is also possible to use one or a plurality of Group VIA and Group VIII metals supported in an oxide state. Furthermore, a carrier composed of 10 to 90% by weight of an iron-containing zeolite and 90 to 10% by weight of an inorganic oxide prepared by the technique disclosed in Japanese Patent Application Laid-Open No. 2-289419, is added to Group VIA and the same group of the periodic table. It is also possible to use one or more Group VIII metals supported in an oxide state. Particularly, this Japanese Patent Laid-Open No. 2-289419
The use of an iron-containing aluminosilicate obtained by treating steamed steaming zeolite with an aqueous solution of an iron salt disclosed in Japanese Patent Publication increases the decomposition rate from a fraction at 343 ° C or higher to a fraction at 343 ° C or lower. Very effective in terms. Here, as a metal of Group VIA of the periodic table,
Mo and W are preferable. Further, Ni and Co are preferable as the Group VIII metal. The processing conditions for this hydrocracking treatment are as follows: reaction temperature 300 to 450 ° C., hydrogen partial pressure 30 to 200 kg / cm 2 , LHSV = 0.1 to 2.0 hr.
-1 , hydrogen / oil ratio 300 to 2,000 Nm 3 / kl, preferably reaction temperature 380 to 420 ° C, hydrogen partial pressure 100 to 180 kg
/ Cm 2 , LHSV = 0.2 to 1.0 hr -1 , hydrogen / oil ratio 500
~ 1,000 Nm 3 / kl.

【0008】水素化脱金属処理され、次いで水素化
分解処理された流出油は、更に、水素化脱硫及び水素
化脱窒素処理される。水素化脱硫及び水素化脱窒素処理
は、一塔乃至複数塔の反応塔からなる装置で処理され
る。そして、固定床の場合、各反応塔は、複数の触媒床
に分割され、各触媒床には、反応物を冷却するために流
体が導入される。この水素化脱硫及び水素化脱窒素処理
に使用される触媒は、水素化脱硫処理に通常使用されて
いるものでよい。例えば、Mo,W,等の周期律表第VI
A族金属及びCo,Ni等の同第VIII族金属の1種また
は2種以上、具体的には、Co−Mo又はNi−Moを
アルミナ,シリカ,ゼオライトあるいはこれらの混合物
等の担体に担持させたものである。水素化脱硫及び水素
化脱窒素処理の処理条件としては、反応温度300〜4
50℃,水素分圧30〜200kg/cm2 ,LHSV0.1
〜2.0hr-1,水素/油比300〜2,000Nm3/kl、好
ましくは反応温度360〜420℃,水素分圧を100
〜180kg/cm2 ,LHSV0.1〜0.5hr,水素/油比
500〜1,000Nm3/klである。上記水素化脱金属
処理,水素化分解処理,水素化脱硫及び水素化脱窒
素処理は、各処理工程の入口温度を300〜420℃ま
で任意に変化させると、原料油中に含まれる沸点343
℃以上の留分の20〜70重量%を沸点343℃以下の
留分に分解することができる。
The effluent that has been hydrodemetallized and then hydrocracked is further hydrodesulfurized and hydrodenitrogenated. The hydrodesulfurization and hydrodenitrogenation treatments are carried out by an apparatus composed of one to a plurality of reaction towers. Then, in the case of a fixed bed, each reaction tower is divided into a plurality of catalyst beds, and a fluid is introduced into each catalyst bed in order to cool the reactants. The catalyst used for the hydrodesulfurization and hydrodenitrogenation treatment may be the one usually used for hydrodesulfurization treatment. For example, periodic table VI of Mo, W, etc.
One or more of Group A metals and Group VIII metals such as Co and Ni, specifically Co-Mo or Ni-Mo, are supported on a carrier such as alumina, silica, zeolite or a mixture thereof. It is a thing. The treatment conditions for the hydrodesulfurization and hydrodenitrogenation treatment include a reaction temperature of 300 to 4
50 ℃, Hydrogen partial pressure 30-200kg / cm 2 , LHSV0.1
〜2.0 hr -1 , hydrogen / oil ratio 300-2,000 Nm 3 / kl, preferably reaction temperature 360-420 ° C., hydrogen partial pressure 100.
˜180 kg / cm 2 , LHSV 0.1 to 0.5 hr, hydrogen / oil ratio 500 to 1,000 Nm 3 / kl. In the hydrodemetallization treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment, when the inlet temperature of each treatment step is arbitrarily changed to 300 to 420 ° C., the boiling point 343 contained in the feed oil is 343.
It is possible to decompose 20 to 70% by weight of a fraction having a temperature of ℃ or more into a fraction having a boiling point of 343 ° C or less.

【0009】このように、水素化脱金属処理,水素化分
解処理,水素化脱硫及び水素化脱窒素処理の水素化処理
を終えて反応工程を出た水素化処理油は、常法にしたが
って分離工程に導入され、複数の分離槽で処理すること
によって気体部分と液体部分に分離される。そのうち、
気体部分は、硫化水素,アンモニア等を除去してから水
素純度アップなどの処理を受け、新しい供給水素ガスと
一緒になって反応工程へ再循環される。一方、分離工程
で分離された液体部分は、分留(蒸留)工程に導入さ
れ、常法にしたがって各留分に分留(分離)される。こ
の分留時の条件としては、例えば、常圧下すなわち、常
圧蒸留においては、ナフサ留分のカット温度を145〜
190℃、灯油留分のカット温度を235〜265℃、
軽油留分のカット温度を343〜380℃及び380℃
以上を残油とすることにより、ナフサ留分,灯油留分,
軽油留分及び残油留分に分離することができる。そし
て、得られるナフサ留分は、接触改質装置の原料油に供
され、オクタン価の高い改質ガソリンを製造することが
できる。本発明においては、この常圧蒸留によって得ら
れる水素化処理残油を減圧蒸留工程で減圧蒸留し、減圧
軽油I(VGO)と減圧残油I(VR)を分離する。
[0009] Thus, the hydrotreated oil that has exited the reaction process after the hydrotreatment such as hydrodemetallizing treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment is separated according to a conventional method. It is introduced into the process and treated in a plurality of separation tanks to be separated into a gas portion and a liquid portion. Of which
The gas portion is subjected to a treatment such as hydrogen purity improvement after removing hydrogen sulfide, ammonia, etc., and is recycled to the reaction process together with the newly supplied hydrogen gas. On the other hand, the liquid portion separated in the separation step is introduced into the fractional distillation (distillation) step and fractionated (separated) into each fraction according to a conventional method. As the conditions for this fractional distillation, for example, under atmospheric pressure, that is, in atmospheric distillation, the cut temperature of the naphtha fraction is 145 to 145.
190 ℃, cut temperature of the kerosene fraction is 235 to 265 ℃,
Cutting temperature of light oil fraction is 343-380 ° C and 380 ° C
By using the above as residual oil, naphtha fraction, kerosene fraction,
It can be separated into a light oil fraction and a residual oil fraction. Then, the obtained naphtha fraction is supplied to the feedstock oil of the catalytic reformer to produce a reformed gasoline having a high octane number. In the present invention, the hydrotreated residual oil obtained by the atmospheric distillation is vacuum distilled in a vacuum distillation step to separate the vacuum gas oil I (VGO) and the vacuum residual oil I (VR).

