JPS61135911A - Lubricant oil heating device for internal combustion engine - Google Patents

Lubricant oil heating device for internal combustion engine

Info

Publication number
JPS61135911A
JPS61135911A JP25655184A JP25655184A JPS61135911A JP S61135911 A JPS61135911 A JP S61135911A JP 25655184 A JP25655184 A JP 25655184A JP 25655184 A JP25655184 A JP 25655184A JP S61135911 A JPS61135911 A JP S61135911A
Authority
JP
Japan
Prior art keywords
lubricating oil
lubricant oil
passage
space
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25655184A
Other languages
Japanese (ja)
Inventor
Kunihiko Shimoda
下田 邦彦
Yozo Tosa
土佐 陽三
Masahiro Soda
曽田 正浩
Hiroshi Oikawa
洋 及川
Akio Ishida
明男 石田
Shiro Shiino
椎野 始郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP25655184A priority Critical patent/JPS61135911A/en
Publication of JPS61135911A publication Critical patent/JPS61135911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/001Heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce a partial loss of friction under a partial load of the engine and improve a fuel consumption by a method wherein an exhaust passage of the engine and the lubricant oil passage are arranged in the heating unit, and thereby a water enclosed space enclosing each of the passages and a thermal insulation part between each of the passages are arranged. CONSTITUTION:A heating unit 51 is made such that exhaust gas from the exhaust passage in a cylinder head is passed through the lower part of the heating unit and an exhaust passage 52 communicating with the exhaust pipe is arranged and at the same time a heating space 53 is arranged around the exhaust space 52. At the upper part is arranged a lubricant oil passage 62 for flowing the lubricant oil from the inlet 61 to the outlet 63 and at the same time a cooling space 54 is arranged around the lubricant oil passage 62. The heating part space 53 and the cooling part space 54 are communicated with each other by a communication passage 55. Further, between the exhaust passage 52 and the lubricant oil passage 62 is arranged a thermal insulation part 64 made of material having low thermal conductivity or air layer. With this arrangement, the heat of the exhaust gas is utilized to heat the lubricant oil and then the hot lubricant oil is flowed from the outlet 63 to the main gallery to establish the desired object.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の潤滑油加熱装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a lubricating oil heating device for an internal combustion engine.

〔従来の技術〕[Conventional technology]

第5図に従来の内燃機関の潤滑油装置を示す。 FIG. 5 shows a conventional lubricating oil system for an internal combustion engine.

図ておいて、クランクケース12は上部にシリダヘッド
11を持ち、下部の主軸受キャラ7′″14でクランク
軸15を支えている。さらにその外側にオイルパン13
を備え、各部からの潤滑油をためている。このオイル・
やン13内の潤滑油はオイルポンプ吸込口21から吸引
され、オイルポンプ22で高圧と々ってオイルフィルタ
25を通り高圧管23へ吐出される。高圧の潤滑油は高
圧管23からオイルクーラ24に入り、はぼ一定温度1
通常は80℃程度に冷却され、クランクケース12内に
設けられたメインギヤラリ26へ送られる。メインギヤ
ラリ26の潤滑油の一部は通路27を通シ主軸受28に
供給され潤滑作用を行う。その他者部の摺動部分にはメ
インギヤラリ26から図示されてい々い通路を通り、潤
滑油が供給され潤滑作用を行う。また燃焼室16内の作
動ガスはヘッド内排気通路]7から排気管18へ排出さ
れる。
In the figure, the crankcase 12 has a cylinder head 11 at the top, and a crankshaft 15 is supported by a main bearing collar 7''14 at the bottom.
It stores lubricating oil from various parts. This oil
The lubricating oil in the can 13 is sucked through an oil pump suction port 21, and is then discharged at high pressure by an oil pump 22 into a high pressure pipe 23 through an oil filter 25. High-pressure lubricating oil enters the oil cooler 24 from the high-pressure pipe 23, and the temperature is approximately constant 1.
Usually, it is cooled to about 80° C. and sent to the main gear rally 26 provided inside the crankcase 12. A portion of the lubricating oil in the main gear rally 26 is supplied to the main bearing 28 through a passage 27 to perform a lubricating action. Lubricating oil is supplied to the sliding portions of the other portions from the main gear rally 26 through passages shown in the figure to provide lubrication. Further, the working gas in the combustion chamber 16 is discharged from the head internal exhaust passage 7 to the exhaust pipe 18.

