JPS61130394A - Method for converting heavy oil into light oil - Google Patents

Method for converting heavy oil into light oil

Info

Publication number
JPS61130394A
JPS61130394A JP25049784A JP25049784A JPS61130394A JP S61130394 A JPS61130394 A JP S61130394A JP 25049784 A JP25049784 A JP 25049784A JP 25049784 A JP25049784 A JP 25049784A JP S61130394 A JPS61130394 A JP S61130394A
Authority
JP
Japan
Prior art keywords
hydrogen
oil
stage
donating solvent
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25049784A
Other languages
Japanese (ja)
Inventor
Junichi Kubo
純一 久保
Chuichi Yamashita
山下 忠一
Kozo Kamiya
神谷 孝三
Eiji Akiyama
英治 秋山
Kenji Suzuki
健児 鈴木
Hiroshi Kato
浩 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP25049784A priority Critical patent/JPS61130394A/en
Publication of JPS61130394A publication Critical patent/JPS61130394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain light oil efficiently without causing lowering in the activity of catalyst, by cracking a heavy hydrocarbon oil in the presence of a hydrogen- donating solvent, depositing heavy metals on a solid material to remove them, carrying out hydrogenation and fractionating reaction products. CONSTITUTION:A heavy hydrocarbon oil 5 contg. at least 10wt% asphaltene component is introduced into a first-stage reaction tower 1 and cracked in the presence of a hydrogen-donating solvent 12. The reaction mixture is then introduced into a second-stage reaction tower 2 and cracked in the presence of a solid catalyst and a porous solid material (e.g. alumina) and at the same time, at least 50wt% of heavy metals contained therein is deposited on the solid material. The reaction mixture is then introduced into a third-stage reaction tower 3 and hydrogenated in the presence of a hydrogenation catalyst and hydrogen gas 6. The resulting reaction mixture is fed to a separator 4 to recover a light oil product 11 and to recycle a fraction 10 contg. the hydrogen donating solvent to the first-stage reaction tower 1.

Description

【発明の詳細な説明】 〔並業上の利用分野〕 本発明は重質油、殊にアスファルテン分、すなわちペン
タン不溶分をLOTL量−以上含有する重質油を水素化
分解して軽質化する方法に関する。
[Detailed Description of the Invention] [Field of Ordinary Industrial Application] The present invention is a method for lightening heavy oil, particularly heavy oil containing an asphaltene content, that is, a pentane insoluble content in an LOTL amount or more, by hydrocracking. Regarding the method.

〔従来の技術及び発明が解決しようとする問題点〕従来
、重質油を水素化分解して@買出し、高価値の製品に変
換することは知られておシ、多数の方法が実施されある
いは提案されている。
[Prior art and problems to be solved by the invention] Hitherto, it has been known to hydrocrack heavy oil and convert it into high-value products, and many methods have been implemented or Proposed.

ここで重質油とは沸点350℃以上の留分を50重量−
以上含む炭化水素油で例えば原油から得られる常圧蒸留
残油、減圧蒸留残油あるいは石炭、オイルサンド、オイ
ルシェール、ピチューメン等から得られるものを慈味す
る。またここでいう軽質化とは、上記M質油を水素添加
を伴なった分痔を行なわせてナフサ、ガソリン留分、灯
軽油留分等を含む軽質油を得ることを目的とするもので
ある。
Here, heavy oil refers to the fraction with a boiling point of 350℃ or higher, which is 50% by weight.
Examples of hydrocarbon oils containing the above include those obtained from atmospheric distillation residues obtained from crude oil, vacuum distillation residues obtained from coal, oil sands, oil shale, picumen, etc. Furthermore, the lightening mentioned here refers to the purpose of obtaining light oil containing naphtha, gasoline fraction, kerosene fraction, etc. by subjecting the above-mentioned M quality oil to fractionation accompanied by hydrogenation. be.

上記の重質油の水素化分解において重要な問題の一つは
、触媒の活性低下である。すなわち重質油中にはアスフ
ァルテン分が含まれ、さらにこの中にバナジウム、ニッ
ケル等の重金總が含まれ、これうによる触媒の被毒が著
しく、これが経済的な長期連続連転を妨げる要因となっ
ている。この問題を解決するために、触媒改良の努力が
続けられ、多くの優れた触媒が提唱されているが、未だ
満足すべき状態とは言い短い。
One of the important problems in the above-mentioned hydrocracking of heavy oil is a decrease in catalyst activity. In other words, heavy oil contains asphaltene, which also contains heavy metals such as vanadium and nickel, which significantly poisons the catalyst, which is a factor that hinders economical long-term continuous operation. It has become. In order to solve this problem, efforts have been made to improve catalysts, and many excellent catalysts have been proposed, but the state of the catalysts is still far from satisfactory.

また水素処理における別のM要な問題は水素コストが筒
いことである。重質油の水素化処理においては、原料油
が重質になればなるほど水素消費量が増大し、これに女
する費用は膨大なものとなる。
Another important problem in hydrogen processing is the high cost of hydrogen. In the hydroprocessing of heavy oil, the heavier the feedstock oil, the greater the amount of hydrogen consumed, and the cost associated with this increases enormously.

この水素コストの問題を解決するための一つの方法とし
て多環芳香族化合物を水素化した水素供与性を有する化
合物を用いる水素化方法が知られており (例えば米圓
特許第4430197号)、かような水素供与化合物を
用いて重質油を水素化分解する場合には、必ずしも触媒
は必要とせず、また水素ガスも比較的低圧で分解反応が
進行することもよく知られている(例えばU 54.2
94.686号およびoil &  Gas Jour
nal Nov、 22.1982、p、111〜11
6)。
As one method to solve this hydrogen cost problem, a hydrogenation method using a hydrogen-donating compound obtained by hydrogenating a polycyclic aromatic compound is known (for example, U.S. Pat. No. 4,430,197). It is well known that when heavy oil is hydrocracked using a hydrogen donating compound such as U 54.2
No. 94.686 and Oil & Gas Jour
nal Nov, 22.1982, p, 111-11
6).