【0010】前記の減圧蒸留工程で分離した減圧残油I
は、水素と混合し、触媒の存在下で懸濁床において熱水
素化分解処理する。次いで、処理油は、前記と同様に分
離工程で気体部分と液体部分を分離し、分離された液体
部分は、同様に常圧および減圧蒸留して減圧軽油IIと減
圧残油IIを分離する。なお、この熱水素化分解処理工程
で処理される減圧残油Iの一般的性状は、次の通りであ
る。 比重 0.95〜1.03 動粘度 200(50℃)〜2500(10
0℃)cSt 硫黄含量 0.5〜6.0重量% 窒素含量 1,500〜4,500ppm 残留炭素 20重量%以下 バナジウム分含量 250ppm 以下 ニッケル分含量 250ppm 以下 この懸濁床における熱水素化分解処理に使用される触媒
は、アルミナ,シリカ,シリカ・アルミナ,シリカ・ア
ルミナ・マグネシア,アルミナ・チタニア等を担体とし
て、周期律表第VIA族及び同第VIII族の金属を一種又は
複数を酸化物の状態で担持させたものである。ここで、
周期律表第VIA族の金属としては、Mo,Wが好まし
い。また,同第VIII族の金属の金属としては、Ni,C
oが好ましく、Ni−Mo,Co−Mo,Ni−W,C
o−W,V−Niとして用いることもできる。そして、
これらの触媒の粒径は、通常4〜150μmである。例
えば、シリカ・アルミナを担体とし、Niを0.5〜5重
量%,Moを1〜12重量%担持させた、粒径4〜15
0μmの触媒が用いられる。これらの触媒は、反応後、
触媒粒子と処理油とをスラリーとして抜きだし、部分酸
化して触媒を再生させてから循環使用することもでき
る。なお、この懸濁床における熱水素化分解処理に使用
される触媒としては、直接脱硫装置廃触媒や流動接触分
解廃触媒も使用することができる。この熱水素化分解処
理の処理条件としては、反応温度370〜480℃,水
素分圧30〜200kg/cm2 ,LHSV=0.1〜2.0hr
-1,触媒/油比0.01〜0.30wt/wt、好ましくは反応
温度420〜450℃,水素分圧60〜80kg/cm 2
LHSV=0.2〜1.0hr-1,触媒/油比0.03〜0.18
wt/wtである。
Vacuum residue I separated in the above vacuum distillation step I
Is mixed with hydrogen and heated in a suspension bed in the presence of a catalyst
Perform disintegration processing. The treated oil is then separated as described above.
Liquid separated by separating gas and liquid in the separation process
Similarly, reduce the atmospheric pressure and vacuum distillation to reduce the gas oil II.
Separate the residual oil II. In addition, this thermal hydrocracking process step
The general properties of the vacuum residual oil I treated with are as follows.
It Specific gravity 0.95-1.03 Kinematic viscosity 200 (50 ° C) -2500 (10
0 ℃) cSt Sulfur content 0.5-6.0% by weight Nitrogen content 1,500-4,500ppm Residual carbon 20% by weight or less Vanadium content 250ppm or less Nickel content 250ppm or less Thermal hydrocracking treatment in this suspension bed Catalyst used for
Is alumina, silica, silica-alumina, silica-a
Lumina, magnesia, alumina, titania, etc. as carriers
A metal of Group VIA and Group VIII of the Periodic Table or
A plurality of particles are supported in an oxide state. here,
Mo and W are preferred as metals of Group VIA of the Periodic Table.
Yes. Further, as the metals of the Group VIII metals, Ni, C
o is preferable, Ni-Mo, Co-Mo, Ni-W, C
It can also be used as o-W and V-Ni. And
The particle size of these catalysts is usually 4 to 150 μm. An example
For example, silica-alumina is used as a carrier, and Ni is 0.5-5 layers.
%, Mo: 1 to 12% by weight, particle size: 4 to 15
0 μm catalyst is used. These catalysts, after the reaction,
The catalyst particles and treated oil are extracted as a slurry and the partial acid
It is also possible to recycle the catalyst after regenerating it to regenerate the catalyst.
It Used for thermal hydrocracking treatment in this suspension bed
As the catalyst to be used, direct desulfurization equipment waste catalyst and fluid contact
Disused catalysts can also be used. This thermal hydrocracking process
As the physical treatment conditions, a reaction temperature of 370 to 480 ° C., water
Elementary pressure 30-200kg / cm2 , LHSV = 0.1 ~ 2.0hr
-1, Catalyst / oil ratio 0.01 to 0.30 wt / wt, preferably reaction
Temperature 420-450 ℃, Hydrogen partial pressure 60-80kg / cm 2 ,
LHSV = 0.2-1.0hr-1, Catalyst / oil ratio 0.03 to 0.18
wt / wt.

【0011】かくして減圧蒸留塔で分離された減圧軽油
IIは、前記減圧軽油Iとともに、重質炭化水素油に還流
してリサイクルする。また、他の方法として、減圧軽油
IIは、減圧残油IIの少なくとも一部(一部乃至全部)と
前記減圧軽油Iとともに重質炭化水素油に還流してリサ
イクルする。このように減圧軽油Iと減圧軽油IIとを、
また減圧軽油I,減圧軽油IIおよび減圧残油IIとを重質
炭化水素油に還流してリサイクルするのは、重質油処理
スキームとして、残油を低減し、高品質のナフサ,灯軽
油を増産するためである。そして、熱水素化分解処理工
程を出た分解反応生成物は、蒸留工程に送入され、前記
と同様に、常法にしたがって各留分に分留(分離)され
る。この分留時の条件としては、例えば、常圧下すなわ
ち、常圧蒸留においては、ガソリン留分のカット温度を
5 〜180℃、軽油留分のカット温度を180〜36
0℃及び360℃以上の留分を残油とすることにより、
ガソリン留分,軽油留分及び残油留分に分離することが
できる。なお、この蒸留分留は、減圧蒸留で行ってもよ
い。
Vacuum light oil thus separated in the vacuum distillation column
II is recycled together with the reduced pressure gas oil I into a heavy hydrocarbon oil by refluxing. As another method, vacuum gas oil is used.
II is recycled together with at least a part (a part or all) of the reduced pressure residual oil II and the reduced pressure gas oil I into a heavy hydrocarbon oil for recycling. In this way, the reduced pressure gas oil I and the reduced pressure gas oil II are
In addition, the reduced pressure gas oil I, the reduced pressure gas oil II, and the reduced pressure residual oil II are recycled to the heavy hydrocarbon oil for recycling, which is a heavy oil treatment scheme in which residual oil is reduced and high quality naphtha and kerosene are used. This is to increase production. Then, the decomposition reaction product from the thermal hydrocracking step is fed to the distillation step and, similarly to the above, fractionated (separated) into each fraction according to a conventional method. As conditions for this fractional distillation, for example, under atmospheric pressure, that is, in atmospheric distillation, the cut temperature of the gasoline fraction is C 5 to 180 ° C., and the cut temperature of the light oil fraction is 180 to 36.
By using the fractions at 0 ° C and 360 ° C or higher as the residual oil,
It can be separated into gasoline fraction, light oil fraction and residual oil fraction. The distillation fractionation may be performed by vacuum distillation.

【0012】図1は、本発明の方法の基本概念を示す説
明図である。また、図2も、本発明の方法の基本概念を
示す説明図である。なお、図中の各記号は次の通りであ
る。 A:水素化分解処理工程 B:常圧・減圧蒸留工程 C:懸濁床での熱水素化分解処理工程 D:常圧・減圧蒸留工程 ここで、各工程での重質炭化水素油に対する流量につい
てみると、処理状況によって変わってくるが、例えば、
先ず、水素化処理し、次いで分留して得られる水素化処
理油は、33〜215vol%である。そして、水素化処理
油を減圧蒸留して得られる減圧軽油Iは、5〜175vo
l%、一方、減圧残油Iは、5〜175vol%である。ま
た、減圧残油Iを懸濁床で熱水素化分解処理し、続いて
熱水素化分解処理油を減圧蒸留して分離される減圧軽油
IIは、0.5〜110vol%(減圧残油IIを含む場合もあ
る)である。さらに、水素化脱金属処理の前又は後に還
流してリサイクルされる減圧軽油Iと減圧軽油IIは、5
〜205vol%である。
FIG. 1 is an explanatory view showing the basic concept of the method of the present invention. 2 is also an explanatory diagram showing the basic concept of the method of the present invention. The symbols in the figure are as follows. A: Hydrocracking process B: Normal pressure / vacuum distillation process C: Thermal hydrocracking process in suspension bed D: Normal pressure / vacuum distillation process Here, the flow rate for heavy hydrocarbon oil in each process For example, although it depends on the processing situation, for example,
First, the hydrotreated oil obtained by hydrotreating and then fractional distillation is 33 to 215 vol%. The reduced pressure gas oil I obtained by distilling the hydrotreated oil under reduced pressure is 5 to 175 vo.
On the other hand, the vacuum residual oil I is 5 to 175 vol%. A vacuum gas oil separated by subjecting the vacuum residue I to a thermal hydrocracking treatment in a suspension bed, and then distilling the thermal hydrocracked oil under a reduced pressure.
II is 0.5 to 110 vol% (there is a case where the vacuum residual oil II is contained in some cases). Furthermore, the reduced pressure gas oil I and the reduced pressure gas oil II, which are recycled by refluxing before or after the hydrodemetalization treatment, are
It is about 205 vol%.