各部の摺動部分の代表として主軸受を考えると。Considering the main bearing as a representative sliding part of each part.

その摩擦係数fは第6図に示す特性を持っている。The friction coefficient f has the characteristics shown in FIG.

νN 第6図において横軸は=W−である。νN In FIG. 6, the horizontal axis is =W-.

ここで、νは潤滑油の動粘性係数。Here, ν is the kinematic viscosity coefficient of the lubricating oil.

Nはクランク軸回転数即ち機関回転数。N is the crankshaft rotation speed, that is, the engine rotation speed.

Wは主軸受に作用する荷重である。W is the load acting on the main bearing.

v’pJが太きいと主軸受部はいわゆる流体潤滑となす
、充分々厚さの油膜が存在して摩擦係数fは第X図中A
Bで示す特性となる。
If v'pJ is large, there is a sufficiently thick oil film in the main bearing, which provides so-called fluid lubrication, and the friction coefficient f becomes A in Figure X.
The characteristic is shown as B.

次に−がだんだん小さくなると油膜の厚さが゛ 薄くな
I)、クランク軸と主軸受ギャップの両金属面の小さな
凹凸が互に接触し始め、いわゆる境界潤滑の状態と彦り
摩擦係数fは第2図中BCで示すように急激に増大する
。このためB点より左側ではfの値が大きくなシ発生熱
量が増大し、温度が上昇し焼付きを起すことになる。従
って荷重Wの大きな機関の最大出力時にも充分B点より
右側で主軸受が作動するように潤滑油温を80℃程度に
保ち、潤滑油温が上昇して動粘性係数νが小さくならな
いようにしている。
Next, as - gradually decreases, the thickness of the oil film becomes thinner, and the small irregularities on the metal surfaces of the crankshaft and main bearing gap begin to come into contact with each other, resulting in a state of so-called boundary lubrication, and the coefficient of friction f becomes It increases rapidly as shown by BC in FIG. Therefore, on the left side of point B, the amount of heat generated increases where the value of f is large, the temperature rises, and seizure occurs. Therefore, the lubricating oil temperature should be kept at around 80°C so that the main bearing operates sufficiently to the right of point B even at the maximum output of an engine with a large load W, and the kinematic viscosity coefficient ν should not become small due to the lubricating oil temperature rising. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記のものには次の欠点がある。 However, the above method has the following drawbacks.

機関の出力が小さな部分負荷ではWが小さくなるが、前
述のように潤滑油温は最大出力時とほぼ同じに保たれる
ためνは最大出力時と同じになる。
At a partial load where the engine output is small, W becomes small, but as mentioned above, the lubricating oil temperature is kept almost the same as at maximum output, so ν is the same as at maximum output.

この結果、Wは最大出力時よりもWの小さくなった分だ
け犬きくな9.第6図から摩擦係数が太きなる。
As a result, W becomes stronger by the amount that W is smaller than at maximum output9. From Figure 6, the friction coefficient becomes thicker.

この結果、出力の小さな部分負荷でむだな摩擦仕事をし
て燃費の悪化を生じている。主軸受についてのみ説明し
たが、各部の摺動部もほぼ同じ条件にあり、燃費の悪化
が大きなものとなっている。
As a result, unnecessary frictional work is performed under partial loads with small output, resulting in deterioration of fuel efficiency. Although only the main bearing has been explained, the sliding parts of each part are also under almost the same conditions, which significantly deteriorates fuel efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は上記欠点を排除した内燃機関の潤滑油加
熱装置を提供することであシ、その特徴とするところは
9機関の排気通路と潤滑油通路とを設けた加熱ユニット
、同加熱ユニット内に上記排気通路と潤滑油通路とを囲
んで連通し水が封入された空間、上記排気通路と潤滑油
通路との間に熱伝導率の低い材料または空気層で形成さ
れた断熱部を備えたことである。
An object of the present invention is to provide a lubricating oil heating device for an internal combustion engine that eliminates the above-mentioned drawbacks, and its features include a heating unit provided with nine engine exhaust passages and a lubricating oil passage; A space surrounded and communicating with the exhaust passage and the lubricating oil passage and filled with water, and a heat insulating part formed of a material with low thermal conductivity or an air layer between the exhaust passage and the lubricating oil passage. That's what happened.