ここに水素供与性溶剤(hyd、roggn dono
r)とは例えばナフタリン、アントラセン等のような多
I芳香族環を有する炭化水素化合物に水素添加した化合
物であって、このような水素供与体は高温(例えば38
0℃以上)にすることによって水素を放出する性質を有
することはよく知られておシ、この性質を工業的に利用
しようという試みも多くなされている(例えば米国特許
第2953513号)。また重質油の熱分解油、接触分
解油および水素化分解油中にはこのような水素供与性を
有する物質が含まれ、それ自体有効な水素供与体として
働くこともよく知られている(例えば米国特許第3,9
7へ545号)。
Hydrogen donating solvent (hydr, roggn dono)
r) is a compound obtained by hydrogenating a hydrocarbon compound having a multi-I aromatic ring, such as naphthalene, anthracene, etc., and such a hydrogen donor is heated at a high temperature (for example, 38
It is well known that carbon dioxide has the property of releasing hydrogen when the temperature is heated to 0° C. or higher, and many attempts have been made to utilize this property industrially (for example, US Pat. No. 2,953,513). It is also well known that pyrolysis oil, catalytic cracking oil, and hydrocracked oil of heavy oil contain substances that have such hydrogen donating properties, and that they themselves act as effective hydrogen donors ( For example, U.S. Patent Nos. 3 and 9
7 to No. 545).

本発明の目的は触媒活性の低下を軽減し、運転条件を緩
和しかつ水素消費量を減少し得る、アスファルテン分L
O重量%以上を含有する重質油の、水素供与性溶剤を用
いた水素化処理方法を提供するにある。
The object of the present invention is to reduce the decrease in catalyst activity, ease operating conditions, and reduce hydrogen consumption.
An object of the present invention is to provide a method for hydrogenating heavy oil containing 0% by weight or more using a hydrogen-donating solvent.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的はアスファルテン分をLO重量%以上
含有する重質炭化水素油を水素化分解して軽質化する方
法において、 (1)原料重質油を水素供与性溶剤の存在下で分解せし
める第1段階と (2)上記第1段階の反応生成混合物を固体触媒及び多
孔性固体からなる群の1種又は2種以上の固体状物質の
存在下でさらに分解せしめ、かつ原料油中に含有される
重金属類の50重i−%以上を前記固体状物質に付着せ
しめる第2段階と(3)上記第2段階における反応生成
混合物を、重金属類付着固体状物質から分離し、該分離
された第1段反応生成混合物を、水素ガス及び水素化触
媒の存在下に水素化せしめる第3段階とからなり、 (4)上記第3段階の反応生成混合物を水素供与性溶剤
を含む留分及びその他の所望の留分に分別し、水素供与
性容剤含有留分をに1段階に再循環する ことを特徴とする本発明の重質油の軽質化方法によって
達成される。
The object of the present invention is to provide a method for hydrocracking and lightening heavy hydrocarbon oil containing asphaltene content of LO weight % or more, which includes: (1) decomposing raw material heavy oil in the presence of a hydrogen-donating solvent; (2) the reaction product mixture of the first step is further decomposed in the presence of one or more solid substances from the group consisting of a solid catalyst and a porous solid, and is contained in the feedstock oil; (3) separating the reaction product mixture in the second step from the solid material to which the heavy metals have been attached; a third step in which the first step reaction product mixture is hydrogenated in the presence of hydrogen gas and a hydrogenation catalyst; (4) the reaction product mixture in the third step is converted into a fraction containing a hydrogen-donating solvent and other This is achieved by the method of lightening heavy oil of the present invention, which is characterized in that the hydrogen-donating agent-containing fraction is fractionated into a desired fraction, and the hydrogen-donating agent-containing fraction is recycled in one stage.

本発明の方法は、前記重質油の水素分解油中には水素供
与性化物が含まれ、それ自体水素供与体として作用する
という事実を利用し、3段階で重質油を処理することを
その特徴の一つとする。本発明者らは実験によって次の
事実を明らかにした、すなわち纂1段階で水素供与性溶
剤を用いて重質油を分解し、次に第2段階で重質油の分
解を継続することによりifX油中に含まれるバナジウ
ム、ニッケル等の金属は非常に除去され易い状態にし、
この第2段階においてこのバナジウム、ニッケル等の金
属を除去することによシ、第3段階へ入る分解油は軽質
化されると同時に金属を大部分除かれているため、第3
段階においては触媒の活性低下が著しく軽減され、かつ
運転条件が著しく温和となる。
The method of the present invention utilizes the fact that hydrogen-donating compounds are contained in the hydrocracked oil of heavy oil and act as hydrogen donors themselves, and process heavy oil in three stages. This is one of its characteristics. The inventors of the present invention have clarified the following facts through experiments, that is, by decomposing heavy oil using a hydrogen-donating solvent in the first stage, and then continuing to decompose the heavy oil in the second stage. Metals such as vanadium and nickel contained in ifX oil are made in a state that is very easy to remove.
By removing metals such as vanadium and nickel in this second stage, the cracked oil entering the third stage is lightened and at the same time most of the metals are removed.
In this stage, the reduction in catalyst activity is significantly reduced and the operating conditions become significantly milder.

本発明の方法をさらに具体的に説明する。The method of the present invention will be explained in more detail.

添付図面の第1図に本発明を実施するフローチャートの
一例を示す。
An example of a flowchart for implementing the present invention is shown in FIG. 1 of the accompanying drawings.

K1図において1は第1段反応塔、2は第2段反応塔、
3は第3段反応塔、4は分離装置、5は原料重質油導入
路、6は水素ガス導入路、7.8及び9はそれぞれ第1
、第2及び第3反応塔における反応生成混合物の淀出路
、10は分離装置4から第1反応塔への水素供与性溶剤
の再循環流路、11は分離装置からの製品流出路、12
は水素供与性溶剤のメークアップ導入路である。
In the K1 diagram, 1 is the first stage reaction tower, 2 is the second stage reaction tower,
3 is the third stage reaction tower, 4 is the separation device, 5 is the raw material heavy oil introduction path, 6 is the hydrogen gas introduction path, 7.8 and 9 are the first
, a stagnation channel for the reaction product mixture in the second and third reaction towers, 10 a recirculation channel for the hydrogen-donating solvent from the separation device 4 to the first reaction tower, 11 a product outlet channel from the separation device, 12
is the makeup introduction route for the hydrogen-donating solvent.