【0013】[0013]

【実施例】次に、本発明を実施例及び比較例により、さ
らに詳しく説明する。なお、実施例1及び比較例では、
原料油としての重質炭化水素油は、次のアラビアンヘビ
ー常圧蒸留残渣油を用いた。 性状 比重 0.9852 動粘度(50℃) 2,018cSt 硫黄含量 4.14重量% 窒素含量 2,430ppm 残留炭素 15.1重量% バナジウム分含量 95.4ppm ニッケル分含量 30.1ppm また、水素化処理後の常圧蒸留は、ガス分(〜C5 ),
ライトナフサ留分(C 5 〜82℃),ヘビーナフサ(8
2〜150℃),灯軽油留分(150〜343℃),残
油(343℃以上)で分離した。また、熱水素化分解処
理後の常圧蒸留は、ガソリン留分(C5 〜180℃),
軽油留分(180〜360℃),残油(360℃以上)
で分離した。評価は、1,000時間までに得られたもの
である。
EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples.
Will be explained in detail. In addition, in Example 1 and Comparative Example,
Heavy hydrocarbon oil as a feedstock is the next Arabian snake.
-Atmospheric distillation residue oil was used. Properties Specific gravity 0.9852 Kinematic viscosity (50 ℃) 2,018cSt Sulfur content 4.14% by weight Nitrogen content 2,430ppm Residual carbon 15.1% by weight Vanadium content 95.4ppm Nickel content 30.1ppm Also, hydrogenation treatment After the atmospheric distillation, the gas content (~ CFive),
Light naphtha fraction (C Five~ 82 ℃, Heavy naphtha (8
2-150 ℃), kerosene light oil fraction (150-343 ℃), residual
Separated with oil (343 ° C. and above). In addition, thermal hydrocracking
After the atmospheric distillation after the treatment, the gasoline fraction (CFive~ 180 ° C),
Light oil fraction (180-360 ℃), residual oil (360 ℃ or more)
Separated by. Evaluation is obtained by 1,000 hours
Is.

【0014】実施例1 前記アラビアンヘビー常圧蒸留残渣油100重量部に、
これから水素化処理後および熱水素化分解処理後に得ら
れる減圧軽油I34.5重量部と減圧軽油II 5.3重量部
とを水素化脱金属処理の前に還流したものを処理油と
し、下記の通り水素化処理および熱水素化分解処理し
た。なお、この時の処理油の性状は、次の通りであっ
た。 比重 0.955 動粘度(50℃) 560cSt 硫黄含量 83重量% 窒素含量 2,030ppm 残留炭素 9.9重量% バナジウム分含量 62ppm ニッケル分含量 20ppm 1)水素化処理 水素化脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 水素化分解触媒 鉄含有アルミノシリケート担体(特開平2−28941
9号公報の実施例1に記載の調製法による担体),酸化
コバルト4重量%,酸化モリブデン10重量% 水素化脱硫及び水素化脱窒素触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 接触水素化処理条件 反応温度 390〜410℃ 反応圧力 130kg/cm2 水素/油比 1,200Nm3 /kl LHSV 0.2hr-1 上記の水素化脱金属触媒20容量%,水素化分解触媒5
0容量%及び水素化脱硫及び脱窒素触媒30容量%をこ
の順序で、固定床1リットルの反応器に充填し、上記処
理条件で処理油を下向きに200cc/hrで通し、水素化
処理した。水素化処理油は、常法に従って処理した後、
その液体部分は、常法に従って常圧蒸留し各留分に分離
した。蒸留分離の結果を第1表に示す。
Example 1 100 parts by weight of the Arabian heavy atmospheric distillation residual oil was added,
The vacuum oil I3 (4.5 parts by weight) and vacuum gas oil (II) 5.3 parts by weight obtained after the hydrotreating and the thermal hydrocracking were refluxed before the hydrodemetallizing treatment to obtain a treated oil, and Hydrotreating and thermal hydrocracking. The properties of the treated oil at this time were as follows. Specific gravity 0.955 Kinematic viscosity (50 ° C) 560 cSt Sulfur content 83% by weight Nitrogen content 2,030 ppm Residual carbon 9.9% by weight Vanadium content 62 ppm Nickel content 20 ppm 1) Hydrotreatment Dehydrogenation catalyst γ alumina carrier, 1.5% by weight of molybdenum oxide, 3% by weight of nickel oxide, 3% by weight of vanadium oxide Hydrocracking catalyst Iron-containing aluminosilicate carrier (JP-A-2-28941)
No. 9, gazette of the preparation method described in Example 1), cobalt oxide 4% by weight, molybdenum oxide 10% by weight, hydrodesulfurization and hydrodenitrogenation catalyst γ-alumina carrier, molybdenum oxide 11% by weight, cobalt oxide 1% by weight. %, Nickel oxide 1% by weight Catalytic hydrogenation conditions Reaction temperature 390 to 410 ° C. Reaction pressure 130 kg / cm 2 Hydrogen / oil ratio 1,200 Nm 3 / kl LHSV 0.2 hr −1 20% by volume of the above hydrodemetallization catalyst , Hydrocracking catalyst 5
0% by volume and 30% by volume of hydrodesulfurization and denitrification catalyst were charged in this order to a fixed-bed 1 liter reactor, and the treated oil was hydrotreated by passing the treated oil downward at 200 cc / hr under the above treatment conditions. The hydrotreated oil is treated according to a conventional method,
The liquid portion was distilled under atmospheric pressure according to a conventional method to separate each fraction. The results of the distillation separation are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】2)水素化処理残油の減圧蒸留 1)の水素化処理で生成した水素化処理残油を常法に従っ
て減圧蒸留し、減圧軽油Iと減圧残油Iを分離した。減
圧蒸留分離の結果は下記の通りであった。 水素化処理残油の性状 比重 0.915 動粘度(50℃) 185cSt 硫黄含量 0.38重量% 窒素含量 1,060ppm 残留炭素 3.03重量% バナジウム分含量 0.6ppm ニッケル分含量 1.0ppm 減圧蒸留結果 蒸留部得率 減圧軽油(VGO,343〜525℃) 70.3vol% 減圧残油(VR, 525℃以上) 29.7vol% 3)減圧残油の熱水素化分解処理 2)の減圧蒸留によって得られた減圧残油Iは、常法に従
って下記の条件で熱水素化分解処理した。 減圧残油の性状 比重 0.985 動粘度(100℃) 560cSt 硫黄含量 1.26重量% 窒素含量 3,480ppm 残留炭素 10.4重量% バナジウム分含量 2ppm ニッケル分含量 4ppm 反応条件 反応温度 450℃ 反応圧力 70kg/cm2 LHSV 0.48hr-1 触媒/油比 0.09 反応器 連続式オートクレーブ反応器(7
00cc) 触媒 粒径 30〜200μm 直接脱硫装置廃触媒 20重量% (酸化バナジウム0.7重量%,酸化ニッケル2.2重量
%) 流動接触分解装置廃触媒 80重量% (酸化バナジウム1,700ppm,酸化ニッケル1,500pp
m ) 熱水素化分解処理後、その液体部分は、常法に従って常
圧及び減圧蒸留し減圧軽油IIと減圧残油IIを分離した。
減圧蒸留分離の結果を第2表に示す。
2) Vacuum distillation of hydrotreated residual oil The hydrotreated residual oil produced in the hydrotreatment of 1) was subjected to vacuum distillation according to a conventional method to separate vacuum gas oil I and vacuum residual oil I. The results of the vacuum distillation separation were as follows. Properties of hydrotreated residual oil Specific gravity 0.915 Kinematic viscosity (50 ℃) 185cSt Sulfur content 0.38% by weight Nitrogen content 1,060ppm Carbon residue 3.03% by weight Vanadium content 0.6ppm Nickel content 1.0ppm Reduced pressure Distillation results Distillation section yield Vacuum gas oil (VGO, 343 to 525 ° C) 70.3vol% Vacuum residue (VR, 525 ° C or higher) 29.7vol% 3) Vacuum distillation of vacuum residual oil 2) The reduced pressure residual oil I thus obtained was subjected to a thermal hydrocracking treatment under the following conditions according to a conventional method. Properties of vacuum residual oil Specific gravity 0.985 Kinematic viscosity (100 ° C) 560cSt Sulfur content 1.26% by weight Nitrogen content 3,480ppm Residual carbon 10.4% by weight Vanadium content 2ppm Nickel content 4ppm Reaction condition Reaction temperature 450 ° C Reaction Pressure 70kg / cm 2 LHSV 0.48hr -1 Catalyst / oil ratio 0.09 Reactor Continuous autoclave reactor (7
00cc) Catalyst particle size 30 ~ 200μm Direct desulfurizer waste catalyst 20% by weight (vanadium oxide 0.7% by weight, nickel oxide 2.2% by weight) Fluid catalytic cracker waste catalyst 80% by weight (vanadium oxide 1,700ppm, oxidation Nickel 1,500pp
m) After the thermal hydrocracking treatment, the liquid portion was subjected to normal pressure and reduced pressure distillation according to a conventional method to separate reduced pressure gas oil II and reduced pressure residual oil II.
The results of the vacuum distillation separation are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】そして、水素化処理及び熱水素化分解処理
とを組み合わせて処理した総合得率は、第3表の通りで
ある。
Table 3 shows the overall yield obtained by combining the hydrotreating treatment and the thermal hydrocracking treatment.

