JPS61135234A - System for controlling soft deciding threshold value - Google Patents

System for controlling soft deciding threshold value

Info

Publication number
JPS61135234A
JPS61135234A JP25782884A JP25782884A JPS61135234A JP S61135234 A JPS61135234 A JP S61135234A JP 25782884 A JP25782884 A JP 25782884A JP 25782884 A JP25782884 A JP 25782884A JP S61135234 A JPS61135234 A JP S61135234A
Authority
JP
Japan
Prior art keywords
signal
soft
value
demodulated signal
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25782884A
Other languages
Japanese (ja)
Inventor
Hide Nawata
日出 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25782884A priority Critical patent/JPS61135234A/en
Publication of JPS61135234A publication Critical patent/JPS61135234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To always ensure the actuation under the approximately optimum conditions for correction of errors by estimating a ratio between the demodulated signal power and the noise power and controlling the level, etc. of the demodulated signal based on the estimated ratio and the prescribed relation so that the soft deciding threshold value is set at an optimum level. CONSTITUTION:A demodulator 1 demodulates the reception signal obtained by adding the noise to the transmission signal modulated with a symbol code train received the convolutional coding. the demodulated signal is supplied to a bitabi decoder 3 via a variable attenuator 10 and an A/D converter 2 and quantized by plural soft threshold values to be decoded. A detector 7 detects 6 an error factor from the signal obtained by recoding the digital signal of the decoder 3 with its error corrected by a convolutional coder 4 equal to that at the transmission side and the signal that delayed 5 the soft deciding value of the converter 2. Then the estimated value signal for the ratio between the demodulated signal power and the noise power is applied to a ROM8 of a threshold value control circuit 11. The ROM8 stores the prescribed control amount corresponding to the designated value, and the corresponding control amount is read out by the signal sent from the detector 7. The attenuator 10 is controlled the A/D-converted 9 signal to set the soft threshold value at an optimum level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟判定しきい値制御方式に関し、特に畳込み符
号化して伝送されたディジタル情報を軟判定技術を用い
てビタビ復号する軟判定ビタビ復号装置において、軟判
定しきい値間隔を最適に制御する軟判定しきい値制御方
式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a soft-decision threshold control method, and in particular to a soft-decision Viterbi method that uses soft-decision technology to decode digital information that has been convolutionally encoded and transmitted. The present invention relates to a soft-decision threshold control method for optimally controlling soft-decision threshold intervals in a decoding device.

〔従来の技術〕[Conventional technology]

