JPS6113567A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JPS6113567A
JPS6113567A JP59135511A JP13551184A JPS6113567A JP S6113567 A JPS6113567 A JP S6113567A JP 59135511 A JP59135511 A JP 59135511A JP 13551184 A JP13551184 A JP 13551184A JP S6113567 A JPS6113567 A JP S6113567A
Authority
JP
Japan
Prior art keywords
electrode
porous body
fuel cell
fuel
2al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135511A
Other languages
Japanese (ja)
Inventor
Hiroaki Urushibata
広明 漆畑
Kazunao Sato
佐藤 一直
Toshiaki Murahashi
村橋 俊明
Mitsuya Matsumura
光家 松村
Ikuyuki Hirata
平田 郁之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59135511A priority Critical patent/JPS6113567A/en
Publication of JPS6113567A publication Critical patent/JPS6113567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To retard sintering and creep to obtain a low shrinkage electrode by mixing ceramics in a porous body. CONSTITUTION:A porous body having a porosity of 60% is prepared by sintering nickel powder having a particle size of about 3mum. Saturated alkaline solution of KAlO2 is impregnated in the porous body under vacuum. Then the porous body is dried in an oven of 110 deg.C for 1hr to remove moisture, cooled to room temperature, immersed in methanol solution of LiOH, then washed with methanol to remove excess LiOH, then dried in an oven of 110 deg.C for 30min, and heated at 400 deg.C for 4hr to form Li2O.2Al2O3. This treatment is repeated to form Li2O.2Al2O3 having desired weight ratio in a porous body which serves as an electrode. Li2O.2Al2O3 in the porous body is made to react with Li2CO3 at high temperature to convert it to LiAlO2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は燃料電池用゛市極、例えば高温形、特に溶融
炭酸塩を゛電解質とする燃料電池用の@極に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a electrode for a fuel cell, such as a high-temperature type, particularly a @ electrode for a fuel cell using molten carbonate as the electrolyte.

〔従来の技術〕[Conventional technology]

一般的なl’+7融炭酸塩形燃料屯池は、第1図の構成
図に示した部(オで構成さhている。図において、fl
lI″i燃料側のガ燃料路板であり燃料ガス入1コ管(
5)。
A general l'+7 molten carbonate fuel tank is composed of parts (h) shown in the block diagram of Fig. 1. In the figure, fl
lI''i is the fuel road plate on the fuel side and contains one fuel gas pipe (
5).

出口管(6)全備えている。(2)r/′i燃利側電極
の集電板でありガス流[俗用の貫通孔(3)を備えてい
る。一般にはニッケル系金属が用いらh1〜2mmの厚
さである。(4)は燃料(+1jl電極であり、ニッケ
ル系金属粉の焼結体からなる多孔質電極である。(8)
は電解質層と呼ば;h −LiAt0aを主成分とする
多孔質構造体に、Lj400g 、 K2O0aなどの
炭酸塩全混入させたものからなっている。(9)け酸化
剤側゛電極であり、燃料側電極同様、多孔質な構造を持
っている。この酸化剤側電極(9)はニッケル焼結体を
用いる場合と、NiO焼結体を用いる場合があるが、い
ずれにしろ電池の動作状態でl−j NiOに少しLi
+イオンが入ったものNi0(L1+)となっている。
Fully equipped with outlet pipe (6). (2) r/'i is a current collecting plate for the fuel side electrode, and is equipped with a gas flow [commonly used through hole (3)]. Generally, nickel-based metal is used and the thickness is 1 to 2 mm. (4) is a fuel (+1jl) electrode, which is a porous electrode made of a sintered body of nickel-based metal powder. (8)
is called an electrolyte layer; it consists of a porous structure whose main component is h-LiAt0a mixed with carbonates such as Lj400g and K2O0a. (9) This is the oxidizer side electrode, and like the fuel side electrode, it has a porous structure. This oxidizer side electrode (9) may be made of nickel sintered body or NiO sintered body, but in any case, a little Li is added to l-j NiO under the operating condition of the battery.
Ni0 (L1+) contains + ions.