【0019】[0019]

【表3】 [Table 3]

【0020】実施例2 原料油としての重質炭化水素油は、次のアラビアンヘビ
ー常圧蒸留残渣油を用いた。性状 比重 0.9798 動粘度(50℃) 1,098cSt 硫黄含量 4.13重量% 窒素含量 2,500ppm バナジウム分含量 85ppm ニッケル分含量 26ppm 残留炭素 15重量% このアラビアンヘビー常圧蒸留残渣油100重量部に、
これから水素化処理後および熱水素化分解処理後に得ら
れる減圧軽油I46.5重量部,減圧軽油II21.4重量部
および減圧残油II6.1重量部とを混合したものを処理油
とし、下記の通り水素化処理および熱水素化分解処理し
た。 1)水素化処理 水素化脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 水素化分解触媒 鉄含有アルミノシリケート担体(特公昭61−2443
3号公報の実施例1で調製),酸化コバルト4重量%,
酸化モリブデン10重量% 水素化脱硫及び水素化脱窒素触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 接触水素化処理条件 処理温度 390〜410℃ 水素分圧 160kg/cm2 水素/油比 800Nm3 /kl LHSV 0.16hr-1 上記の水素化脱金属触媒触媒20容量%,水素化分解触
媒50容量%及び水素化脱硫及び水素化脱窒素触媒30
容量%をこの順序で、固定床1リットルの反応器に充填
した。そして、上記処理条件でアラビアンヘビー常圧蒸
留残渣油を処理した。アラビアンヘビー常圧蒸留残渣油
は、下向きに200cc/hrで通した。処理油は、常法に
従って処理した後、その液体部分は、常法に従って各留
分に分離した。蒸留分離の結果を第4表に示す。
Example 2 As a heavy hydrocarbon oil as a raw material oil, the following Arabian heavy atmospheric distillation residual oil was used. Properties Specific gravity 0.9798 Kinematic viscosity (50 ℃) 1,098cSt Sulfur content 4.13% by weight Nitrogen content 2,500ppm Vanadium content 85ppm Nickel content 26ppm Residual carbon 15% by weight 100 parts by weight of this Arabian heavy atmospheric distillation residue oil To
A mixture of vacuum gas oil I 46.5 parts by weight, vacuum gas oil II 21.4 parts by weight and vacuum residue oil II 6.1 parts by weight obtained from this after hydrotreatment and thermal hydrocracking was used as a processed oil, and Hydrotreating and thermal hydrocracking. 1) Hydrogenation Dehydrogenation catalyst γ-alumina carrier, molybdenum oxide 1.5% by weight, nickel oxide 3% by weight, vanadium oxide 3% by weight Hydrogenolysis catalyst Iron-containing aluminosilicate carrier (Japanese Patent Publication No. 61-2443)
3 prepared in Example 1), 4% by weight of cobalt oxide,
Molybdenum oxide 10% by weight Hydrodesulfurization and hydrodenitrogenation catalyst γ-alumina carrier, molybdenum oxide 11% by weight, cobalt oxide 1% by weight, nickel oxide 1% by weight Catalytic hydrogenation treatment conditions Treatment temperature 390-410 ° C Hydrogen partial pressure 160 kg / Cm 2 Hydrogen / oil ratio 800 Nm 3 / kl LHSV 0.16 hr -1 20% by volume of the above hydrodemetallization catalyst catalyst, 50% by volume of hydrocracking catalyst and 30% hydrodesulfurization and hydrodenitrogenation catalyst
The volume% was loaded in this order into a fixed bed 1 liter reactor. Then, the arabian heavy atmospheric distillation residual oil was treated under the above treatment conditions. The Arabian heavy atmospheric distillation residue oil was passed downward at 200 cc / hr. After treating the treated oil according to a conventional method, its liquid portion was separated into each fraction according to a conventional method. The results of the distillation separation are shown in Table 4.

【0021】[0021]

【表4】 [Table 4]