〔作用〕[Effect]

この場合は2機関の部分負荷時に摩擦損失を減らし燃費
を改善するため部分負荷時に潤滑油温度を最大出力時以
上に高くシ、潤滑油の加熱器を設けて、潤滑油の加熱に
排気熱を利用する。
In this case, in order to reduce friction loss and improve fuel efficiency when the two engines are at partial load, the lubricating oil temperature is set higher than at maximum output during partial load, and a lubricating oil heater is installed to use exhaust heat to heat the lubricating oil. Make use of it.

〔実施例〕〔Example〕

以下図面を参照して本発明による実施例につき説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による1実施例の装置を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an apparatus according to an embodiment of the present invention.

図において、オイルi9ン13内の潤滑油はオイルクー
ラ22で高圧となり、オイルフィルタ25を経て高圧管
23へ吐出される。高圧管23は途中で分岐し2片方は
電磁弁31を通りオイルクーラ24を経てメインギヤラ
リ26に至る。他方は電磁弁32を通シシリンダヘッド
11に取付けた加熱ユニット51を経てメインギヤラリ
26に至る。
In the figure, the lubricating oil in the oil tank 13 becomes high pressure in the oil cooler 22, and is discharged to the high pressure pipe 23 through the oil filter 25. The high-pressure pipe 23 is branched in the middle, and one end passes through a solenoid valve 31, an oil cooler 24, and a main gear rally 26. The other end passes through the electromagnetic valve 32 and reaches the main gear rally 26 via a heating unit 51 attached to the cylinder head 11 .

メインギヤラリ26以後の潤滑油経路は従来と同じであ
る。
The lubricating oil path after the main gear rally 26 is the same as the conventional one.

また2機関の回転数信号35と機関の負荷を代表する値
として燃料噴射ポンプラック位置信号36及びメインギ
ヤラリ26の潤滑油温度37を取出し、制御器41に供
給する。制御器41からは電磁弁31,32へその開度
指示信号33.34をそれぞれ出す。
Further, the rotational speed signal 35 of the two engines, the fuel injection pump rack position signal 36 and the lubricating oil temperature 37 of the main gear rally 26 as values representative of the engine loads are taken out and supplied to the controller 41. The controller 41 outputs opening instruction signals 33 and 34 to the solenoid valves 31 and 32, respectively.

第2図に加熱ユニット51の構造を示す。FIG. 2 shows the structure of the heating unit 51.

下部にシリンダヘッド内排気通路17からの排気を通し
排気管18へ通じる排気通路52を持つ。
The lower part has an exhaust passage 52 through which exhaust from the cylinder head internal exhaust passage 17 passes and leads to the exhaust pipe 18.

排気通路52の捷わシに加熱部空間53を設ける。A heating section space 53 is provided at the bend of the exhaust passage 52.

上部に潤滑油を潤滑油人口61から潤滑油出口63に流
す潤滑油通路62を設ける。潤滑油通路62のまわシに
冷却部空間54を設ける。加熱部空間53と冷却部空間
54を連絡路55で連通ずる。
A lubricating oil passage 62 for flowing lubricating oil from a lubricating oil port 61 to a lubricating oil outlet 63 is provided in the upper part. A cooling section space 54 is provided around the lubricating oil passage 62. The heating section space 53 and the cooling section space 54 are communicated through a communication path 55.

さらに排気通路52と潤滑油通路620間に熱伝導率の
低い材料または空気層で形成した断熱部64を設ける。
Furthermore, a heat insulating section 64 made of a material with low thermal conductivity or an air layer is provided between the exhaust passage 52 and the lubricating oil passage 620.