(10)は酸化剤側電極の集電板であり、燃料側電極の
集電板と同様の構造ヲモつステンレス製のものである。
Reference numeral (10) denotes a current collector plate for the oxidizer side electrode, which is made of stainless steel and has the same structure as the current collector plate for the fuel side electrode.

(12Iけ酸fヒ剤側のガス流路板であり、暇化剤ガス
入口管(13! 、出口管(14)を備えている。
(12I silicic acid f This is a gas passage plate on the arsenic side, and is equipped with an inlet pipe (13!) and an outlet pipe (14) for the softening agent gas.

次に、この種の溶融炭酸塩形燃料電池の動作について説
明する。燃料電池は、水素などの燃料ガスと空気などの
酸化剤ガスのも“つ化学エネルギー金、電気化学的な反
応によって、直接電気エネルギーに変換し、電力を得る
装置である。この゛電気化学反応を効率自〈行なわせる
frめに、一般には多孔質な゛電極が使わJする。
Next, the operation of this type of molten carbonate fuel cell will be explained. A fuel cell is a device that directly converts chemical energy into electrical energy through an electrochemical reaction between a fuel gas such as hydrogen and an oxidizing gas such as air to obtain electric power. In order to do this efficiently, porous electrodes are generally used.

燃料側°電極f41 i; J:び酸化剤1tfl 1
iti 1@ tql vrおける1ゾ応は次の通りで
ある。
Fuel side electrode f41 i; J: Oxidizing agent 1tfl 1
The 1zo response in iti 1@tql vr is as follows.

燃料極側 11n −I Cn、:→H20+00+!
→2θ   fil酸化剤側 r】02 シーOp +
2θ→C(+、’−(21燃料極11tl f i’J
、tll 11’、、 〕様に燃料(1)N2 F、1
市解′「り中の00ニーと反応し、水と002と電子を
生成する。この電子は燃料(i1+1電極全通して、外
部負荷に送らhた後、酸化剤側電極に流れこむ。酸化剤
側電極ではこの電子とCO2および酸化剤OQD>らc
 o N−を生成し電解質中に溶解することによって4
池反応が進行する。
Fuel electrode side 11n -I Cn, :→H20+00+!
→2θ fil oxidizer side r】02 Sea Op +
2θ→C(+,'-(21 fuel electrode 11tl f i'J
, tll 11',, ] to fuel (1) N2 F, 1
It reacts with the 00 in the oxidizer, producing water, 002, and electrons.The electrons are sent to the external load through the entire i1+1 electrode, and then flow into the oxidizer side electrode. At the agent side electrode, this electron, CO2 and oxidant OQD
o 4 by generating N- and dissolving it in the electrolyte
Pond reaction progresses.

こね′f/:第1図を用いて説明する。燃料ガス入口管
(5)力)ら供給される燃料ガスはガス流路板+11の
ガス流路(72を流れ、集電板(2)の貫通孔(3)を
通って燃料側電極(4)K運はね、る。燃料ガスシボ、
さちに燃料側電極(4)の微細な孔内部に侵入し、電解
質(co”)に濡れ1こ部分において上記(11の反応
が起きる。酸化剤側に−おいてもガス流1洛(N5)を
流れる酸化剤ガスは染°市板(qの@通孔(11)より
酸化剤イi+++ 電極t9) K供給さh(2)式に
従って反応する。
Knead'f/: This will be explained using FIG. The fuel gas supplied from the fuel gas inlet pipe (5) flows through the gas flow path (72) of the gas flow path plate +11, passes through the through hole (3) of the current collector plate (2), and reaches the fuel side electrode (4). ) K luck is ne, ru.Fuel gas wrinkles,
It immediately enters the inside of the fine pores of the fuel side electrode (4), gets wet with the electrolyte (co''), and the above reaction (11) occurs in that part. The oxidizing gas flowing through the dyeing board (q) is supplied with oxidizing agent K from the through hole (11) of the dyeing board (q) and reacts according to equation (2).