原料重質油は原料重質油導入路5を経て、再循環流路1
0からの再循環水素供与性rd剤と共に第1段反応塔1
に導かれ、ここで水素供与性溶剤を用いた分解が行なわ
れる。この第1反応塔での反応は380℃〜470℃の
温菱で行なうのが好ましい。第1反応塔での反応は充て
ん物等のない空塔において行う。次に、第1段反応塔か
らの分解生成物ならびに*1段反応塔において水素を放
出した水素供与性溶剤をともに直接第2段反応塔に導く
The raw material heavy oil passes through the raw material heavy oil introduction path 5 and then into the recirculation flow path 1.
1st stage reaction column 1 with recirculated hydrogen donating rd agent from 0
decomposition using a hydrogen-donating solvent. The reaction in this first reaction tower is preferably carried out in a heated oven at 380°C to 470°C. The reaction in the first reaction column is carried out in an empty column without any packing material or the like. Next, both the decomposition product from the first-stage reaction tower and the hydrogen-donating solvent that released hydrogen in the first-stage reaction tower are directly led to the second-stage reaction tower.

第2反応塔では固体触媒、多孔性固体またはこれらの両
者の固体状物質を存在せしめ、第1反応塔の分解によっ
て除去され易い状態になったバナジウム、ニッケル等を
付着せしめる。ここで、原料油中に含有されている重金
属類の50重量%以上を前記の固体状物質に付着せしめ
る。第2反応塔での反応は、300℃〜470℃の温度
で行うのが好ましい。次に第2段反応塔からの分解生成
物ならびに第2段反応塔において水素を放出した水素供
与性溶剤をともに直接第3段反応塔に導く。
In the second reaction tower, a solid catalyst, a porous solid, or both of these solid substances are made to exist, and vanadium, nickel, etc., which are easily removed by decomposition in the first reaction tower, are deposited. Here, 50% by weight or more of the heavy metals contained in the raw material oil are allowed to adhere to the solid substance. The reaction in the second reaction tower is preferably carried out at a temperature of 300°C to 470°C. Next, both the decomposition product from the second stage reaction tower and the hydrogen-donating solvent that released hydrogen in the second stage reaction tower are directly led to the third stage reaction tower.

ただし第2段反応塔内に存在する固体触媒または/およ
び多孔質物質は第3段反応塔へは導かない。
However, the solid catalyst and/or porous material present in the second stage reaction tower is not led to the third stage reaction tower.

すなわち第2段反応塔内の反応後の、固体触媒及び多孔
性固体を除く全内容物(反応生成混合物という)を第3
反応塔へ辱く。
In other words, after the reaction in the second stage reaction tower, the entire contents excluding the solid catalyst and porous solids (referred to as reaction product mixture) are
Shame on the reaction tower.

なお、第1及び第2反応塔においては水素の供給は水素
供与性溶剤によシ行なわれるので、水素がスとくに高圧
の水素ガスは必らずしも必要ではないが、コーキング防
止あるいは水素供与性溶剤を液相に保つために加圧する
のがよい。しかしその圧力は従来の触媒を用いる方法の
ような高圧を必要とせず20〜100 Kf/CM” 
 ・g程度で十分である。また第3段反応塔3において
は高圧の水素ガスを必要とし、これとjgl及び第2反
応塔の水素圧力とを共通にしておくことが好都合である
ことから、通常は水素ガス導入路13からg1段反応塔
へ水素ガスを導入し、第1及び第2反応塔の水素ガス圧
力を20〜150に9/era”  ・gに保って反応
を行うのが好ましい。
Note that in the first and second reaction towers, hydrogen is supplied using a hydrogen-donating solvent, so hydrogen gas is not necessarily required, especially high-pressure hydrogen gas, but it can be used to prevent coking or to provide hydrogen. Pressure is preferably applied to keep the solvent in the liquid phase. However, the pressure is 20 to 100 Kf/CM, which does not require high pressure like the conventional method using a catalyst.
・About 1 g is sufficient. In addition, the third stage reaction tower 3 requires high pressure hydrogen gas, and it is convenient to share this with the hydrogen pressure of jgl and the second reaction tower. It is preferable to introduce hydrogen gas into the first-stage reaction tower and conduct the reaction while maintaining the hydrogen gas pressure in the first and second reaction towers at 20 to 150, 9/era''·g.

第2段反応塔2からの分解生成物とともに水素供与性溶
剤を流路9を経て第3反応塔3に導き、ここで水素化触
媒の存在下で水素化する。この第3段反応塔での水素化
は従来の固足床による水素化と何ら変ったところはない
。第3段反応塔では反応温度300℃〜400℃、水素
圧力20〜150 Kq/cm”  ・g1水素化触媒
の存在下で水素化を行う。
The hydrogen-donating solvent together with the decomposition product from the second stage reaction tower 2 is led to the third reaction tower 3 via the flow path 9, where it is hydrogenated in the presence of a hydrogenation catalyst. Hydrogenation in this third stage reaction column is no different from conventional hydrogenation using a fixed bed. In the third stage reaction tower, hydrogenation is carried out at a reaction temperature of 300° C. to 400° C. and a hydrogen pressure of 20 to 150 Kq/cm”·g1 in the presence of a hydrogenation catalyst.

第1及び第2段反応塔で重質原料油は軽質化されている
ために第3段反応塔の運転条件はマイルドなものでよく
、また第2段反応塔において金属が除去されているため
に、第3段反応塔の触媒の活性低下は非常に軽微なもの
となる。
Since the heavy feedstock oil is lightened in the first and second stage reaction towers, the operating conditions of the third stage reaction tower can be mild, and since metals are removed in the second stage reaction tower, In addition, the decrease in the activity of the catalyst in the third stage reaction column is very slight.

第3段反応塔での水素化によシ、水素供与性解削は再生
(水素化)され、再び水垢供与性を有する物質となり、
同時に分解生成物は水素化精製され、いおう分、窒素分
等の不純物は除去されて製品となる。
Through hydrogenation in the third stage reaction tower, the hydrogen-donating slag is regenerated (hydrogenated) and becomes a substance with scale-donating properties again.
At the same time, the decomposition products are hydrorefined to remove impurities such as sulfur and nitrogen, resulting in products.