また、加熱部空間53が700℃、冷却部空間54が1
50℃になったとき、全体の圧力が4に9/err?ゲ
ージ以下になる量だけ、この空間に水を入れ密封する。
In addition, the temperature of the heating section space 53 is 700°C, and the temperature of the cooling section space 54 is 1.
When the temperature reached 50℃, the overall pressure was 4 to 9/err? Fill this space with water until it is below the gauge and seal it.

上記構成の場合の作用について述べる。The operation in the case of the above configuration will be described.

まず、加熱ユニット510作用を説明する。排r ら 
A 気道路52を通る高温の排気によって加熱部空間53の
水が加熱され蒸発し、その蒸気は連絡路55を通シ冷却
部空間54に至る。冷却部空間54で蒸気は温度の低い
潤滑油通路62を流れる潤滑油により冷却され凝縮して
水となる。冷却部空間54で生じた水は重力によシ連絡
路55を通シ加熱部空間53に至り、上記サイクルを繰
返す。その結果、排気の熱で潤滑油が加熱され潤滑油出
口63から高温の潤滑油が流出し、メインギヤラリ26
へ流入することになる。
First, the operation of the heating unit 510 will be explained. Exorcist et al.
A The water in the heating section space 53 is heated and evaporated by the high-temperature exhaust gas passing through the airway 52, and the steam passes through the communication path 55 and reaches the cooling section space 54. In the cooling section space 54, the steam is cooled by the lubricating oil flowing through the low-temperature lubricating oil passage 62, and condenses to become water. The water generated in the cooling part space 54 passes through the connecting passage 55 by gravity to reach the heating part space 53, and the above cycle is repeated. As a result, the lubricating oil is heated by the heat of the exhaust gas, and the high-temperature lubricating oil flows out from the lubricating oil outlet 63, and the main gear rally 26
This will lead to an inflow into the country.

第1図において、電磁弁32の開度が小さく々シ、加熱
ユニット51を流れる潤滑油の量が減ると、第2図の冷
却部空間54の温度が上昇し、凝縮する水の量が少くな
シ、さらに冷却部空間54の温度が高くなると水の凝縮
が起らなくなる。本発明では加熱部空間53が排気の最
高温度約700℃になったときでも、冷却部空間54が
約150℃になると蒸気の圧力が4 kg/1yn2ダ
ゴジとほぼ飽和蒸気圧力になシ凝縮が起らなくなる。
In FIG. 1, when the opening degree of the solenoid valve 32 is small and the amount of lubricating oil flowing through the heating unit 51 decreases, the temperature of the cooling section space 54 in FIG. 2 increases, and the amount of condensed water decreases. Furthermore, if the temperature of the cooling section space 54 becomes higher, water will no longer condense. In the present invention, even when the maximum exhaust temperature in the heating section space 53 reaches approximately 700°C, when the cooling section space 54 reaches approximately 150°C, the steam pressure reaches approximately saturated steam pressure of 4 kg/1yn2, and condensation occurs. It won't happen.

この結果、蒸気による加熱部空間53から冷却部空間5
4への熱の移動がなくなシ、断熱部64によシ排気通路
52からの熱伝導も少々く、潤滑油通路62の潤滑油の
温度は150℃以上に上昇することがない。
As a result, from the heating section space 53 to the cooling section space 5 due to the steam,
4, heat conduction from the exhaust passage 52 through the heat insulating portion 64 is also slightly reduced, and the temperature of the lubricating oil in the lubricating oil passage 62 does not rise above 150°C.

ところで、第1図の制御器41は機関回転数及び燃料ポ
ンプラック位置に応じて、あらかじめ設定した所定の潤
滑油温度にメインギヤラリ26がなるように電磁弁31
,32へ開度信号33t34を出す。その結果2機関の
部分負荷においては電磁弁31が閉じ、電磁弁32が開
いて、加熱ユニット51を流れる潤滑油油量がふえてメ
インギヤラリ26の潤滑油温度が高くなる。
By the way, the controller 41 in FIG. 1 controls the solenoid valve 31 so that the main gear lary 26 reaches a predetermined lubricating oil temperature according to the engine speed and the fuel pump rack position.
, 32 to output an opening signal 33t34. As a result, when the two engines are under partial load, the solenoid valve 31 closes and the solenoid valve 32 opens, the amount of lubricating oil flowing through the heating unit 51 increases, and the temperature of the lubricating oil in the main gear rally 26 increases.