従来の燃料1に池は以ヒのように構成さねているので、
1憂時間、高温で運転した場合、燃料側′電極(4)が
焼結あるいけクリープ(crθep)を起こして収縮し
薄くなり、集電板!21 、 ’電解質層(8)との接
触不良が生じるという欠点があった。
Since the conventional fuel 1 pond is configured as shown below,
When operated at high temperatures for one hour, the fuel side electrode (4) undergoes sintering or creep (crθep), shrinks and becomes thinner, and the current collector plate! 21, 'There was a drawback that poor contact with the electrolyte layer (8) occurred.

〔発明の概要〕[Summary of the invention]

この発明VfF、記のような従来のものの欠点全除去す
るためVCなされたもので、多孔質体にセラミックスを
混在させたものにすることにより、焼結。
This invention, VfF, was made by VC in order to eliminate all the drawbacks of the conventional ones as described above, and was sintered by making a porous body mixed with ceramics.

クリープを抑制して収縮の少ない燃料r4T、fdv川
′市極を提供することを目的としている。
The purpose is to provide a fuel r4T, fdv kawa'ichigoku, which suppresses creep and has less shrinkage.

1発[町の実施例〕 以下、この発11.1の一寿怖例について説げJする。1 shot [Town example] Below, I will explain the Isshu fear example in 11.1.

粒径3pm程JItのニッケル金属粉末(商品名lNC
O287)を焼結した気孔度60%程の多孔管体を用意
する。まず、(11この多孔質板にKA/−02のアル
カリ飽和溶液(室温における)を貞空含浸させる。次に
(21110℃のオープン中で1時開乾燥し、水分を除
去する。(3)室1’AA ’F T ?’n却[7た
後、0.−1g/ccび)T+10’Hメタノール溶液
f(fシ漬する。(4)過剰のI、10H全除去するた
めにメタノールで洗浄する。(51]]、(”l’cの
オーブン中で30分乾燥後、400℃で4時間熱処理し
て、Llao・2AL20* 7(,11”; IJV
、さ−1トる。(6)このill 〜tfil(7)処
1甲を繰りl!ζすこと&r 、t: I) HT望す
る重叶比I7) Td po・2A/、、203を電極
である多孔質体中に生成させることができる。この場合
は4回繰り返すことにより、多孔仙体の20車量係のT
、1102・2AtzO3が生成した。この時、気孔度
は45チに低下した。(7)最後に、高温でT、+12
003と反応させることによりTJ jA702に変化
させる。この場合tri電池運転状態において、電解質
中のTJ j、2 CO3とL120・2A/−203
が反応することにより安定なL 1Ato 2が′市極
内に形成される。
JIt nickel metal powder (product name: 1NC) with a particle size of about 3pm
A porous tube with a porosity of about 60% is prepared by sintering O287). First, (11) This porous plate is impregnated with an alkaline saturated solution of KA/-02 (at room temperature) in a vacuum. Next, (21) it is dried in an open air at 110°C for 1 hour to remove moisture. (3) Chamber 1'AA'F T?'n [7, 0.-1 g/cc] T + 10'H methanol solution f (f). (4) Methanol to completely remove excess I and 10H. (51]], ("l'c" oven for 30 minutes, heat treatment at 400 ° C. for 4 hours, Llao 2AL20 * 7 (,11"; IJV
, sa-1 toru. (6) Repeat step A of this ill ~ tfil (7)! ζ To &r, t: I) HT desired heavy leaf ratio I7) Tdpo.2A/, 203 can be generated in a porous body that is an electrode. In this case, by repeating 4 times, T
, 1102·2AtzO3 was generated. At this time, the porosity decreased to 45 inches. (7) Finally, T at high temperature, +12
By reacting with 003, it is converted to TJ jA702. In this case, in the tri battery operating state, TJ j,2 CO3 and L120・2A/-203 in the electrolyte
By reacting, stable L 1Ato 2 is formed within the 'city'.