【0022】2)水素化処理残油の減圧蒸留 1)の水素化処理で生成した水素化処理残油を常法に従っ
て減圧蒸留し、減圧軽油Iと減圧残油Iを分離した。減
圧蒸留分離の結果は、下記の通りである。 水素化処理残油の性状 比重 0.923 動粘度(50℃) 217cSt 硫黄含量 0.46重量% 窒素含量 1,290ppm 残留炭素 7.48重量% バナジウム分含量 0.7ppm ニッケル分含量 2.1ppm 減圧蒸留結果 蒸留部得率 減圧軽油I(VGO,343〜525℃) 44.4vo
l% 減圧残油I(VR, 525℃以上) 55.6vo
l% 3)減圧残油の熱水素化分解処理 減圧残油の性状 比重 1.01 動粘度(100℃) 1,850cSt 硫黄含量 2.14重量% 窒素含量 3,200ppm 残留炭素 22.5重量% バナジウム分含量 3.0ppm ニッケル分含量 8.2ppm 反応条件 反応温度 450℃ 反応圧力 70kg/cm2 LHSV 0.35hr-1 触媒/油比 0.09 反応器 連続式オートクレーブ反応器(7
00cc) 触媒 粒径 30〜200μm 直接脱硫装置廃触媒 20重量% (酸化バナジウム0.7重量%,酸化ニッケル2.2重量
%) 流動接触分解装置廃触媒 80重量% (酸化バナジウム1700ppm,酸化ニッケル1500pp
m ) 2)の減圧蒸留で得られた減圧残油Iは、常法に従って処
理した後、その液体部分は、常法に従って常圧および減
圧蒸留し減圧軽油IIと減圧残油IIを分離した。減圧蒸留
分離の結果を第5表に示す。
2) Vacuum distillation of hydrotreated residual oil The hydrotreated residual oil produced in the hydrotreatment of 1) was subjected to vacuum distillation according to a conventional method to separate vacuum gas oil I and vacuum residual oil I. The results of the vacuum distillation separation are as follows. Properties of hydrotreated residual oil Specific gravity 0.923 Kinematic viscosity (50 ℃) 217cSt Sulfur content 0.46% by weight Nitrogen content 1,290ppm Residual carbon 7.48% by weight Vanadium content 0.7ppm Nickel content 2.1ppm Reduced pressure Distillation result Distillation section yield Vacuum gas oil I (VGO, 343-525 ° C) 44.4vo
l% vacuum residue I (VR, 525 ℃ or higher) 55.6vo
l% 3) Thermal hydrocracking of vacuum residue Residual properties of vacuum residue Specific gravity 1.01 Kinematic viscosity (100 ° C) 1,850 cSt Sulfur content 2.14 wt% Nitrogen content 3,200 ppm Residual carbon 22.5 wt% Vanadium content 3.0 ppm Nickel content 8.2 ppm Reaction conditions Reaction temperature 450 ℃ Reaction pressure 70kg / cm 2 LHSV 0.35hr -1 Catalyst / oil ratio 0.09 Reactor Continuous autoclave reactor (7
00cc) Particle size 30 ~ 200μm Direct desulfurizer waste catalyst 20% by weight (vanadium oxide 0.7% by weight, nickel oxide 2.2% by weight) Fluid catalytic cracker waste catalyst 80% by weight (vanadium oxide 1700ppm, nickel oxide 1500pp)
m) 2) The vacuum residue I obtained by vacuum distillation was treated according to a conventional method, and then the liquid portion thereof was subjected to normal pressure and vacuum distillation according to a conventional method to separate vacuum gas oil II and vacuum residue II. The results of the vacuum distillation separation are shown in Table 5.

【0023】[0023]

【表5】 [Table 5]

【0024】そして、水素化処理と熱水素化分解処理と
を組み合わせた処理による総合得率は、第6表の通りで
ある。
Table 6 shows the total yield obtained by the combined treatment of the hydrotreatment and the thermal hydrocracking treatment.

【0025】[0025]

【表6】 [Table 6]

【0026】比較例 原料油を下記の条件で水素化脱金属処理及び水素化
脱硫処理した後、常法に従って各留分に分離した。 1)常圧残油水素化処理 原料油 前記アラビアヘビー常圧残油 脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 脱硫触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 処理条件 処理温度 390〜410℃ 反応圧力 130kg/cm2 LHSV 0.2hr-1 反応器 固定床1リットル (脱金属20容量%,脱硫80容量%) 処理後、常圧蒸留した。その結果を第7表に示す。
Comparative Example A feed oil was hydrodemetallized and hydrodesulfurized under the following conditions, and then separated into respective fractions according to a conventional method. 1) Atmospheric pressure residual oil hydrotreatment Raw material oil Arabian heavy atmospheric pressure residual oil Demetalization catalyst γ-alumina carrier, molybdenum oxide 1.5% by weight, nickel oxide 3% by weight, vanadium oxide 3% by weight Desulfurization catalyst γ-alumina carrier, Molybdenum oxide 11% by weight, cobalt oxide 1% by weight, nickel oxide 1% by weight Treatment conditions Treatment temperature 390 to 410 ° C. Reaction pressure 130 kg / cm 2 LHSV 0.2 hr −1 Reactor fixed bed 1 liter (demetalization 20% by volume, (Desulfurization 80% by volume) After the treatment, atmospheric distillation was performed. The results are shown in Table 7.

【0027】[0027]

【表7】 [Table 7]

【0028】2)残油流動床接触分解処理 蒸留残油の性状 比重 0.937 動粘度(50℃) 165cSt 硫黄含量 0.49重量% 窒素含量 1,705ppm 残留炭素 7.09重量% バナジウム分含量 1.5ppm ニッケル分含量 3.9ppm 流動接触分解触媒 USY型残油FCC平衡触媒 (Al23 23重量%,表面積156m2/g 、USY:
スチーミング処理したY型ゼオライト) 流動接触分解条件 反応温度 500〜525℃ 再生温度 750〜850℃ 触媒/油比 5〜7 原料油供給速度 1リットル/hr 循環流動式ベンチ装置 前記の常圧蒸留した後、残油留分は、上記の条件で流動
接触分解処理した。接触分解生成物は、常法に従って各
留分に分離した。蒸留分離の結果を第8表に示す。
2) Residual oil fluidized bed catalytic cracking treatment Properties of distillation residual oil Specific gravity 0.937 Kinematic viscosity (50 ° C.) 165 cSt Sulfur content 0.49 wt% Nitrogen content 1,705 ppm Residual carbon 7.09 wt% Vanadium content 1.5ppm nickel content 3.9ppm fluid catalytic cracking catalyst USY type residual oil FCC equilibrium catalyst (Al 2 O 3 23% by weight, surface area 156 m 2 / g, USY:
Steaming-treated Y-type zeolite) Fluid catalytic cracking conditions Reaction temperature 500 to 525 ° C Regeneration temperature 750 to 850 ° C Catalyst / oil ratio 5 to 7 Feed oil feed rate 1 liter / hr Circulating flow type bench device Distilled at atmospheric pressure as described above. Then, the residual oil fraction was subjected to fluid catalytic cracking treatment under the above conditions. The catalytic cracking product was separated into each fraction according to a conventional method. The results of the distillation separation are shown in Table 8.

【0029】[0029]

【表8】 [Table 8]

【0030】そして、水素化脱金属処理,水素化脱硫処
理および流動床接触分解処理による総合得率は、第9表
の通りである。
Table 9 shows the total yields obtained by the hydrodemetallizing treatment, hydrodesulfurizing treatment and fluidized bed catalytic cracking treatment.

【0031】[0031]

【表9】 [Table 9]

【0032】本発明の実施例と比較例とを比較すると、
比較例はFCCガソリンを中心とした生産であり、軽油
は15%のみの生産である。そして、この軽油は、脱硫
したのみで水素化されていなので品質は良くない。軽油
の品質を第10表に示す。
Comparing the example of the present invention with the comparative example,
The comparative example is a production centered on FCC gasoline, and the production of light oil is only 15%. The quality of this gas oil is not good because it is desulfurized and hydrogenated. The quality of light oil is shown in Table 10.

【0033】[0033]

【表10】 [Table 10]

【0034】すなわち、実施例での軽油は、硫黄分,窒
素分が低く、目詰まり点,流動点も低い特徴を有する。
これに対して、比較例の水素化脱硫処理による軽油は、
輸送用の軽油として用いる場合には、もう一度水素化処
理する必要がある。また、比較例では、多環芳香族が多
く、セタン指数の低い接触分解軽油が約25%生産され
るために、この比較例は、価値の低い分解方式となって
いる。また、実施例では、改質ガソリン原料のみを生成
することから改質ガソリンの生産またはBTX生産の原
料とすることができる。そして、軽油の生産が比較例に
対して格段に多いことから、軽油ニーズの大きいマーケ
ットに対して優位性がある。更に、残油も比較例の9%
に対して2%以下に減らすことができ、実施例は非常に
優れていることが判る。
That is, the light oils in the examples are characterized by a low sulfur content and a low nitrogen content, and a low clogging point and pour point.
On the other hand, the light oil by the hydrodesulfurization treatment of the comparative example,
When it is used as light oil for transportation, it needs to be hydrotreated again. Further, in the comparative example, about 25% of catalytically cracked gas oil having a large amount of polycyclic aromatics and a low cetane index is produced, so that the comparative example is a low-value cracking system. Further, in the embodiment, since only the reformed gasoline raw material is produced, it can be used as the raw material for the reformed gasoline production or the BTX production. Moreover, since the production of diesel oil is much higher than that of the comparative example, it has an advantage in the market where there is a great need for diesel oil. Furthermore, the residual oil is 9% of the comparative example.
2% or less, it can be seen that the embodiment is very excellent.