機関の最大出力時には、制御器41により潤滑油が全量
オイルクーラ24を流れることになシ。
When the engine is at maximum output, the controller 41 prevents all lubricating oil from flowing through the oil cooler 24.

従来システムと同様にメインギヤラリ26の潤滑油の温
度は約80℃となる。
As in the conventional system, the temperature of the lubricating oil in the main gear rally 26 is approximately 80°C.

第3図は本発明による他の実施例の加熱ユニットを示す
断面図である。
FIG. 3 is a sectional view showing a heating unit according to another embodiment of the present invention.

前記の実施例では加熱ユニット51の下部に排気通路5
2を、上部に潤滑油通路62を設けたが。
In the embodiment described above, the exhaust passage 5 is provided at the bottom of the heating unit 51.
2, a lubricating oil passage 62 was provided at the top.

本実施例は第3図に示すように加熱ユニット51の上部
に排気通路52を、下部に潤滑油通路62を設けたもの
である。
In this embodiment, as shown in FIG. 3, an exhaust passage 52 is provided in the upper part of the heating unit 51, and a lubricating oil passage 62 is provided in the lower part.

本実施例では、加熱部空間53.冷却部空間54及び連
絡路55の内壁に細かい金網71を取付ける。
In this embodiment, the heating section space 53. A fine wire mesh 71 is attached to the inner wall of the cooling part space 54 and the communication path 55.

この結果、下部の冷却部空間54で凝縮した水は細かい
金網710毛細管効果によシ加熱部空間53へ移動する
ことになる。
As a result, the water condensed in the lower cooling part space 54 moves to the heating part space 53 by the capillary effect of the fine wire mesh 710.

その他構造2作用、効果は前記の実施例と同じである。Other functions and effects of Structure 2 are the same as those of the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

上述の場合には次の効果がある。 The above case has the following effects.

機関が最大出力のとき、メインギヤラリ26の潤滑油温
度は80℃で、第4図に示す潤滑油の温度と動粘度の関
係から、このときの動粘度はν=20センチストークス
となる。ここで、最大出力時と同じ回転数Nで部分負荷
となシWが最大出力時の1/2になった場合を考える。
When the engine is at maximum output, the lubricating oil temperature in the main gear rally 26 is 80° C., and from the relationship between lubricating oil temperature and kinematic viscosity shown in FIG. 4, the kinematic viscosity at this time is ν=20 centistokes. Here, consider a case where the rotational speed N is the same as that at the maximum output, and the partial load W becomes 1/2 of that at the maximum output.

このとき制御器41によシメインギャラリ26の潤滑油
温度を105℃程度にすると、動粘度は第4図からν=
10センチストークスと、最大出力時のν=20の1/
2となる。
At this time, if the temperature of the lubricating oil in the main gallery 26 is set to about 105°C by the controller 41, the kinematic viscosity becomes ν=
10 centistokes and 1/of ν=20 at maximum output
It becomes 2.

この結果、■は最大出力時と同じ値となシ第6図のAB
の範囲内で作動するので、焼付き等の不具合を生じるこ
とがない。従って、不具合なく潤滑油の動粘度を1/2
にすることができ、摩擦損失を約1/2に減らし、燃費
の改善を計ることができる。
As a result, ■ is the same value as at maximum output. AB in Figure 6
Since it operates within this range, problems such as seizure will not occur. Therefore, the kinematic viscosity of lubricating oil can be reduced to 1/2 without any problems.
It is possible to reduce friction loss to approximately 1/2 and improve fuel efficiency.

回転数の変化した部分負荷の場合も同様に、各部摺動部
が焼付き等の不具合を生じる限界にょシ。
Similarly, in the case of partial loads where the rotational speed changes, the sliding parts of each part can reach the limit where problems such as seizure may occur.

