JPS6113577A - Single cell instrumentation - Google Patents

Single cell instrumentation

Info

Publication number
JPS6113577A
JPS6113577A JP59134466A JP13446684A JPS6113577A JP S6113577 A JPS6113577 A JP S6113577A JP 59134466 A JP59134466 A JP 59134466A JP 13446684 A JP13446684 A JP 13446684A JP S6113577 A JPS6113577 A JP S6113577A
Authority
JP
Japan
Prior art keywords
active material
flowing
liquid
positive
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59134466A
Other languages
Japanese (ja)
Other versions
JPH041471B2 (en
Inventor
Yukio Nakamura
幸夫 中村
Akira Kidoguchi
晃 木戸口
Masaatsu Takahata
高畠 正温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59134466A priority Critical patent/JPS6113577A/en
Publication of JPS6113577A publication Critical patent/JPS6113577A/en
Publication of JPH041471B2 publication Critical patent/JPH041471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable a quantity of the remaining output of a cell to be correctly presumed by a simple method by closing a flow path switch-valve provided on the solution flowing-in and flowing-out parts on the positive side and/or the negative side of a single cell for measuring the quantity of electricity flowing on an outer circuit and finding concentration of the positive pole and/or negative pole active material. CONSTITUTION:A cell active material solution (electrolytic liquid) is made to circulate in a small-sized single cell provided with stop valve on the electrolytic liquid flowing-in and flowing-out parts for measuring open circuit voltage (electromotive force of a single cell in a state of not letting a current flow while mainly consisting of equilibrium potential difference) when electrolytic liquid flows through, and short-circuiting the outer circuit of the single cell at the point, where the electrolytic liquid flow is stopped by the valve, for integrating the flowing current in order to find, as a quantity of electricity, the quantity of the active material generating cell reaction. In this case, the valve can be made unclosed on the negative pole liquid side while leaving the negative pole liquid to flow when finding the active material concentration on the positive pole side and, leaving, on the contrary, the positive pole liquid to circulate when finding the active material concentration on the negative pole liquid side.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は電池計測法に関し、特に液透過型の多孔質電極
を用いた単電池の外部回路を流れる電気量を測定して正
極および/または負極の活物質温度を求める電池計測法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a battery measurement method, and in particular, to measuring the amount of electricity flowing through the external circuit of a unit cell using a liquid-permeable porous electrode, This paper relates to a battery measurement method for determining the active material temperature of .

(発明の背景) 溶液状態の形で電池活物質を貯蔵する電池においては、
溶液の緒特性を測定することにより、出力量(Wh、ワ
ット時)を推定することができる。
(Background of the Invention) In a battery that stores battery active material in the form of a solution,
By measuring the organic properties of the solution, the power output (Wh, Watt hours) can be estimated.

例えば鉄、クロム系レドックス・フロー型二次電池にお
いては、フロー・クーロメトリ−によるクロム2価イオ
ンの定量、吸光光埠法によるクロム2価イオンの定量や
電池開路電圧の測定等によって充電深度を求め、残存出
力量を推定する方法が行われている。しかし、従来の方
法には次のような欠点がある。
For example, in iron and chromium-based redox flow type secondary batteries, the depth of charge is determined by quantifying divalent chromium ions by flow coulometry, quantifying divalent chromium ions by the absorption method, and measuring the battery open circuit voltage. , a method of estimating the remaining output amount has been used. However, the conventional method has the following drawbacks.

(1)電池回路電圧を測定する方法は、まず、精度が十
分でなく、また一方の極の電池活物質の種類が一つでな
く、それらが互いに平衡に近い状態を保つ場合などは、
開路電圧に反映する電気化学種の各成分の寄与率が複雑
になり、開路電圧より、電池の充放電状態を知ることは
難しい。
(1) The method of measuring battery circuit voltage is not accurate enough, and if there is more than one type of battery active material on one pole and they maintain a state close to equilibrium with each other,
The contribution ratio of each component of electrochemical species reflected in the open circuit voltage becomes complicated, and it is difficult to know the charge/discharge state of the battery from the open circuit voltage.