第3反応塔での反応生成混合物、すなわち固体触媒を除
く反応塔内の全内容物は流1R1r9を経て分離装置4
に送られ、蒸留等の分離操作によって各留分に分離し、
製品流Mllを経て、ガス、ガンリ/す7丈留分、灯油
留分、軽油留分、重油留分等の所望の製品を回収し、水
素供与性溶剤は循環路10を経て再び第1反応塔に循環
使用する。この際水素供与性溶剤のロスがある丸め、メ
ークアップ12をすることが好ましい。
The reaction product mixture in the third reaction column, i.e. the entire contents of the reaction column except the solid catalyst, passes through stream 1R1r9 to separator 4.
It is sent to the
Through the product stream Mll, desired products such as gas, Ganli/su7jo fraction, kerosene fraction, light oil fraction, heavy oil fraction, etc. are recovered, and the hydrogen-donating solvent passes through the circulation path 10 and returns to the first reaction. Used for circulation in the tower. At this time, it is preferable to perform rounding and make-up 12 in which the hydrogen-donating solvent is lost.

本発明において用いられる水素供与性溶剤の好適例の一
つは多環の芳香族炭化水素の水素化物である。該多環の
芳香族炭化水素の例としては2〜6環、好ましくは2〜
4環の芳香族炭化水素又はこれらの誘導体があげられる
。該芳香族炭化水素は1種又は2種以上を併用できる。
One of the preferred examples of the hydrogen-donating solvent used in the present invention is a hydride of polycyclic aromatic hydrocarbon. Examples of the polycyclic aromatic hydrocarbon include 2 to 6 rings, preferably 2 to 6 rings.
Examples include 4-ring aromatic hydrocarbons and derivatives thereof. These aromatic hydrocarbons can be used alone or in combination of two or more.

該芳香族炭化水素の具体例としてはす7タレン、アント
ラセン、7エナントレン、ピレン、ナ7タセ/、クリセ
ン、ベンゾピレン、ペリレン、ピセン等又はこれらの誘
導体があげられる。
Specific examples of the aromatic hydrocarbons include lotus 7-talene, anthracene, 7-enanthrene, pyrene, na7-tase/, chrysene, benzopyrene, perylene, picene, etc., or derivatives thereof.

また、沸点が150℃〜500℃で、前記の多環の芳香
族炭化水素含有量が20wtTo以上の炭化水素油の水
素化物も本発明の水素供与性溶剤として用いるに適する
。該炭化水素油の具体例としては接触分解装置(FCC
)のサイクル油、接触改質装置の塔底油、ナフサの熱分
解油等の石油から得られる各種の製品またはタール油、
アントラセン油、クレオソート油、石炭液化油等の石炭
から得られる各稙製品等があけられる。
Hydrogenated hydrocarbon oils having a boiling point of 150° C. to 500° C. and a polycyclic aromatic hydrocarbon content of 20 wtTo or more are also suitable for use as the hydrogen-donating solvent of the present invention. A specific example of the hydrocarbon oil is a catalytic cracker (FCC).
), various products obtained from petroleum such as cycle oil, bottom oil of catalytic reforming equipment, pyrolysis oil of naphtha, or tar oil,
Various products obtained from coal such as anthracene oil, creosote oil, coal liquefied oil, etc. can be opened.

本発明においてはす7タレン、アント2セン等を主成分
とするFCCサイクル油、ナフサの熱分解油のなかから
選ばれるものが好ましく用いられる。
In the present invention, an oil selected from FCC cycle oil and naphtha pyrolysis oil containing 7-talene, anth-2 cene, etc. as main components is preferably used.

本発明において前記の多環の芳香族炭化水素および炭化
水素油は前以て水素化して本装置に張込んでもよいが、
本装置に水素ガスが共存するので本装置内で水素化され
て水素供与柱心剤となるから必ずしも前以て水素化しな
くてもよい。
In the present invention, the polycyclic aromatic hydrocarbon and hydrocarbon oil may be hydrogenated in advance and charged into the present apparatus,
Since hydrogen gas coexists in this device, it is hydrogenated in this device and becomes a hydrogen-donating pillar core agent, so it is not necessarily necessary to hydrogenate it in advance.

本発明の方法に使用する原料油はアスファルテン分(ペ
ンタン不醇分)を1.0−以上、好ましくは5〜30%
含み、沸点350℃以上の留分が50−以上を占める重
質油、常圧残渣油および減圧残渣油あるいは石炭、オイ
ルサンド、オイルシェール、ビテユーメン等から得られ
る油等である。
The raw material oil used in the method of the present invention has an asphaltene content (pentane insoluble content) of 1.0% or more, preferably 5 to 30%.
These include heavy oil, atmospheric residual oil, vacuum residual oil, oil obtained from coal, oil sand, oil shale, bitumen, etc., in which the fraction with a boiling point of 350° C. or higher accounts for 50° C. or more.

本発明の第1R反応塔に使用する固体触媒または/およ
び多孔質固体は重質油の分解に寄与するだけでなく、分
解によって除去され易くなった金属を補集、付着するこ
とが目的であり、固体触媒および多孔質固体の性質とし
ては金属付着能力が大きいことが好ましい。
The purpose of the solid catalyst and/or porous solid used in the 1R reaction tower of the present invention is not only to contribute to the decomposition of heavy oil, but also to collect and attach metals that are easily removed by decomposition. As for the properties of the solid catalyst and porous solid, it is preferable that the metal adhesion ability is high.

固体触媒は特に制約はなく、他の重質油処理プロセス、
例えば重質油の水素化分解、水素化脱金属、水素化脱硫
等に使用する触媒あるいは使用済触媒を使用することが
できる。
There are no particular restrictions on the solid catalyst, and it can be used in other heavy oil processing processes,
For example, a catalyst used for hydrocracking, hydrodemetalization, hydrodesulfurization, etc. of heavy oil or a used catalyst can be used.

またこれらに新触媒を少量混合することもできるし、あ
るいは比較的活性の低い触媒を上記廃触媒の代9に使用
することもできる。固体触媒としてはアルミナ、シリカ
、シリカ−アルミナ、アルミナ−ボリア、シリカ−アル
ミナ−マグネシア、シリカ−アルミナ−チタニア等の無
機物質にニッケル、コバルト等の第1族及びモリブデン
、タングステン等の第VIB族の金属酸化物X線硫化物
を担持したM1媒が例示できる。多孔性固体としてはア
ルミナ、シリカ−アルミナ、セラミックス、炭素質物質
、クレイ等の安価なものが例示できる。
Further, a small amount of new catalyst can be mixed with these, or a catalyst with relatively low activity can be used in place of the above-mentioned waste catalyst. Solid catalysts include inorganic substances such as alumina, silica, silica-alumina, alumina-boria, silica-alumina-magnesia, silica-alumina-titania, Group 1 substances such as nickel and cobalt, and Group VIB substances such as molybdenum and tungsten. An example is an M1 medium carrying a metal oxide X-ray sulfide. Examples of porous solids include inexpensive ones such as alumina, silica-alumina, ceramics, carbonaceous materials, and clay.