あらかじめ制御器41内に設定した温度まで潤滑油温度
を高め、動粘度を下げることにょシ摩擦損失を減らし、
燃費の改善を計ることができる。
The lubricant temperature is increased to a temperature preset in the controller 41, and the kinematic viscosity is lowered to reduce friction loss.
Improved fuel efficiency can be measured.

このとき、排気の熱にょシ加熱ユニット51で潤滑油の
温度を上昇させるが、排気温度によらず潤滑油の温度が
150℃を越すことがなく変質をおこすことがない。
At this time, the temperature of the lubricating oil is raised by the exhaust heat heating unit 51, but the temperature of the lubricating oil does not exceed 150° C. regardless of the exhaust temperature, and no deterioration occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による1実施例の装置を示す説t1八\ 明図、第2図は本発明による1実施例の加熱ユニットを
示す断面図、第3図は本発明による他の実施例の加熱ユ
ニットを示す断面図、第4図は動粘度と潤滑油温度との
関係を示す線図、第5図は従来の潤滑油装置を示す説明
図、第6図は摩擦係数の特性を示す線図である。 51・・・加熱ユニット、52・・・排気通路、53・
・・加熱部空間、54・・・冷却部空間、55・・・連
絡路。 ′  62・・・潤滑油通路、64・・・断熱部。 5f−加熱ユ二外 □士 \    \了     (N 鴇  %lO \  Cワ  0  の トLOy込 (N    N   ら 11”)     %C) 特開昭6l−135911(5) シLシ1滑シi シ品度 °C 牙47
FIG. 1 is an explanatory diagram showing an apparatus according to one embodiment of the present invention, FIG. 2 is a sectional view showing a heating unit according to one embodiment of the present invention, and FIG. 3 is a diagram showing another embodiment according to the present invention. Fig. 4 is a diagram showing the relationship between kinematic viscosity and lubricant temperature, Fig. 5 is an explanatory diagram showing a conventional lubricating oil device, and Fig. 6 shows the characteristics of the coefficient of friction. It is a line diagram. 51... Heating unit, 52... Exhaust passage, 53...
... Heating section space, 54... Cooling section space, 55... Communication path. ' 62... Lubricating oil passage, 64... Heat insulation part. 5f-heating unit outside □ \ \ (N %lO \ C 0 LOy included (N N et al. 11") %C) JP-A-6L-135911 (5) SI L SI 1 SL i Grade °C Fang 47

Claims (1)

【特許請求の範囲】[Claims] 1、機関の排気通路と潤滑油通路とを設けた加熱ユニッ
ト、同加熱ユニット内に上記排気通路と潤滑油通路とを
囲んで連通し水が封入された空間、上記排気通路と潤滑
油通路との間に熱伝導率の低い材料または空気層で形成
された断熱部を備えたことを特徴とする内燃機関の潤滑
油加熱装置。
1. A heating unit provided with an engine exhaust passage and a lubricating oil passage, a space in the heating unit that surrounds and communicates with the exhaust passage and the lubricating oil passage and is filled with water, and the exhaust passage and the lubricating oil passage A lubricating oil heating device for an internal combustion engine, comprising a heat insulating part formed of a material with low thermal conductivity or an air layer between the parts.
JP25655184A 1984-12-06 1984-12-06 Lubricant oil heating device for internal combustion engine Pending JPS61135911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25655184A JPS61135911A (en) 1984-12-06 1984-12-06 Lubricant oil heating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25655184A JPS61135911A (en) 1984-12-06 1984-12-06 Lubricant oil heating device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS61135911A true JPS61135911A (en) 1986-06-23