(2)フロー・クーロメトリ−による活物質定量法は精
度は非常によいが、操作が繁雑、コストアップおよび測
定に時間がかるという欠点がある。
(2) Although the active material determination method using flow coulometry has very good accuracy, it has the drawbacks of complicated operations, increased costs, and time-consuming measurements.

(3)吸光光度法やポルタンメトリー等の方法は、精度
的に不十分であり、コストも高くなる。
(3) Methods such as spectrophotometry and portammetry have insufficient accuracy and are expensive.

(発明の目的) 本発明の目的は、極めて容易な方法で、かつ正確に電池
の残存出力量を推測する電池針側法を提供することにあ
る。
(Object of the Invention) An object of the present invention is to provide a battery needle method for estimating the remaining output of a battery in an extremely easy method and accurately.

(発明の概要) 本発明は、溶液透過型の多孔質電極を正極および/また
は負極とし、該正、負極を有する電極室を分離する隔膜
をもつ単電池に、それぞれ正極活物質溶液および/また
は負極活物質溶液を流通せしめ、該単電池の開路電圧を
測定する電池計測方法において、該単電池の正極側およ
び/または負極側溶液流入出孔部に流路開閉弁を設け、
該開閉弁により該正、負極を連結する外部回路を閉じ、
該外部回路を流れる電気量を測定して、該電池の正極お
よび/または負極活物質濃度を求めることを特徴とする
(Summary of the Invention) The present invention provides a solution permeable porous electrode as a positive electrode and/or a negative electrode, and a positive electrode active material solution and/or In a battery measurement method of flowing a negative electrode active material solution and measuring the open circuit voltage of the unit cell, a flow path opening/closing valve is provided at the positive electrode side and/or negative electrode side solution inflow/output port of the unit cell,
Close the external circuit connecting the positive and negative electrodes by the on-off valve,
The method is characterized in that the concentration of the positive electrode and/or negative electrode active material of the battery is determined by measuring the amount of electricity flowing through the external circuit.

すなわち、本発明は、電解液流入出孔部に停止弁くスト
ップ・パルプ、以下、単に弁と称する)を設けた小型の
単電池に電池活物質溶液(電解液)を流通せしめ、該電
解液流通時は開路電圧(単電池の電流を流さない状態で
の起電力で、主に平衡電位差からなる)を測定し、弁に
よって電解液の流れを停止させた時点で、該単電池の外
部回路を短絡させ、流れる電流を積算することにより電
池反応を起こした活物質量を電気量として求めるように
したものである。この場合、正極液側の活物質濃度を求
めるときは負極液側は弁を閉めず、負極液を流したまま
にしてもよく、逆に負極液側の活物質濃度を求めるとき
は、正極液側は流通させておいてもよい。(いずれにし
ても、少なくとも濃度を求める方の電解液は単電池内に
おいて弁により閉鎖される必要がある。)次に実施例に
より本発明の詳細な説明する。
That is, the present invention allows a battery active material solution (electrolyte) to flow through a small unit cell equipped with a stop valve (hereinafter simply referred to as a valve) at the electrolyte inflow and outflow hole. When flowing, the open circuit voltage (the electromotive force when no current is flowing through the cell, mainly consisting of the equilibrium potential difference) is measured, and when the flow of electrolyte is stopped by the valve, the external circuit of the cell is measured. By short-circuiting the battery and integrating the flowing current, the amount of active material that caused the battery reaction can be determined as the amount of electricity. In this case, when determining the active material concentration on the positive electrode side, the negative electrode liquid may be left flowing without closing the valve on the negative electrode side. Conversely, when determining the active material concentration on the negative electrode side, the negative electrode liquid may be left flowing. The side may be left in circulation. (In any case, at least the electrolyte whose concentration is to be determined needs to be closed by a valve within the cell.) Next, the present invention will be explained in detail with reference to Examples.