本発明の第3段反応塔に使用する触媒は本方法特有の制
約はなく、水素化処理に一般的に使用されている触媒を
それぞれの目的に使用することができ、どのような触媒
を使用するかは原料油の組成、性状ならびに必要とする
製品の組成、性状により選択することができる。
The catalyst used in the third stage reaction column of the present invention is not limited to this method, and any catalyst commonly used in hydrotreating can be used for each purpose. The choice can be made depending on the composition and properties of the raw material oil and the composition and properties of the required product.

第3段反応に用いる触媒としては、アルミナ、シリカ、
シリカ−アルミナ、アルミナ−ボリア、シリカ−アルミ
ナ−マグネシア、シリカ−アルミナ−チタニア等の無機
の担体にニッケル、コバルト等の第1族及びモリブデン
、タングステン等の第ViB族の金属酸化物又は硫化物
を担持したものが好ましく用いられる。触媒の性状、形
状は従来用いられているうち任意のものが用いられる。
Catalysts used in the third stage reaction include alumina, silica,
Group 1 metal oxides or sulfides such as nickel and cobalt and Group ViB metals such as molybdenum and tungsten are added to inorganic supports such as silica-alumina, alumina-boria, silica-alumina-magnesia, and silica-alumina-titania. A supported one is preferably used. As for the properties and shape of the catalyst, any of those conventionally used can be used.

本発明において、第2段および第3段反応塔型式は固定
床式、移動床式および流動床式のいずれを用いてもよい
が、特に固定床式を用いることが好ましい。
In the present invention, any of a fixed bed type, a moving bed type, and a fluidized bed type may be used as the second and third stage reaction tower types, but it is particularly preferable to use a fixed bed type.

本発明の運転条件は原料重質油の張込i (LH5V)
  (原料油張込量/水素化触媒量)(hr−’)を0
.1−2.0、水素ガス供給i (Nm” /kl原料
油)を200〜1500、水素供与性溶剤の循環数−j
![(kl/kl原料油)を0.1〜zo、好ましくは
0.1〜1. oの範囲で行うことが好ましい。
The operating conditions of the present invention are charging of raw material heavy oil (LH5V)
(Amount of feedstock oil charged / Amount of hydrogenation catalyst) (hr-') is 0
.. 1-2.0, hydrogen gas supply i (Nm”/kl feedstock oil) from 200 to 1500, circulation number of hydrogen-donating solvent −j
! [(kl/kl raw material oil) from 0.1 to zo, preferably from 0.1 to 1. It is preferable to carry out within the range of o.

〔実施例〕〔Example〕

実施例 本発明の方法によシ、カフジ減圧残油の軽質化を目的に
実験を行なつ念。第4段反応塔は空塔とし第2段反応塔
にはすでに工業的に約a、soo時間使用された常圧残
油の直接脱硫触媒を下向流固定床として用いた。第3段
反応塔には触媒としてシリカ−アルミナ担体(細孔容積
0.65■/g1表面積210m”7g、平均細孔半径
TOA)にコバルト (40wt%)、モリブデン(t
tswtチ)を担持した720インチ押出し成壓品を充
てんして使用した。反応装置としては第1段、1iE2
段及び第3段の各反応塔ともそれぞれ内径40xφ、長
さ1,300mのものを用い、第2段及び第3段の反応
塔のそれぞれに上記各触媒全光てん長さし。OO,にな
るよう元てんした。第4表に示す原料油および水素ガス
を加熱器で加熱したのち、下向流で反応塔に導いた。水
素供与性溶剤としては第4表に性状を示すような熱分解
油と呼ばれるナフサ熱分解装置塔底油を用い、メークア
ップ量は原料油に対して25 wtq6とした。  第
3段反応塔から出たガスおよび液は気−液分離装置でガ
スを分離したのち、液は稍留塔にかけ、200℃〜25
0℃の留分を回収し、水素供与性溶剤として循jJK便
用した。溶剤の佑環量は原料油のL5倍とした。水素ガ
スは上記気液分離装置で分離したのち一部循環使用し、
メークアップ水素と混合したのち原料油および循環浴剤
とともに加熱器を通して第1段反応塔に張込んだ。運転
時間は連続2.3ooFRf間行なった。地理した原料
油の性状および製品の性状を第1社に示した。運転条件
は第2表に示したとおシである。また本笑駿での物質収
支1第3表に示した。また分解率の時間的変化を第□2
図に示した。ここで分解率は α−b  α:原料油中の565℃以上の留α    
 分の割合(wt%) b:製品中の565℃以上の留分 の割合(wt%) で定義した。なお、第1段反応塔での脱金属率を見るた
めKi2段反応塔出口で液のサンプルを採取し、金属量
を測定した、その結果を第5表に示した。
EXAMPLE An experiment was carried out for the purpose of reducing the weight of vacuum residue oil by using the method of the present invention. The fourth stage reaction tower was an empty tower, and the second stage reaction tower was equipped with a direct desulfurization catalyst for atmospheric residual oil, which had already been used industrially for about 1,000 hours, as a downward flow fixed bed. A silica-alumina carrier (pore volume 0.65 / g 1 surface area 210 m'' 7 g, average pore radius TOA) was used as a catalyst in the third stage reaction tower, cobalt (40 wt%), molybdenum (t
A 720-inch extruded product carrying tswt was filled and used. The reactor is the first stage, 1iE2
Each of the stage and third stage reaction towers had an inner diameter of 40 x φ and a length of 1,300 m, and each of the above-mentioned catalysts had the same total length as each of the second and third stage reaction towers. I tried to make it OO. The raw material oil and hydrogen gas shown in Table 4 were heated with a heater and then introduced into the reaction tower in a downward flow. As the hydrogen-donating solvent, naphtha thermal cracker bottom oil, called thermal cracking oil, whose properties are shown in Table 4, was used, and the make-up amount was 25 wtq6 relative to the feedstock oil. The gas and liquid coming out of the third stage reaction tower are separated in a gas-liquid separator, and then the liquid is passed through a distillation tower at 200°C to 25°C.
The 0°C fraction was collected and recycled as a hydrogen-donating solvent. The amount of solvent used was L5 times that of the raw material oil. After the hydrogen gas is separated in the gas-liquid separator mentioned above, a portion of it is recycled and used.
After mixing with make-up hydrogen, it was charged into the first stage reaction tower together with the raw material oil and circulating bath agent through a heater. The operation time was 2.3ooFRf continuously. The properties of the raw material oil and the properties of the product were shown to Company 1. The operating conditions were as shown in Table 2. It is also shown in Table 3 of material balance 1 at Honsho Shun. In addition, the temporal change in the decomposition rate is shown in □2.
Shown in the figure. Here, the decomposition rate is α-b
(wt%) b: Defined as the fraction (wt%) of fractions of 565°C or higher in the product. In order to check the metal removal rate in the first stage reaction tower, a liquid sample was taken at the outlet of the Ki second stage reaction tower and the amount of metal was measured. The results are shown in Table 5.