Family

ID=17294208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25655184A Pending JPS61135911A (en) 1984-12-06 1984-12-06 Lubricant oil heating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS61135911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552205B1 (en) * 2002-10-22 2006-02-13 현대자동차주식회사 Oil heating device
EP2305975A3 (en) * 2009-10-05 2011-05-11 Ford Global Technologies, LLC Combustion engine with pump for transporting engine oil and method for heating the engine oil of such a combustion engine
WO2013041188A1 (en) * 2011-09-23 2013-03-28 Audi Ag Internal combustion engine and method for operating an internal combustion engine
US8439007B2 (en) 2009-09-09 2013-05-14 Ford Global Technologies, Llc Cylinder head with oil return
JP2017036699A (en) * 2015-08-10 2017-02-16 スズキ株式会社 Oil temperature increase structure of engine
CN109424385A (en) * 2017-08-28 2019-03-05 通用汽车环球科技运作有限责任公司 The internal combustion engine of oily heating is carried out using vectored injection in cylinder head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206608A (en) * 1983-04-22 1984-11-22 レジ−・ナシヨナル・デ・ユジ−ヌ・ルノ− Method and device for rapidly elevating temperature of lubricating oil for internal combustion engine and thermallyadjusting said oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206608A (en) * 1983-04-22 1984-11-22 レジ−・ナシヨナル・デ・ユジ−ヌ・ルノ− Method and device for rapidly elevating temperature of lubricating oil for internal combustion engine and thermallyadjusting said oil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552205B1 (en) * 2002-10-22 2006-02-13 현대자동차주식회사 Oil heating device
US8439007B2 (en) 2009-09-09 2013-05-14 Ford Global Technologies, Llc Cylinder head with oil return
EP2305975A3 (en) * 2009-10-05 2011-05-11 Ford Global Technologies, LLC Combustion engine with pump for transporting engine oil and method for heating the engine oil of such a combustion engine
US7992535B2 (en) 2009-10-05 2011-08-09 Ford Global Technologies, Llc Heating engine oil in an internal combustion engine
WO2013041188A1 (en) * 2011-09-23 2013-03-28 Audi Ag Internal combustion engine and method for operating an internal combustion engine
CN103827452A (en) * 2011-09-23 2014-05-28 奥迪股份公司 Internal combustion engine and method for operating an internal combustion engine
US9228544B2 (en) 2011-09-23 2016-01-05 Audi Ag Internal combustion engine and method for operating an internal combustion engine
CN103827452B (en) * 2011-09-23 2017-11-21 奥迪股份公司 Internal combustion engine and the method for running internal combustion engine
JP2017036699A (en) * 2015-08-10 2017-02-16 スズキ株式会社 Oil temperature increase structure of engine
CN109424385A (en) * 2017-08-28 2019-03-05 通用汽车环球科技运作有限责任公司 The internal combustion engine of oily heating is carried out using vectored injection in cylinder head

Similar Documents

Publication Publication Date Title
KR950004535B1 (en) Cooling & lubrication system for an internal combustion engine
US4204487A (en) Internal combustion engines
US4348991A (en) Dual coolant engine cooling system
JPS61135911A (en) Lubricant oil heating device for internal combustion engine
FR2390585A1 (en) METHOD AND PLANT FOR REDUCING HEAT LOSSES IN A COOLING PLANT FOR INTERNAL COMBUSTION ENGINES
CN105102786A (en) Cooling device for internal combustion engine comprising blow-by gas recirculation device and supercharger
CN209458036U (en) It is a kind of for controlling the device in single cylinder diesel cylinder sleeve temperature field
US2478489A (en) Cooling system for engines
JPH0451649B2 (en)
JP4125460B2 (en) Engine cylinder wall temperature controller
US1376086A (en) Automatic cooling system
CN109681339A (en) It is a kind of for controlling the device and its application method in single cylinder diesel cylinder sleeve temperature field
CN104791046A (en) Vehicle, engine pack and engine oil temperature control method thereof
JP4210401B2 (en) Engine cylinder wall temperature controller
JPS59185818A (en) Cylinder liner cooling system of water-cooled engine
JPS59162320A (en) Lubricating device for exhaust turbo supercharger
US3141449A (en) Internal combustion engine
JPH0366495B2 (en)
US2285248A (en) Cooling system for internal combustion engines
US3877232A (en) Piston engine utilizing a liquefiable gaseous fluid
US1861106A (en) Internal combustion engine
JPH0429048Y2 (en)
CN107806354A (en) Oil temperature control regulating system and method
US2808038A (en) Control system for an internal combustion piston engine, particularly for motor vehicles
JPS6123818A (en) Valve cooling and lubricating device for internal-combustion engine