(発明の実施例) 実施例1 第1図に示す小型電池の定量システムを製作した。電極
1a、lbは共に厚さ11のカーボンクロス電極、隔膜
2は陽イオン交換膜、集電板3a、3bはフェノール樹
脂結着カーボンプレートに銅板を外側に貼りつけたもの
であり、このプレートを通して電解液の流入出孔7a、
7b、8a、8bが設けられている。実施例1において
は、負極側に弁4a、4bが設けられ、これらはコント
ローラ10により弁駆動部6を介して連動し開閉するよ
うになっている。電圧、電気量測定部9は開路電圧測定
と、電気量の測定を行うもので、これもコントローラ1
0によって制御される。なお、図中、lla、llbは
リード線である。
(Embodiments of the Invention) Example 1 A small battery quantitative determination system shown in FIG. 1 was manufactured. Electrodes 1a and 1b are both carbon cloth electrodes with a thickness of 11 mm, diaphragm 2 is a cation exchange membrane, and current collector plates 3a and 3b are phenol resin-bound carbon plates with a copper plate attached to the outside. Electrolyte inflow and outflow holes 7a,
7b, 8a, and 8b are provided. In the first embodiment, valves 4a and 4b are provided on the negative electrode side, and these valves are opened and closed in conjunction with each other by a controller 10 via a valve drive unit 6. The voltage/electrical quantity measuring section 9 measures open circuit voltage and the electric quantity, and is also connected to the controller 1.
Controlled by 0. In addition, in the figure, lla and llb are lead wires.

次に第2図は、第1図の電池計測システムを組み込んだ
電池システムを示す図である。図は電解液流路のみを図
示してあり、本計測器の小型電池は検出セル12として
示されている。
Next, FIG. 2 is a diagram showing a battery system incorporating the battery measuring system of FIG. 1. The figure shows only the electrolyte flow path, and the small battery of this meter is shown as the detection cell 12.

このような電池システムにおいて、正、負極液タンク1
4b、14aには4規定塩酸酸性、1モル/1塩化鉄、
1モル/1塩化クロム水溶液を入れ、電解セル本体13
に送液して充放電反応を行った。15a、15bはポン
プ、16a、16bはそれぞれ負、正極側配管を示す。
In such a battery system, positive and negative electrode liquid tanks 1
4b and 14a are acidic with 4N hydrochloric acid, 1 mol/1 iron chloride,
Add a 1 mol/1 chromium chloride aqueous solution and place the electrolytic cell body 13.
A charging/discharging reaction was performed by sending liquid to the 15a and 15b are pumps, and 16a and 16b are negative and positive electrode side pipes, respectively.

電解液は正極側を過剰にした。この電池の充電反応は正
極が鉄(2価)の酸化、負極がクロム(3価)の還元で
あり、放電反応は正極が鉄(3価)の還元、負極がクロ
ム(2価)の酸化である。本実施例では負極側のみ弁を
設けて負極液中のクロム(2価)の濃度の測定を行った
。同時に波長755nmの光を用いて、クロム(2価)
の濃度を連続的に吸光光度分析し、これらの結果を電解
セル本体への通電量より計算したクロム(2価)濃度と
比較した。
The electrolyte was used in excess on the positive electrode side. The charging reaction of this battery is the oxidation of iron (bivalent) at the positive electrode and the reduction of chromium (trivalent) at the negative electrode, and the discharging reaction is the reduction of iron (trivalent) at the positive electrode and the oxidation of chromium (divalent) at the negative electrode. It is. In this example, a valve was provided only on the negative electrode side, and the concentration of chromium (divalent) in the negative electrode liquid was measured. At the same time, using light with a wavelength of 755 nm, chromium (bivalent)
The concentration of chromium was continuously spectrophotometrically analyzed, and these results were compared with the chromium (divalent) concentration calculated from the amount of current applied to the electrolytic cell body.