比較例 従来の固定床方式反応装置により、実施例と同一原料ケ
同じ装置および同じ触媒を用いて水素化分解の実験を行
なった。ただし、第11第2及び第3段反応塔のいずれ
においても実施例の第3段反応塔に充てんした触媒を用
いた。系内への水素供与性溶剤の添加ならびに系内での
水素供与性溶剤の循環は行なわず、水素および触媒を用
いた従来の水素化分解方式とした。運転は2300時間
連続して行ない、実施例と比較した。運転時間は第2表
に、製品性状および物質収支をそれぞれ第1表および第
3表に示した。また分解率の時間的変化を第2図に示し
た。
Comparative Example A hydrocracking experiment was conducted using a conventional fixed bed reactor using the same raw materials, the same equipment, and the same catalyst as in the example. However, in both the second and third stage reaction towers of No. 11, the catalyst packed in the third stage reaction tower of the example was used. A conventional hydrocracking method using hydrogen and a catalyst was used instead of adding a hydrogen-donating solvent to the system or circulating the hydrogen-donating solvent within the system. The operation was continued for 2300 hours and compared with the example. The operating time is shown in Table 2, and the product properties and material balance are shown in Tables 1 and 3, respectively. Figure 2 also shows the change in decomposition rate over time.

なお、原料油および水素ガスの張込みは実施例と同じく
下向流とした。
Note that the feedstock oil and hydrogen gas were charged in a downward flow as in the example.

また、g2段反応塔出口での分解率および脱金属率を第
5表に示した。
Furthermore, Table 5 shows the decomposition rate and metal removal rate at the outlet of the g2-stage reaction tower.

第2表  運転条件 第3表  物質収支および水素消費量 第4表  熱分解油の性状 比重      LO28 粘度637.8℃ 420 @9&9℃ L33 構造分析 チCA (芳香族ン 719 %CN (+:yテy)2 al チ(:’、p(nづ7(ン)40 分留性状(’C) IBP      192 EP        390 第5表  第2段反応塔における分解率および脱金属率
運転時間 1800時間 〔発明の効果〕 実施例および比較例の結果から本発明は以下のような効
果を有することが明らかである。
Table 2 Operating conditions Table 3 Material balance and hydrogen consumption Table 4 Specific gravity of pyrolysis oil Properties and specific gravity of pyrolysis oil LO28 Viscosity 637.8℃ 420 @9 & 9℃ L33 Structural analysis y)2 al CH(:', p(nzu7(n)40 Fractional distillation properties ('C) IBP 192 EP 390 Table 5 Decomposition rate and metal removal rate in the second stage reaction tower Operating time 1800 hours [Invention [Effects] From the results of Examples and Comparative Examples, it is clear that the present invention has the following effects.

第2図に示すとおシ、実施例においては分解率の低下が
ほとんど見られないのに対して比較例において拡、分解
率の低下が著しい、これは触媒の活性低下に起因するも
のであることは明らかである。その原因としては(1)
金属による活性低下(2)アスファルテンからの炭素質
による活性低下に分けられる。実施例の第1段反応塔は
水素供与性溶剤による分解域で、触媒がなくとも分解が
進行する。
As shown in Figure 2, there is almost no decrease in the decomposition rate in the Examples, but there is a significant decrease in the decomposition rate in the Comparative Examples, which may be due to a decrease in the activity of the catalyst. is clear. The reason is (1)
Activity reduction due to metal (2) Activity reduction due to carbon from asphaltene. The first stage reaction tower of the example is a decomposition zone using a hydrogen-donating solvent, and decomposition proceeds even without a catalyst.

すでに工業的に使用された触媒を充てんした実施例の第
2段反応塔では第5表に示すとおシ、78%分解率に達
する軽質化が行なわれ、かつ70〜85%の金属が除去
されている。したがって、第3段反応塔の触媒上へのバ
ナジウム、ニッケル等の金属付着は非常に少なく、これ
に起因する触媒の活性低下は軽微である。また第3段反
応塔の温度は実施例においては340℃と比較例の40
0℃に比較して低く、シたがって7スフアルテンからの
炭素質による活性低下も小さい。これらの理由により、
実施例においては運転時間による分解率の低下はほとん
どないkかかわらず、比較例においては触媒の活性低下
による分解率の低下が著しい。
As shown in Table 5, in the second stage reaction tower of the example filled with a catalyst that has already been used industrially, lightening was achieved reaching a decomposition rate of 78%, and 70 to 85% of metals were removed. ing. Therefore, the adhesion of metals such as vanadium and nickel onto the catalyst in the third stage reaction tower is extremely small, and the decrease in catalyst activity caused by this is slight. The temperature of the third stage reaction tower was 340°C in the example and 40°C in the comparative example.
It is lower than that at 0°C, and therefore the decrease in activity due to carbonaceous matter from 7-sphaltene is also small. For these reasons,
In the Examples, there is almost no decrease in the decomposition rate due to operating time, but in the Comparative Examples, the decomposition rate decreases significantly due to a decrease in the activity of the catalyst.

(2)分解率が高い。(2) High decomposition rate.

本発明の方法は比較例に比べて通油量が大きいC111
,2表11Cおu−CLH5V=CL3、比!1e例t
i o、 2 )にもかかわらず分解率が大きい(第5
表および第2図)。これはN1段反応塔−ならびに第2
段反応塔において著しい軽質化が生じているためで、氷
水供与性溶剤による軽質化の効果が大きいことを示して
いる。
The method of the present invention allows C111 to pass through a larger amount of oil than the comparative example.
, 2 Table 11Cu-CLH5V=CL3, ratio! 1e example t
io, 2), the decomposition rate is large (5th
Table and Figure 2). This is the N1 stage reaction column and the second
This is because significant lightening occurs in the plate reaction tower, indicating that the lightening effect of the ice-water donating solvent is significant.