【0035】[0035]

【発明の効果】以上説明した如く、本発明によれば、重
質炭化水素油に水素化脱金属工程,水素化分解工
程,水素化脱硫及び水素化脱窒素工程からなる水素化
処理および懸濁床での熱水素化分解処理とを組み合わ
せ、それぞれの処理工程で得られる減圧軽油,減圧残油
を適宜重質炭化水素油に還流してリサイクルすることに
より、重質炭化水素油から付加価値の高い改質ガソリン
原料、軽油等の輸送用燃料油を高い得率で効率よく得る
ことができる。従って、本発明は、従来ボイラー等の燃
料として使用されていた重質炭化水素油を、より価値の
高い改質ガソリン原料、軽油等の輸送用燃料油を得るた
めの資源として有効に利用することができるので、その
工業的利用価値は極めて大なるものがある。
As described above, according to the present invention, a heavy hydrocarbon oil is hydrotreated and suspended by a hydrodemetallization step, a hydrocracking step, a hydrodesulfurization step and a hydrodenitrogenation step. Combined with thermal hydrocracking treatment in the bed, vacuum gas oil and vacuum residual oil obtained in each process are appropriately recycled to heavy hydrocarbon oil for recycling, thereby adding value from heavy hydrocarbon oil. Highly reformed gasoline feedstock, fuel oil for transportation such as light oil can be efficiently obtained with high yield. Therefore, the present invention effectively uses heavy hydrocarbon oils that have been conventionally used as fuels for boilers and the like as resources for obtaining fuel oils for transportation such as reformed gasoline raw materials and light oils of higher value. Therefore, its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法の基本概念を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing the basic concept of the method of the present invention.

【図2】 本発明の方法の基本概念を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing the basic concept of the method of the present invention.

【符号の説明】 A:水素化分解処理工程 B:常圧・減圧蒸留工程 C:懸濁床での熱水素化分解処理工程 D:常圧・減圧蒸留工程[Explanation of Codes] A: Hydrocracking process B: Normal pressure / vacuum distillation process C: Thermal hydrocracking process in suspension bed D: Normal pressure / vacuum distillation process

【手続補正書】[Procedure amendment]

【提出日】平成5年5月13日[Submission date] May 13, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】かくして減圧蒸留塔で分離された減圧軽油
IIは、前記減圧軽油Iとともに、重質炭化水素油に還流
してリサイクルする。また、他の方法として、減圧軽油
IIは、減圧残油IIの少なくとも一部(一部乃至全部)と
前記減圧軽油Iとともに重質炭化水素油に還流してリサ
イクルする。このように減圧軽油Iと減圧軽油IIとを、
また減圧軽油I,減圧軽油IIおよび減圧残油IIとを重質
炭化水素油に還流してリサイクルするのは、重質油処理
スキームとして、残油を低減し、高品質のナフサ,灯軽
油を増産するためである。そして、熱水素化分解処理工
程を出た分解反応生成物は、蒸留工程に送入され、前記
と同様に、常法にしたがって各留分に分留(分離)され
る。この分留時の条件としては、例えば、常圧下すなわ
ち、常圧蒸留においては、ガソリン留分のカット温度を
5 〜150℃、軽油留分のカット温度を150〜34
3℃及び343℃以上の留分を残油とすることにより、
ガソリン留分,軽油留分及び残油留分に分離することが
できる。なお、この蒸留分留は、減圧蒸留で行ってもよ
い。
Vacuum light oil thus separated in the vacuum distillation column
II is recycled together with the reduced pressure gas oil I into a heavy hydrocarbon oil by refluxing. As another method, vacuum gas oil is used.
II is recycled together with at least a part (a part or all) of the reduced pressure residual oil II and the reduced pressure gas oil I into a heavy hydrocarbon oil for recycling. In this way, the reduced pressure gas oil I and the reduced pressure gas oil II are
In addition, the reduced pressure gas oil I, the reduced pressure gas oil II, and the reduced pressure residual oil II are recycled to the heavy hydrocarbon oil for recycling, which is a heavy oil treatment scheme in which residual oil is reduced and high quality naphtha and kerosene are used. This is to increase production. Then, the decomposition reaction product from the thermal hydrocracking step is fed to the distillation step and, similarly to the above, fractionated (separated) into each fraction according to a conventional method. As conditions for this fractional distillation, for example, under atmospheric pressure, that is, in atmospheric distillation, the cut temperature of the gasoline fraction is C 5 to 150 ° C., and the cut temperature of the gas oil fraction is 150 to 34.
By using the fractions at 3 ° C and 343 ° C or higher as the residual oil,
It can be separated into gasoline fraction, light oil fraction and residual oil fraction. The distillation fractionation may be performed by vacuum distillation.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】図1は、本発明の方法の基本概念を示す説
明図である。また、図2も、本発明の方法の基本概念を
示す説明図である。なお、図中の各記号は次の通りであ
る。 A:水素化分解処理工程 B:常圧・減圧蒸留工程 C:懸濁床での熱水素化分解処理工程 D:常圧・減圧蒸留工程 ここで、各工程での重質炭化水素油に対する流量につい
てみると、処理状況によって変わってくるが、例えば、
先ず、水素化処理し、次いで分留して得られる水素化処
理残油は、33〜215vol%である。そして、水素化処
理油を減圧蒸留して得られる減圧軽油Iは、5〜175
vol%、一方、減圧残油Iは、5〜175vol%である。ま
た、減圧残油Iを懸濁床で熱水素化分解処理し、続いて
熱水素化分解処理油を減圧蒸留して分離される減圧軽油
IIは、0.5〜110vol%(減圧残油IIを含む場合もあ
る)である。さらに、水素化脱金属処理の前又は後に還
流してリサイクルされる減圧軽油Iと減圧軽油IIは、5
〜205vol%である。
FIG. 1 is an explanatory view showing the basic concept of the method of the present invention. 2 is also an explanatory diagram showing the basic concept of the method of the present invention. The symbols in the figure are as follows. A: Hydrocracking process B: Normal pressure / vacuum distillation process C: Thermal hydrocracking process in suspension bed D: Normal pressure / vacuum distillation process Here, the flow rate for heavy hydrocarbon oil in each process For example, although it depends on the processing situation, for example,
First, the hydrotreated residual oil obtained by hydrotreating and then fractional distillation is 33 to 215 vol%. The reduced pressure gas oil I obtained by distilling the hydrotreated oil under reduced pressure is 5 to 175.
On the other hand, the vacuum residual oil I is 5 to 175 vol%. A vacuum gas oil separated by subjecting the vacuum residue I to a thermal hydrocracking treatment in a suspension bed, and then distilling the thermal hydrocracked oil under a reduced pressure.
II is 0.5 to 110 vol% (there is a case where the vacuum residual oil II is contained in some cases). Furthermore, the reduced pressure gas oil I and the reduced pressure gas oil II, which are recycled by refluxing before or after the hydrodemetalization treatment, are
It is about 205 vol%.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】実施例1 前記アラビアンヘビー常圧蒸留残渣油100重量部に、
これから水素化処理後および熱水素化分解処理後に得ら
れる減圧軽油I34.5重量部と減圧軽油II 5.3重量部
とを混合したものを処理油とし、下記の通り水素化処理
および熱水素化分解処理した。なお、この時の処理油の
性状は、次の通りであった。 比重 0.955 動粘度(50℃) 560cSt 硫黄含量 83重量% 窒素含量 2,030ppm 残留炭素 9.9重量% バナジウム分含量 62ppm ニッケル分含量 20ppm 1)水素化処理 水素化脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 水素化分解触媒 鉄含有アルミノシリケート担体(特開平2−28941
9号公報の実施例1に記載の調製法による担体),酸化
コバルト4重量%,酸化モリブデン10重量% 水素化脱硫及び水素化脱窒素触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 接触水素化処理条件 反応温度 390〜410℃ 反応圧力 130kg/cm2 水素/油比 1,200Nm3 /kl LHSV 0.2hr-1 上記の水素化脱金属触媒20容量%,水素化分解触媒5
0容量%及び水素化脱硫及び脱窒素触媒30容量%をこ
の順序で、固定床1リットルの反応器に充填し、上記処
理条件で処理油を下向きに200cc/hrで通し、水素化
処理した。水素化処理油は、常法に従って処理した後、
その液体部分は、常法に従って常圧蒸留し各留分に分離
した。蒸留分離の結果を第1表に示す。
Example 1 100 parts by weight of the Arabian heavy atmospheric distillation residual oil was added,
A mixture of 34.5 parts by weight of reduced pressure gas oil I and 5.3 parts by weight of reduced pressure gas oil II obtained after hydrotreating and after thermal hydrocracking treatment was used as a treated oil, and hydrotreated and thermal hydrogenated as follows. It was decomposed. The properties of the treated oil at this time were as follows. Specific gravity 0.955 Kinematic viscosity (50 ° C) 560 cSt Sulfur content 83% by weight Nitrogen content 2,030 ppm Residual carbon 9.9% by weight Vanadium content 62 ppm Nickel content 20 ppm 1) Hydrotreatment Dehydrogenation catalyst γ alumina carrier, 1.5% by weight of molybdenum oxide, 3% by weight of nickel oxide, 3% by weight of vanadium oxide Hydrocracking catalyst Iron-containing aluminosilicate carrier (JP-A-2-28941)
No. 9, gazette of the preparation method described in Example 1), cobalt oxide 4% by weight, molybdenum oxide 10% by weight, hydrodesulfurization and hydrodenitrogenation catalyst γ-alumina carrier, molybdenum oxide 11% by weight, cobalt oxide 1% by weight. %, Nickel oxide 1% by weight Catalytic hydrogenation conditions Reaction temperature 390 to 410 ° C. Reaction pressure 130 kg / cm 2 Hydrogen / oil ratio 1,200 Nm 3 / kl LHSV 0.2 hr −1 20% by volume of the above hydrodemetallization catalyst , Hydrocracking catalyst 5
0% by volume and 30% by volume of hydrodesulfurization and denitrification catalyst were charged in this order to a fixed-bed 1 liter reactor, and the treated oil was hydrotreated by passing the treated oil downward at 200 cc / hr under the above treatment conditions. The hydrotreated oil is treated according to a conventional method,
The liquid portion was distilled under atmospheric pressure according to a conventional method to separate each fraction. The results of the distillation separation are shown in Table 1.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【表1】 [Table 1]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【表2】 [Table 2]