結果を第1表に示す。電解セル本体では副反応や漏洩電
流のため、電気量効率100%で電池反応を行わせるこ
とができず、実際に反応した量は通電量より下まわる0
本発明方法はこの現象を捕らえているのに対し、吸光光
度法では、ばらつきが大きく、事実上クロム(2価)の
半定量が可能であるに過ぎなかった。
The results are shown in Table 1. Due to side reactions and leakage current in the electrolytic cell body, the battery reaction cannot be carried out with 100% electricity efficiency, and the amount actually reacted is less than the amount of current flowing.
The method of the present invention captures this phenomenon, whereas the spectrophotometric method has large variations and is only capable of semi-quantifying chromium (divalent).

第1表 註二数値はクロム(2価)濃度 実施例2 実施例1と同様の電池システムを用いて、同しく鉄−ク
ロム系二次電池の充放電実験を行った。
Note 2 in Table 1: Chromium (divalent) concentration Example 2 Using the same battery system as in Example 1, a charging/discharging experiment of an iron-chromium secondary battery was conducted.

本実施例においては、正、負極両方に弁を設けて、正、
負極の両電解液を測定した。正極側測定時は負極液は流
通状態にあり、負極測定時は正極液は流通状態とした。
In this embodiment, valves are provided on both the positive and negative electrodes, and
Both electrolytes of the negative electrode were measured. When measuring the positive electrode side, the negative electrode liquid was in a flowing state, and when measuring the negative electrode side, the positive electrode liquid was in a flowing state.

実施例1と同じように、充放電における負極液中のクロ
ム2価、正極液中の鉄3価を定量すると共に、従来の分
析法としてクロム2価をフローセルによる吸光光度法、
鉄3価をフローセルによる金電極を指示極とするボルタ
ツメ1−リーで測定した。結果を第2表に示す。第2表
から明らかなように、実施例1と同しく、クロム(2価
)および鉄(3価)の濃度を極めて精度よく、かつ簡便
に測定することができた。
In the same way as in Example 1, chromium divalent in the negative electrode solution and iron trivalent in the positive electrode solution during charging and discharging were determined, and chromium divalent was determined by spectrophotometry using a flow cell as a conventional analysis method.
Trivalent iron was measured using a voltammeter using a flow cell with a gold electrode as an indicator electrode. The results are shown in Table 2. As is clear from Table 2, as in Example 1, the concentrations of chromium (bivalent) and iron (trivalent) could be measured with extremely high accuracy and ease.

第2表 鉄、クロム系二次電池においては、充電時、負極側で、
クロム3価の還元のほかに、プロトン還元による水素ガ
ス発生が副反応として生じる場合があり、このときは、
正極液側が負極液側に対して過充電の状態になる。この
ため鉄3価イオンを還元するなどして、両電解液の充放
電状態を調整する必要があるが、実施例2においては、
本発明方法により、十分な精度をもって、簡便に、この
調整量を決定することができる。
Table 2 In iron and chromium-based secondary batteries, during charging, on the negative electrode side,
In addition to the reduction of trivalent chromium, hydrogen gas generation may occur as a side reaction due to proton reduction, and in this case,
The positive electrode liquid side becomes overcharged with respect to the negative electrode liquid side. Therefore, it is necessary to adjust the charging and discharging states of both electrolytes by reducing trivalent iron ions, etc., but in Example 2,
By the method of the present invention, this adjustment amount can be easily determined with sufficient accuracy.

本発明は、鉄−クロム系電池に限らず鉄−ハロゲン電池
など、他のフロー型二次電池や化学的に電池活物質を生
成する溶液フロー型燃料電池にも同様に通用することが
できる。
The present invention is applicable not only to iron-chromium batteries but also to other flow-type secondary batteries such as iron-halogen batteries and solution flow-type fuel cells that chemically generate battery active materials.

(発明の効果) 本発明によれば、下記のような効果が得られるる。(Effect of the invention) According to the present invention, the following effects can be obtained.

(1)従来の回路電圧測定法の延長で電池活物質濃度を
高精度で定量することができる。
(1) Battery active material concentration can be determined with high precision by extending the conventional circuit voltage measurement method.