(3)低い反応圧力で実施できる。(3) Can be carried out at low reaction pressure.

第2表に示すとおシ、実施例は70 Kg / cm 
”  ・gで実施している(比較例は170Kg/cm
”  ・g)。
The weight shown in Table 2 is 70 Kg/cm in the example.
” ・Executed at 170 kg/cm (comparative example)
”・g).

根本的には水素供与性溶剤を用いた場合には、水素の移
動が液相で行なわれるため、水素供与性溶剤を液相に保
っておく圧力で十分であり、気相の水素を用いるような
高圧は必要としない。また、本発明の方法の第3段反応
塔においては、第5表に示すようKすでに軽質化された
油の水素化処理および水素供与性溶剤の水素化を行なう
。これらの水素化反応のためにはそれほど高圧は必要と
せず実施例のような圧力で十分である。
Fundamentally, when a hydrogen-donating solvent is used, hydrogen transfer occurs in the liquid phase, so the pressure that keeps the hydrogen-donating solvent in the liquid phase is sufficient; High pressure is not required. In addition, in the third stage reaction column of the method of the present invention, as shown in Table 5, the K-already lightened oil is hydrotreated and the hydrogen-donating solvent is hydrogenated. For these hydrogenation reactions, a very high pressure is not required, and the pressure as in the example is sufficient.

(4)水素消費量が少ない。(4) Low hydrogen consumption.

第3表に示すとおり、分解率が高いにもかかわらず、水
素消費量が少なくてよい。この理由は第1段および第2
段反応塔においては、水素の移動が液相で行なわれるた
め、効率的に行なわれ、分解率が高いにもかかわらず水
素の消費量が少ない、また第3段反応塔においてはすで
に軽質化された油の水素化を行なうため、比較的低温で
の反応となり、水素消費量は小さく、また水素供与性浴
剤の水素化は効率的に行なわれ、無駄な水素の消費が少
ない。したがって第1段反応塔、第2段反応塔および第
3段反応塔合計の水素の消費量は小さくても効果的な軽
質化が行なわれる。
As shown in Table 3, despite the high decomposition rate, the amount of hydrogen consumed may be small. The reason for this is the first and second stage.
In the stage reaction tower, hydrogen transfer is carried out in the liquid phase, so hydrogen is efficiently transferred, and despite the high decomposition rate, the amount of hydrogen consumed is small. Since the hydrogenation of oil is carried out, the reaction takes place at a relatively low temperature, and the amount of hydrogen consumed is small. Furthermore, hydrogenation of the hydrogen-donating bath agent is carried out efficiently, and there is little wasteful consumption of hydrogen. Therefore, even if the total amount of hydrogen consumed in the first, second and third reaction columns is small, effective lightening can be achieved.

以上の記述により、本発明の方法の特徴ならびに利点は
明らかで、従来の方法を著しく改良した方法であること
が明らかであろう。
From the above description, the features and advantages of the method of the present invention will be apparent and it will be apparent that the method is a significant improvement over conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのブロック・ダイ
アダラムであシ、第2図は実施例および比較例における
分解率の時間的変化を示すグラフである。
FIG. 1 is a block diagram for explaining the present invention in detail, and FIG. 2 is a graph showing temporal changes in decomposition rates in Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】 1、アスファルテン分を1.0重量%以上含有する重質
炭化水素油を水素分解して軽質化する方法において、 (1)原料重質油を水素供与性溶剤の存在下で分解せし
める第1段階と (2)上記第1段階の反応生成混合物を固体触媒及び多
孔性固体からなる群の1種又は2種以上の固体状物質の
存在下でさらに分解せしめ、かつ原料油中に含有される
重金属類の50重量%以上を前記固体状物質に付着せし
める第2段階と (3)上記第2段階における反応生成混合物を、重金属
類付着固体状物質から分離し、該分離された第2段階反
応生成混合物を、水素ガス及び水素化触媒の存在下に水
素化せしめる第3段階とからなり、 (4)上記第3段階の反応生成混合物を水素供与性溶剤
を含む留分及びその他の所望の留分に分別し、水素供与
性溶剤含有留分を第1段階に再循環する ことを特徴とする重質油の軽質化方法。 2、第1段階の反応を水素ガスの存在下に行う特許請求
の範囲第1項記載の方法。 3、第2段階の反応を水素ガスの存在下に行う特許請求
の範囲第1項記載の方法。 4、第1及び第2段階において水素供与性溶剤から少く
とも一部の水素が放出せしめられ、第3段階において該
水素を放出した水素供与性溶媒が水素化され、水素供与
性溶剤が生成せしめられる特許請求の範囲第1項記載の
方法。 5、第1段階の温度を380℃〜470℃、第2段階の
温度を300℃〜470℃、第3段階の温度を300℃
〜400℃に保つ特許請求の範囲第1項記載の方法。 6、第1段階、第2段階および第3段階の圧力を水素ガ
スによつて20〜150Kg/cm^2・gに保つ特許
請求の範囲第1項記載の方法。 7、水素供与性溶剤が多環の芳香族炭化水素の水素化物
である特許請求の範囲第1項記載の方法。 8、水素供与性溶剤が沸点150℃〜500℃で多環の
芳香族炭化水素含有量が20vot%以上の炭化水素油
の水素化物である特許請求の範囲第1項記載の方法。 9、水素供与性溶剤含有留分の循環液量が0.1〜2.
0(kl/kl原料油)である特許請求の範囲第1項記
載の方法。 10、水素供与性溶剤を系外から添加する特許請求の範
囲第1項記載の方法。 11、第2段階の固体状物質および第3段階の水素化触
媒は固定床として用いる特許請求の範囲第1項記載の方
法。
[Claims] 1. A method for lightening heavy hydrocarbon oil containing 1.0% by weight or more of asphaltene by hydrogen cracking: (1) raw material heavy oil in the presence of a hydrogen-donating solvent; (2) further decomposing the reaction product mixture of the first stage in the presence of one or more solid substances from the group consisting of a solid catalyst and a porous solid; a second step in which 50% by weight or more of the heavy metals contained therein are attached to the solid material; and (3) the reaction product mixture in the second step is separated from the solid material to which the heavy metals are attached; a third step in which the second step reaction product mixture is hydrogenated in the presence of hydrogen gas and a hydrogenation catalyst; A method for lightening heavy oil, which comprises fractionating it into other desired fractions and recycling the hydrogen-donating solvent-containing fraction to the first stage. 2. The method according to claim 1, wherein the first step reaction is carried out in the presence of hydrogen gas. 3. The method according to claim 1, wherein the second stage reaction is carried out in the presence of hydrogen gas. 4. In the first and second stages, at least some hydrogen is released from the hydrogen-donating solvent, and in the third stage, the hydrogen-donating solvent that released the hydrogen is hydrogenated to produce a hydrogen-donating solvent. The method according to claim 1. 5. The temperature of the first stage is 380°C to 470°C, the temperature of the second stage is 300°C to 470°C, and the temperature of the third stage is 300°C.
The method according to claim 1, wherein the temperature is maintained at ~400°C. 6. The method according to claim 1, wherein the pressure in the first, second, and third stages is maintained at 20 to 150 Kg/cm^2.g using hydrogen gas. 7. The method according to claim 1, wherein the hydrogen-donating solvent is a hydride of a polycyclic aromatic hydrocarbon. 8. The method according to claim 1, wherein the hydrogen-donating solvent is a hydride of a hydrocarbon oil having a boiling point of 150°C to 500°C and a polycyclic aromatic hydrocarbon content of 20 vot% or more. 9. The amount of circulating liquid of the hydrogen-donating solvent-containing fraction is 0.1 to 2.
0 (kl/kl raw material oil). 10. The method according to claim 1, wherein the hydrogen-donating solvent is added from outside the system. 11. The method according to claim 1, wherein the solid material in the second stage and the hydrogenation catalyst in the third stage are used as a fixed bed.
JP25049784A 1984-11-29 1984-11-29 Method for converting heavy oil into light oil Pending JPS61130394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25049784A JPS61130394A (en) 1984-11-29 1984-11-29 Method for converting heavy oil into light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25049784A JPS61130394A (en) 1984-11-29 1984-11-29 Method for converting heavy oil into light oil