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【表3】 [Table 3]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】実施例2 原料油としての重質炭化水素油は、次のアラビアンヘビ
ー常圧蒸留残渣油を用いた。 性状 比重 0.9798 動粘度(50℃) 1,098cSt 硫黄含量 4.13重量% 窒素含量 2,500ppm バナジウム分含量 85ppm ニッケル分含量 26ppm 残留炭素 15重量% このアラビアンヘビー常圧蒸留残渣油100重量部に、
これから水素化処理後および熱水素化分解処理後に得ら
れる減圧軽油I46.5重量部,減圧軽油II21.4重量部
および減圧残油II6.1重量部とを混合したものを処理油
とし、下記の通り水素化処理および熱水素化分解処理し
た。 1)水素化処理 水素化脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 水素化分解触媒 鉄含有アルミノシリケート担体(特公昭61−2443
3号公報の実施例1で調製),酸化コバルト4重量%,
酸化モリブデン10重量% 水素化脱硫及び水素化脱窒素触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 接触水素化処理条件 処理温度 390〜410℃ 水素分圧 160kg/cm2 水素/油比 800Nm3 /kl LHSV 0.20hr-1 上記の水素化脱金属触媒触媒20容量%,水素化分解触
媒50容量%及び水素化脱硫及び水素化脱窒素触媒30
容量%をこの順序で、固定床1リットルの反応器に充填
した。そして、上記処理条件でアラビアンヘビー常圧蒸
留残渣油を処理した。アラビアンヘビー常圧蒸留残渣油
は、下向きに200cc/hrで通した。処理油は、常法に
従って処理した後、その液体部分は、常法に従って各留
分に分離した。蒸留分離の結果を第4表に示す。
Example 2 As a heavy hydrocarbon oil as a raw material oil, the following Arabian heavy atmospheric distillation residual oil was used. Properties Specific gravity 0.9798 Kinematic viscosity (50 ℃) 1,098cSt Sulfur content 4.13% by weight Nitrogen content 2,500ppm Vanadium content 85ppm Nickel content 26ppm Residual carbon 15% by weight 100 parts by weight of this Arabian heavy atmospheric distillation residue oil To
A mixture of vacuum gas oil I 46.5 parts by weight, vacuum gas oil II 21.4 parts by weight and vacuum residue oil II 6.1 parts by weight obtained from this after hydrotreatment and thermal hydrocracking was used as a processed oil, and Hydrotreating and thermal hydrocracking. 1) Hydrogenation Dehydrogenation catalyst γ-alumina carrier, molybdenum oxide 1.5% by weight, nickel oxide 3% by weight, vanadium oxide 3% by weight Hydrogenolysis catalyst Iron-containing aluminosilicate carrier (Japanese Patent Publication No. 61-2443)
3 prepared in Example 1), 4% by weight of cobalt oxide,
Molybdenum oxide 10% by weight Hydrodesulfurization and hydrodenitrogenation catalyst γ-alumina carrier, molybdenum oxide 11% by weight, cobalt oxide 1% by weight, nickel oxide 1% by weight Catalytic hydrogenation treatment conditions Treatment temperature 390-410 ° C Hydrogen partial pressure 160 kg / Cm 2 Hydrogen / oil ratio 800 Nm 3 / kl LHSV 0.20 hr -1 20% by volume of the above hydrodemetallization catalyst catalyst, 50% by volume of hydrocracking catalyst and 30% hydrodesulfurization and hydrodenitrogenation catalyst
The volume% was loaded in this order into a fixed bed 1 liter reactor. Then, the arabian heavy atmospheric distillation residual oil was treated under the above treatment conditions. The Arabian heavy atmospheric distillation residue oil was passed downward at 200 cc / hr. After treating the treated oil according to a conventional method, its liquid portion was separated into each fraction according to a conventional method. The results of the distillation separation are shown in Table 4.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【表4】 [Table 4]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】[0023]

【表5】 [Table 5]