(2)正極液、負極液それぞれの活物質濃度を求めるこ
とが可能なので、両極液の活物質量のアンバランスも検
出することができる。電解液に対しリバランス装置を有
する電池に対しては極めて簡便かつ高精度のりバランス
量決定方法を提供することができる。
(2) Since it is possible to determine the active material concentration of each of the positive and negative electrode solutions, it is also possible to detect an imbalance in the amounts of active materials in both electrode solutions. For batteries having a rebalancing device for electrolyte, it is possible to provide an extremely simple and highly accurate method for determining the amount of glue balance.

(3)多方弁など機械的に複雑、かつ故障の原因となり
やすい要素を用いていないので、保守性の点で優れてい
る。
(3) It is excellent in maintainability because it does not use mechanically complex elements such as multi-way valves that are likely to cause failures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法に用いる電池計測器の一実施例を
示す図、第2図は、本発明方法を組み込んだ二次電池の
システム構成を示す図である。 1a・・・負極側電極、1b・・・正極側電極、2・・
・隔膜、3a・・・負極側集電板、3b・・・正極側電
極、4a・・・電解液流入側弁、4b・・・電解液流出
側弁、5・・・昇速動線、6・・・弁駆動部、7a・・
・負極側電解液流入路、7b・・・正極側電解液流入路
、8a・・・負極側電解液流出路、8b・・・正極側電
解液流出路、9・・・電圧、電気量測定部、10・・・
コントローラ、11a、llb・・・リード線、12・
・・検出セル、13・・・電解セル本体、14a・・・
負極側タンク、14b・・・正極側タンク、15a、1
5b・・・ポンプ、16a・・・負極側配管、16b・
・・正極側配管。 代理人 弁理士 川 北 武 長 第1図
FIG. 1 is a diagram showing an embodiment of a battery measuring device used in the method of the present invention, and FIG. 2 is a diagram showing a system configuration of a secondary battery incorporating the method of the present invention. 1a... Negative electrode, 1b... Positive electrode, 2...
- Diaphragm, 3a... Negative electrode side current collector plate, 3b... Positive electrode side electrode, 4a... Electrolyte inflow side valve, 4b... Electrolyte solution outflow side valve, 5... Acceleration flow line, 6... Valve drive section, 7a...
・Negative electrode side electrolyte inflow path, 7b... Positive electrode side electrolyte inflow path, 8a... Negative electrode side electrolyte outflow path, 8b... Positive electrode side electrolyte outflow path, 9... Voltage, electricity measurement Part, 10...
Controller, 11a, llb... Lead wire, 12.
...Detection cell, 13... Electrolytic cell body, 14a...
Negative electrode side tank, 14b...Positive electrode side tank, 15a, 1
5b...Pump, 16a...Negative electrode side piping, 16b.
...Positive side piping. Agent Patent Attorney Takenaga Kawakita Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)溶液透過型の多孔質電極を正極および/または負
極とし、該正、負極を有する電極室を分離する隔膜をも
つ単電池に、それぞれ正極活物質溶液および/または負
極活物質溶液を流通せしめ、該単電池の開路電圧を測定
する電池計測方法において、該単電池の正極側および/
または負極側溶液流入出孔部に流路開閉弁を設け、該開
閉弁により該正、負極を連結する外部回路を閉じ、該外
部回路を流れる電気量を測定して、該電池の正極および
/または負極活物質濃度を求めることを特徴とする電池
計測法。
(1) A solution-permeable porous electrode is used as a positive electrode and/or a negative electrode, and a positive electrode active material solution and/or a negative electrode active material solution are distributed to each cell having a diaphragm that separates an electrode chamber containing the positive and negative electrodes. In the battery measurement method of measuring the open circuit voltage of the unit cell, the positive electrode side and/or
Alternatively, a flow path opening/closing valve is provided at the negative electrode side solution inlet/outlet, the external circuit connecting the positive and negative electrodes is closed by the opening/closing valve, and the amount of electricity flowing through the external circuit is measured, and the positive electrode and/or Or a battery measurement method characterized by determining the concentration of a negative electrode active material.
(2)特許請求の範囲第1項において、正極活物質また
は負極活物質の濃度を測定する際、該被測定側でない電
極に該被測定側でない電池活物質溶液を流通せしめた状
態にしておくことを特徴とする電池計測法。
(2) In claim 1, when measuring the concentration of a positive electrode active material or a negative electrode active material, a solution of a battery active material other than the one to be measured is made to flow through the electrode other than the one to be measured. A battery measurement method characterized by:
JP59134466A 1984-06-29 1984-06-29 Single cell instrumentation Granted JPS6113577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134466A JPS6113577A (en) 1984-06-29 1984-06-29 Single cell instrumentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134466A JPS6113577A (en) 1984-06-29 1984-06-29 Single cell instrumentation