Publications (1)

Publication Number Publication Date
JPS61130394A true JPS61130394A (en) 1986-06-18

Family

ID=17208751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25049784A Pending JPS61130394A (en) 1984-11-29 1984-11-29 Method for converting heavy oil into light oil

Country Status (1)

Country Link
JP (1) JPS61130394A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310694A (en) * 1986-06-30 1988-01-18 Agency Of Ind Science & Technol Method of hydrocracking of high-boiling oil
JPS63243196A (en) * 1987-03-30 1988-10-11 Nippon Oil Co Ltd Conversion f heavy oil to light oil
JPH0641551A (en) * 1992-04-09 1994-02-15 Stone & Webster Eng Corp Method of pretreatment and hydroconversion of heavy residual oil
CN102585897A (en) * 2012-01-12 2012-07-18 何巨堂 Method for conversion of low-hydrogen heavy oil to light fractions by hydrogenation with hydrogen-supplying hydrocarbons
KR20160146675A (en) * 2014-02-25 2016-12-21 사우디 베이식 인더스트리즈 코포레이션 A process for the preparation of a feedstock for a hydroprocessing unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310694A (en) * 1986-06-30 1988-01-18 Agency Of Ind Science & Technol Method of hydrocracking of high-boiling oil
JPH0520477B2 (en) * 1986-06-30 1993-03-19 Kogyo Gijutsuin
JPS63243196A (en) * 1987-03-30 1988-10-11 Nippon Oil Co Ltd Conversion f heavy oil to light oil
JPH0641551A (en) * 1992-04-09 1994-02-15 Stone & Webster Eng Corp Method of pretreatment and hydroconversion of heavy residual oil
CN102585897A (en) * 2012-01-12 2012-07-18 何巨堂 Method for conversion of low-hydrogen heavy oil to light fractions by hydrogenation with hydrogen-supplying hydrocarbons
KR20160146675A (en) * 2014-02-25 2016-12-21 사우디 베이식 인더스트리즈 코포레이션 A process for the preparation of a feedstock for a hydroprocessing unit
JP2017509778A (en) * 2014-02-25 2017-04-06 サウジ ベーシック インダストリーズ コーポレイションSaudi Basic Industries Corporaiton Process for preparing a feedstock for a hydroprocessing unit
US10125329B2 (en) 2014-02-25 2018-11-13 Saudi Basic Industries Corporation Process for the preparation of a feedstock for a hydroprocessing unit

Similar Documents

Publication Publication Date Title
US4191636A (en) Process for hydrotreating heavy hydrocarbon oil
US4067799A (en) Hydroconversion process
US3617481A (en) Combination deasphalting-coking-hydrotreating process
US7144498B2 (en) Supercritical hydrocarbon conversion process
US4530753A (en) Method of converting heavy hydrocarbon oils into light hydrocarbon oils
CA1304034C (en) Method for hydrocracking heavy fraction oil
EP0272038B1 (en) Method for hydrocracking heavy fraction oils
US2917448A (en) Hydrogenation and distillation of lubricating oils
US4126538A (en) Process for the conversion of hydrocarbons
RU2005117790A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
GB2301373A (en) Process for the conversion of heavy crude oils and distillation residues to distillates
RU2010150300A (en) CATALYTIC SYSTEM AND METHOD FOR HYDROPROCESSING HEAVY OILS
US3880598A (en) Residual oil hydrodesulfurization apparatus
JPS5981383A (en) Coal solvent purification
KR102337228B1 (en) Integrated boiling-bed hydroprocessing, fixed bed hydroprocessing and coking processes for full crude oil conversion to hydrotreated fraction and petroleum green coke
US4640765A (en) Method for cracking heavy hydrocarbon oils
US4048057A (en) Integrated heavy oil cracking process utilizing catalyst separated from cracking in pretreating zone
JPS5853983A (en) Coal liquification
JPS61130394A (en) Method for converting heavy oil into light oil
US4163707A (en) Asphalt conversion
US4082648A (en) Process for separating solid asphaltic fraction from hydrocracked petroleum feedstock
JPS6162591A (en) Method of converting heavy oil to light oil
CN109486518A (en) A kind of method for modifying and system of low-quality oil
CN109486519A (en) A kind of method for modifying and system by low-quality oil production high-knock rating gasoline
CA1117051A (en) Hydroprocessing of solvent refined coal