第2図(a)は従来例のニッケルのみの多孔質電極の、
(b)汀この実Mu例のLiA7.02を混在させた多
孔質電極のニッケル粉末の焼結構造ケ示す電子顕微鏡(
IM)写真である。写真力)ら焼結したニッケル粒子衣
面をTJ i、A 402が被っている様子がよくわか
る。
Figure 2(a) shows a conventional porous electrode made of only nickel.
(b) Electron microscope showing the sintered structure of the nickel powder of the porous electrode mixed with LiA7.02 of the Mu example (
IM) This is a photo. It can be clearly seen that TJ i, A 402 is covered with the sintered nickel particle surface.

次に、この実施例の電極のクリープテス1−(creθ
ptθ日t)全行′)た。実験け700°C,N280
係−〇〇a 20係ガス雰囲気丁で行い、65時間、3
.5kg/cm”の荷重をハ)け、厚さ二丈化金抑1定
した。従来のニッケルのみの場合−45チの収縮が起こ
るのに対し、この実施例でに5〜−15%の収縮しn)
起こさなかった。即ち、第2図(17)に示すようにニ
ッケル金属焼結体で形成さ7′する多孔質体の骨格をL
jAtOsで部分的に被ったために、高温状態における
ニッケル金属の拡散による焼結が抑制さf′また。さら
に、LiAt0zはニッケル金@工す硬いセラミックス
であるので、多孔質全体の硬度が謂加し、クリープも抑
制さり、た。
Next, the creep test 1-(creθ
ptθ day t) all lines'). Experiment: 700°C, N280
Section -〇〇a Section 20 Conducted in a gas atmosphere, 65 hours, 3
.. A load of 5 kg/cm" was applied to suppress the thickness of the gold.In contrast to the conventional case of nickel alone, which shrinks by -45 cm, this example shrinks by 5 to -15%. Shin)
I didn't wake you up. That is, as shown in FIG. 2 (17), the skeleton of the porous body made of sintered nickel metal is L.
The partial coverage with jAtOs inhibits sintering due to diffusion of nickel metal at high temperature conditions. Furthermore, since LiAtOz is a hard ceramic made of nickel and gold, the hardness of the entire porous structure is increased and creep is suppressed.

また、この実施例による電極を用い′fr:、場合、燃
料電池の1,000時間当りの内部抵抗増加率は棒に抑
えることができ、長時間にわたって良好な心気的接触が
得られた。
Furthermore, when using the electrode according to this example, the rate of increase in internal resistance of the fuel cell per 1,000 hours could be suppressed to a low level, and good air-to-air contact could be obtained for a long period of time.

なお、上記実施例では、多孔質体としてニッケル金属焼
結体分用いた多孔質電極について説111シたが、焼結
、クリープを抑制するという効果を考えると、他の電極
材料、例えばニッケルとクロ今の合金、銅などでもよい
。また、混在させる+しミックスの種類もTJ 1.A
 、1n 2だ行とけ限らず、他の挿植のセラミックス
、1クリえばLi0rrla、、 M:go’、:’、
Aムo3゜SrTiO3,Y2O3などを用いることが
でf、 4に、II、+実細例と同実施効果を奏する。
In the above example, a porous electrode using a nickel metal sintered body as the porous body was discussed, but considering the effect of suppressing sintering and creep, other electrode materials such as nickel and It may also be a black alloy, copper, etc. Also, the type of mix to be mixed is TJ 1. A
, 1n 2nd row, other ceramics, 1 click Li0rrla,, M:go',:',
By using Amu o3°SrTiO3, Y2O3, etc., the same implementation effect as in the detailed example can be obtained for f, 4, II, +.