Publications (2)

Publication Number Publication Date
JPS6113577A true JPS6113577A (en) 1986-01-21
JPH041471B2 JPH041471B2 (en) 1992-01-13

Family

ID=15128982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134466A Granted JPS6113577A (en) 1984-06-29 1984-06-29 Single cell instrumentation

Country Status (1)

Country Link
JP (1) JPS6113577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089899B1 (en) 2009-01-06 2011-12-05 삼성전기주식회사 Thin film formation apparatus
JP2014514704A (en) * 2011-03-29 2014-06-19 エナボールト コーポレーション Monitoring of electrolyte concentration in redox flow battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089899B1 (en) 2009-01-06 2011-12-05 삼성전기주식회사 Thin film formation apparatus
JP2014514704A (en) * 2011-03-29 2014-06-19 エナボールト コーポレーション Monitoring of electrolyte concentration in redox flow battery system

Also Published As

Publication number Publication date
JPH041471B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
Poli et al. Novel electrolyte rebalancing method for vanadium redox flow batteries
US8980484B2 (en) Monitoring electrolyte concentrations in redox flow battery systems
US10388978B2 (en) Methods for determining state of charge and calibrating reference electrodes in a redox flow battery
ES2776355T3 (en) Procedure and apparatus for transient state of charge measurement using input / output potentials
US7855005B2 (en) Apparatus and methods of determination of state of charge in a redox flow battery
US20190267648A1 (en) Determining the state of charge of an all-vanadium redox flow battery using uv/vis measurement
CN104345278B (en) A kind of all-vanadium flow battery SOC detection methods and system
JPH0927336A (en) Fuel cell stack diagnostic method
US20150086896A1 (en) Monitoring electrolyte concentrations in redox flow battery systems
JPS6070672A (en) Method of operating redox-flow secondary battery
JP3022571B2 (en) Redox flow battery and method of measuring charge / discharge depth of redox flow battery
Loktionov et al. Calibration-free coulometric sensors for operando electrolytes imbalance monitoring of vanadium redox flow battery
JP4843223B2 (en) Inspection method of fuel cell
Lim et al. Correlations of Through‐Plane Cell Voltage Losses, Imbalance of Electrolytes, and Energy Storage Efficiency of a Vanadium Redox Flow Battery
JPS6113577A (en) Single cell instrumentation
CN115133083B (en) Method for testing balance degree of iron-chromium flow battery system
TWI300278B (en)
US20140102897A1 (en) Three compartment electrochemical cell
CN114400348A (en) Charge-free thermal regeneration electrochemical liquid flow circulating system and working method
Li State‐of‐Charge Monitoring for Vanadium Redox Flow Batteries
Davé et al. Impedance analysis for oxygen reduction in a lithium carbonate melt
JP2020187939A (en) Redox flow battery system and operating method thereof
CN113432801B (en) Fuel cell stack air tightness detection system
CN114628740B (en) Method and device for detecting fluid distribution consistency of fuel cell stack
KR102642886B1 (en) Method and Apparatus for Verifying an Operational State of Redox Batteries