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】比較例 原料油を下記の条件で水素化脱金属処理及び水素化
脱硫および水素化脱窒素処理した後、常法に従って各留
分に分離した。 1)常圧残油水素化処理 原料油 前記アラビアヘビー常圧残油 脱金属触媒 γアルミナ担体,酸化モリブデン1.5重量%,酸化ニッ
ケル3重量%,酸化バナジウム3重量% 脱硫および脱窒素触媒 γアルミナ担体,酸化モリブデン11重量%,酸化コバ
ルト1重量%,酸化ニッケル1重量% 処理条件 処理温度 390〜410℃ 反応圧力 130kg/cm2 LHSV 0.2hr-1 反応器 固定床1リットル (脱金属20容量%,脱硫80容量%) 処理後、常圧蒸留した。その結果を第7表に示す。
Comparative Example A feed oil was hydrodemetallized, hydrodesulfurized and hydrodenitrogenated under the following conditions, and then separated into respective fractions according to a conventional method. 1) Atmospheric pressure residual oil hydrotreating feedstock Arabian heavy atmospheric pressure residual oil Demetalization catalyst γ Alumina carrier, molybdenum oxide 1.5% by weight, nickel oxide 3% by weight, vanadium oxide 3% by weight Desulfurization and denitrification catalyst γ Alumina carrier, molybdenum oxide 11% by weight, cobalt oxide 1% by weight, nickel oxide 1% by weight Treatment conditions Treatment temperature 390 to 410 ° C Reaction pressure 130 kg / cm 2 LHSV 0.2 hr -1 Reactor fixed bed 1 liter (demetalization 20 (% By volume, 80% by volume of desulfurization), and then distilled under atmospheric pressure. The results are shown in Table 7.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【表7】 [Table 7]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重質炭化水素油を触媒の存在下で、水
素化脱金属処理,水素化分解処理,水素化脱硫及び
水素化脱窒素処理を順次行う水素化処理し、次いで、得
られた水素化処理油を常圧・減圧蒸留して減圧軽油Iと
減圧残油Iを分離し、しかる後に、該減圧残油Iを懸濁
床で熱水素化分解処理し、続いて熱水素化分解処理油を
常圧・減圧蒸留して減圧軽油IIと減圧残油IIを分離し、
得られた減圧軽油IIを前記減圧軽油Iとともに水素化脱
金属処理の前または後に還流してリサイクルすることを
特徴とする重質炭化水素油の処理方法。
1. A heavy hydrocarbon oil is hydrotreated in the presence of a catalyst in the order of hydrodemetallization, hydrocracking, hydrodesulfurization and hydrodenitrogenation, and then obtained. The hydrotreated oil is subjected to atmospheric pressure / vacuum distillation to separate reduced pressure gas oil I and reduced pressure residual oil I, after which the reduced pressure residual oil I is subjected to thermal hydrocracking treatment in a suspension bed, and subsequently to thermal hydrocracking. The treated oil is distilled under atmospheric pressure and reduced pressure to separate reduced pressure gas oil II and reduced pressure residual oil II,
A method for treating heavy hydrocarbon oil, characterized in that the obtained reduced pressure gas oil II is recycled together with the reduced pressure gas oil I before or after hydrodemetallization treatment for recycling.
【請求項2】 重質炭化水素油を触媒の存在下で、水
素化脱金属処理,水素化分解処理,水素化脱硫及び
水素化脱窒素処理を順次行う水素化処理し、次いで、得
られた水素化処理油を常圧・減圧蒸留して減圧軽油Iと
減圧残油Iを分離し、しかる後に、該減圧残油Iを懸濁
床で熱水素化分解処理し、続いて熱水素化分解処理油を
常圧・減圧蒸留して減圧軽油IIと減圧残油IIを分離し、
得られた減圧軽油IIと前記減圧軽油Iを、前記減圧残油
IIの少なくとも一部とともに水素化脱金属処理の前又は
後に還流してリサイクルすることを特徴とする重質炭化
水素油の処理方法。
2. A heavy hydrocarbon oil is hydrotreated in the presence of a catalyst in the order of hydrodemetallization, hydrocracking, hydrodesulfurization and hydrodenitrogenation, and then obtained. The hydrotreated oil is subjected to atmospheric pressure / vacuum distillation to separate reduced pressure gas oil I and reduced pressure residual oil I, after which the reduced pressure residual oil I is subjected to thermal hydrocracking treatment in a suspension bed, and subsequently to thermal hydrocracking. The treated oil is distilled under atmospheric pressure and reduced pressure to separate reduced pressure gas oil II and reduced pressure residual oil II,
The reduced pressure gas oil II and the reduced pressure gas oil I obtained were mixed with the above reduced pressure residual oil.
A method for treating a heavy hydrocarbon oil, which comprises refluxing with or after at least a part of II before or after the hydrodemetallizing treatment.
【請求項3】 水素化分解処理に使用される触媒が、鉄
含有アルミノシリケート10〜90重量%と無機酸化物
90〜10重量%とからなる担体に周期律表第VIA族お
よび同第VIII族の金属あるいは金属化合物を担持させた
ものである請求項1あるいは2項記載の重質炭化水素油
の処理方法。
3. A catalyst used in the hydrocracking treatment is a carrier composed of 10 to 90% by weight of an iron-containing aluminosilicate and 90 to 10% by weight of an inorganic oxide, and the catalyst is used in Group VIA and Group VIII of the Periodic Table. 3. The method for treating heavy hydrocarbon oil according to claim 1 or 2, wherein said metal or metal compound is supported.
JP3487392A 1991-10-09 1992-02-21 Treatment of heavy hydrocarbon oil Pending JPH05230474A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3487392A JPH05230474A (en) 1992-02-21 1992-02-21 Treatment of heavy hydrocarbon oil
TW081107984A TW231309B (en) 1991-10-09 1992-10-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3487392A JPH05230474A (en) 1992-02-21 1992-02-21 Treatment of heavy hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPH05230474A true JPH05230474A (en) 1993-09-07

Family

ID=12426271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3487392A Pending JPH05230474A (en) 1991-10-09 1992-02-21 Treatment of heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH05230474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534348A (en) * 2016-09-30 2019-11-28 ヒンドゥスタン ペトロリアム コーポレーション リミテッド Heavy hydrocarbon grade improvement process
GB2558157B (en) * 2015-10-15 2022-07-13 China Petroleum & Chem Corp A process for converting inferior feedstock oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558157B (en) * 2015-10-15 2022-07-13 China Petroleum & Chem Corp A process for converting inferior feedstock oil
JP2019534348A (en) * 2016-09-30 2019-11-28 ヒンドゥスタン ペトロリアム コーポレーション リミテッド Heavy hydrocarbon grade improvement process

Similar Documents

Publication Publication Date Title
KR0136264B1 (en) Method of treatment of heavy hydrocarbon oil
US6841062B2 (en) Crude oil desulfurization
JP6474461B2 (en) Integrated ebullated bed method for whole crude oil improvement
KR102061187B1 (en) Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil
KR20190082994A (en) Multi-stage resid hydrocracking
US10894922B2 (en) Processing vacuum residuum and vacuum gas oil in ebullated bed reactor systems
PL189544B1 (en) Integrated hydroconversion process with reverse hydrogen flow
US9969945B2 (en) Process for partial upgrading of heavy and/or extra-heavy crude oils for transportation
CN113383057B (en) Two-stage hydrocracking process for producing naphtha comprising a hydrogenation step carried out downstream of a second hydrocracking step
CN101434867A (en) Suspension bed residual oil hydrogenation-catalytic cracking combined technological process
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
US5376258A (en) Process for hydrogenating treatment of heavy hydrocarbon oil
JPH05230473A (en) Treatment of heavy hydrocarbon oil
US6447673B1 (en) Hydrofining process
JPH05239472A (en) Method of processing heavy hydrocarbon oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JPH05230474A (en) Treatment of heavy hydrocarbon oil
CN110776953A (en) Process for treating heavy hydrocarbon feedstocks comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of the bitumen
JPH1060456A (en) Hydrogenation treatment of heavy oil and device for hydrogenation treatment
JPH08183964A (en) Hydrogenative treatment of feedstock for fluid-bed catalytic cracking
JP2001064657A (en) Production of low-sulfur gas oil
CN113930255A (en) Hydrogenation method for producing chemical raw materials from crude oil
JPH05117666A (en) Hydrogenation of heavy hydrocarbon oil
JPH05431B2 (en)