多孔質体に混在さハるセラミックスは、少なすぎると殆
んど効果がなくなり、多くなるとガスの流通が困難にな
るので、電極重量の1〜70wt4+が望ましく、特[
10〜25wt%が適当である。また、セラミックスを
混在させた多孔質体(即ち電極)の気孔度1−t30係
以下になるとガス流通が困難になり、90チ以−ヒにな
ると必要な機械的強度が得られなくなるので、30% 
〜90%が望ましく、特[40〜70%が適当である。
If the amount of ceramics mixed in the porous body is too small, there will be almost no effect, and if it is too large, gas flow will become difficult.
10 to 25 wt% is suitable. In addition, if the porosity of the porous body (i.e. electrode) mixed with ceramics is less than 1-t30, gas flow becomes difficult, and if it becomes more than 90, the necessary mechanical strength cannot be obtained. %
~90% is desirable, particularly 40~70% is suitable.

fXお、この発明は燃料側゛電極に適用した場合に特に
有効であるが、酸化剤側に使っても有効であ′+、1□
。7.。
fX Oh, this invention is particularly effective when applied to the fuel side (electrode), but it is also effective when applied to the oxidizer side.
. 7. .

以にのように、この発り−JKよhば、多孔質体にセラ
ミックスを混在させたものにすることにより、焼結、ク
リープを抑制できるので、収縮の少ない燃料1比池用電
極が得られる効果がある。従って、長時間にわたって集
電板及び電解質層と電極との良好な接触が持続でへる。
As mentioned above, according to JK, sintering and creep can be suppressed by using a porous material mixed with ceramics, so a fuel cell electrode with less shrinkage can be obtained. It has the effect of Therefore, good contact between the current collector plate and the electrolyte layer and the electrodes can be maintained for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に一般的な溶融炭酸塩形燃料電池を示す構成図、
第2図(a、)け従来例のニッケルのみの多孔質電極の
、同(b)はこの実施例のLiAt0Qを混在させた多
孔質電極のニッケル粉末の焼結構造を示す電子顕微鏡写
真である。 (2)・・・燃料gll他極集電板、(4)・・・燃料
l1ll;電極、(8)・・・電解質層、(9)・・酸
化剤側電極、(Irll・・・酸化剤側集電板 代理人  大 岩 増 Jll。 2図 (b)
Fig. 1 is a configuration diagram showing a general molten carbonate fuel cell,
Figures 2(a) and 2(b) are electron micrographs showing the sintered structure of the nickel powder of the conventional porous electrode made only of nickel, and Figure 2(b) the porous electrode mixed with LiAt0Q of this example. . (2)... Fuel gll other electrode current collector plate, (4)... Fuel l1ll; electrode, (8)... Electrolyte layer, (9)... Oxidizer side electrode, (Irll... Oxidation Agent side current collector plate Masu Oiwa Jll. Figure 2 (b)

Claims (7)

【特許請求の範囲】[Claims] (1)多孔質体にセラミックスを混在させた燃料電池用
電極。
(1) A fuel cell electrode in which a porous material is mixed with ceramics.
(2)多孔質体はNi系金属粉末を焼結したものである
特許請求の範囲第1項記載の燃料電池用電極。
(2) The fuel cell electrode according to claim 1, wherein the porous body is made by sintering Ni-based metal powder.
(3)セラミックスはLiAlO_2である特許請求の
範囲第1項又は第2項記載の燃料電池用電極。
(3) The fuel cell electrode according to claim 1 or 2, wherein the ceramic is LiAlO_2.
(4)セラミックスが電極重量の1〜70重量%混在さ
れている特許請求の範囲第1項ないし第3項のいずれか
に記載の燃料電池用電極。
(4) The fuel cell electrode according to any one of claims 1 to 3, in which ceramics are mixed in an amount of 1 to 70% by weight of the electrode.
(5)セラミックスが電極重量の10〜25重量%混在
されている特許請求の範囲第4項記載の燃料電池用電極
(5) The electrode for a fuel cell according to claim 4, wherein the ceramic is mixed in an amount of 10 to 25% by weight of the electrode.
(6)セラミックスを混在させた多孔質体の気孔度は3
0〜90%である特許請求の範囲第1項ないし第5項の
いずれかに記載の燃料電池用電極。
(6) The porosity of the porous body mixed with ceramics is 3
The electrode for a fuel cell according to any one of claims 1 to 5, which has a content of 0 to 90%.
(7)セラミックスを混在させた多孔質体の気孔度は4
0〜70%である特許請求の範囲第6項記載の燃料電池
用電極。
(7) The porosity of the porous body mixed with ceramics is 4
7. The fuel cell electrode according to claim 6, wherein the fuel cell electrode has a content of 0 to 70%.
JP59135511A 1984-06-28 1984-06-28 Electrode for fuel cell Pending JPS6113567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135511A JPS6113567A (en) 1984-06-28 1984-06-28 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135511A JPS6113567A (en) 1984-06-28 1984-06-28 Electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPS6113567A true JPS6113567A (en) 1986-01-21

Family

ID=15153469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135511A Pending JPS6113567A (en) 1984-06-28 1984-06-28 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS6113567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366857A (en) * 1986-09-08 1988-03-25 Matsushita Electric Ind Co Ltd Fuel electrode for molten carbonate fuel cell
JPS6460965A (en) * 1986-04-02 1989-03-08 Inst Gas Technology Manufacture of stabilized molten carbonate fuel cell porous anode
JP2014049270A (en) * 2012-08-31 2014-03-17 Ti:Kk Fuel battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460965A (en) * 1986-04-02 1989-03-08 Inst Gas Technology Manufacture of stabilized molten carbonate fuel cell porous anode
JPS6366857A (en) * 1986-09-08 1988-03-25 Matsushita Electric Ind Co Ltd Fuel electrode for molten carbonate fuel cell
JP2014049270A (en) * 2012-08-31 2014-03-17 Ti:Kk Fuel battery

Similar Documents

Publication Publication Date Title
Sahibzada et al. Development of solid oxide fuel cells based on a Ce (Gd) O2− x electrolyte film for intermediate temperature operation
CN111477881B (en) NiFe alloy nanoparticle coated Pr0.8Sr1.2(FeNi)O4-δMaterial and method for producing the same
US20110159173A1 (en) Conductive coating for solid oxide fuel cells
JP2005317546A (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP4432384B2 (en) Solid oxide fuel cell
JP5443325B2 (en) Solid oxide fuel cell and single cell for solid oxide fuel cell
JP2955491B2 (en) Method for producing anode for molten carbonate fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPS6113567A (en) Electrode for fuel cell
JPS6124158A (en) Electrode of fused carbonate type fuel cell
JP3448242B2 (en) Solid electrolyte fuel cell
JPH02822B2 (en)
JP2008034305A (en) Anode reduction method of solid oxide fuel cell
JP2001148251A (en) Solid electrolyte and fuel cell using it
US9437880B2 (en) Method of manufacturing a fuel cell stack having an electrically conductive interconnect
Antolini A new way of obtaining LixNi1− xO cathodes for molten-carbonate fuel cells
JPH077668B2 (en) Molten carbonate fuel cell electrode
TWI229957B (en) Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same
JP2007311198A (en) Method of manufacturing electrode for solid oxide fuel cell and solid oxide fuel cell
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
KR100331082B1 (en) A method for making anode of molten carbonate fuel cell
JP3160030B2 (en) Method for forming fuel electrode of solid oxide fuel cell and solid electrolyte fuel cell using the fuel electrode
Li et al. The Investigation of Perovskite LaCo0. 6Ni0. 4O3-δ as Cathode Interface Contact Material for Intermediate Temperature Solid Oxide Fuel Cells
Yatim et al. Influence Of Manganese In BSCF Perovskite Interconnect
JPS6124165A (en) Electrolyte supporter of fused carbonate type fuel cell