軟判定技術は、雑音のある伝送路を用いてディジタル情
報を伝送する伝送系において、雑音の加わった受信信号
から送信ディジタル情報を推定する際K、その推定値の
確からしさの情報本取り出し、これを利用することによ
って誤り率の改善を図る技術であ抄、軟判定を用いる代
表的な復号法に畳込み符号に対するピタビ復号法がある
。第2図は軟判定を用いた従来のビタビ復号装置の構成
例を示すブロック図であり、復調器1.A/D変換器2
.ビタビ復号器3から構成されている。雑音の加わった
受信信号100は復調器1で復調され、復調信号101
はA/D変換器2によってqピッ)((lは通常2又は
3)の軟判定値に量子化され、ビタビ復号器3による復
号処理過程でパスメトリックの計算にこの量子化された
軟判定値が用いられる。第3図はq=3のときの復調信
号とA/D変換器2の軟判定しきい値レベルと量子化出
力との関係を示す説明図で、復調信号(アナログ信号)
は太線で示す各軟判定しきい値で分割された8つの領域
に対応して図に示すような3ビット符号に量子化され、
対応するシンボルメトリックがバスメトリックの計算に
使用される。各軟判定しきい値の間隔では、使用する伝
送回線の条件からあらかじめ復調信号E8ハo(Eaは
シンボル当りの情報信号電力、Noは片側雑音電力密釦
を想定し、使用範囲内にある特定の)3+s/Noで誤
り率が最良となるような値に測定して使用されている。
Soft-decision technology is a transmission system that transmits digital information using a noisy transmission path, and when estimating transmitted digital information from a noisy received signal, extracts information on the probability of the estimated value, and uses this information. Piterbi decoding for convolutional codes is a typical decoding method that uses soft decisions to improve the error rate. FIG. 2 is a block diagram showing an example of the configuration of a conventional Viterbi decoding device using soft decisions. A/D converter 2
.. It consists of a Viterbi decoder 3. A received signal 100 with added noise is demodulated by a demodulator 1, and a demodulated signal 101 is generated.
is quantized by the A/D converter 2 into a soft-decision value of qpi) ((l is usually 2 or 3), and the Viterbi decoder 3 uses this quantized soft-decision value to calculate the path metric in the decoding process. Figure 3 is an explanatory diagram showing the relationship between the demodulated signal when q = 3, the soft decision threshold level of the A/D converter 2, and the quantized output.
is quantized into 3-bit codes as shown in the figure corresponding to the eight regions divided by each soft decision threshold indicated by the thick line,
The corresponding symbol metric is used to calculate the bus metric. For each soft-decision threshold interval, assume that the demodulated signal E8hao (Ea is the information signal power per symbol and No is the one-sided noise power tight button) is determined in advance from the conditions of the transmission line to be used. )3+s/No, which is the value that gives the best error rate.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、実際のEs/Noは伝送回線の環境条件
によりて時間と共に変動するため、上述のように固定さ
れた軟判定しきい値では常時最適な状態で動作している
とは言えず、誤り訂正能力が十分に発揮されていないと
いう問題点がある。本発明の目的は、上述し九従来方式
の問題点を解消し、常にほぼ最適な条件で動作できるよ
うに軟判定しきい値の間隔を実際の復調信号のK s/
N oに対応して制御する軟判定しきい値制御方式を提
供することである。
However, since the actual Es/No varies over time depending on the environmental conditions of the transmission line, it cannot be said that the fixed soft-decision threshold as described above is always operating in an optimal state, and error correction The problem is that their abilities are not being fully utilized. An object of the present invention is to solve the above-mentioned problems of the nine conventional methods, and to adjust the interval of soft decision thresholds to K s/
An object of the present invention is to provide a soft-decision threshold control method that controls according to No.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の軟判定しきい値制御方式は、畳込み符号化され
たり/ポル符号列で変調された送信信号に雑音が加わり
た受信信号を復調し、復調された復調信号を複数の軟判
定しきい値により量子化してビタビ復号器で復号する軟
判定ビタビ復号装置において、前記ピタビ復号器の情報
(入出力情報または復号過程の情報)から前記復調信号
の信号電力と雑音電力の比(Es/No又はEs/No
 :ただしEbはディジタル情報1ビット当りの信号電
力)を推定し、この推定値からあらかじめ定められた関
係に従って前記復調信号の大きさ又は前記軟判定しきい
値の電圧を前記軟判定しきい値が最適値になるように制
御して構成される。
The soft-decision threshold control method of the present invention demodulates a received signal in which noise is added to a transmitted signal that has been convolutionally encoded or modulated with a Pol code sequence, and performs multiple soft decisions on the demodulated signal. In a soft-decision Viterbi decoding device that quantizes by a threshold value and decodes with a Viterbi decoder, the ratio of signal power to noise power (Es/ No or Es/No
: where Eb is the signal power per bit of digital information), and from this estimated value, the magnitude of the demodulated signal or the voltage of the soft decision threshold is determined by the soft decision threshold according to a predetermined relationship. It is controlled and configured to achieve the optimum value.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図で、第2因に示
した従来方式の復調器1、A/D変換器2、ビタビ復号
器3に加えて、畳込み符号器4、遅延メモリ5、誤り率
検出器6から成る検出回路7と、ROM8、D/A変換
器9、可変減衰器10から成るしきい値制御回路11と
を備えて構成されている。第1図において、検出回路7
はビタビ復号器3の誤り訂正されたディジタル情報を送
信側と同じ畳込み符号化器4によって再符号化し、これ
とビタビ復号する前のA/D変換器2の軟判定値の第1
ピツ) (MSB)とを遅延メモリ5を介して位相を合
わせ、誤り率検出器5で比較照合することにより娯り訂
正を行わない受信シンボル符号のビット誤り率(BER
)を検出する。誤り訂正された受信ディジタル情報に1
ビツトの誤りがあると、これを畳込み符号化器で再符号
化したシンボル符号には、送信シンボル符号と比べると
KVシンボル区間(Kは拘束長、1/vは符号化率)に
亘り集中的に違いがでる。このため検出回路7で得らら
れるBERは実際の受信シンボル符号のBIRより僅か
に悪い値となるが、このBKRを用いて復調信号のK 
a/N oを求めることができる。第4図は符号化率1
/2、拘束長7の最適量込み符号のEs/No対BER
特性を示す特性図であり、実線Aは誤り訂正を行わない
2相PSK同期検波のBER,実線13tiaビット軟
判定ビタビ復号のBER,破線Ca2ビット軟判定ビタ
ビ復号のBERを示している。第4図から明らかなよう
に同じE s/N oに対して娯り訂正によるBERの
改善はEs/NoがOdB以下の部分を除けば非常に大
きい。従って、ビタビ復号器3の出力を再符号化したシ
ンボル符号とA/D変換器2の出力とを照合して検出し
た検出回路7のB′ERは受信シンボル符号のBERと
tlは同じであり、これから第4図により復調信号のE
s/Noを#1とんど誤りなく推定することができる。
FIG. 1 is a block diagram of an embodiment of the present invention, in which, in addition to the conventional demodulator 1, A/D converter 2, and Viterbi decoder 3 shown in the second factor, a convolutional encoder 4, a delay The detection circuit 7 includes a memory 5 and an error rate detector 6, and a threshold control circuit 11 includes a ROM 8, a D/A converter 9, and a variable attenuator 10. In FIG. 1, the detection circuit 7
The error-corrected digital information of the Viterbi decoder 3 is re-encoded by the convolutional encoder 4, which is the same as that on the transmitting side, and the first soft decision value of the A/D converter 2 before Viterbi decoding is re-encoded.
The bit error rate (BER) of the received symbol code without correction is adjusted by matching the phase with the bit error rate (BER) of the received symbol code (MSB) through the delay memory 5, and comparing and checking with the error rate detector 5.
) is detected. 1 for error-corrected received digital information.
If there is a bit error, the symbol code obtained by re-encoding it with a convolutional encoder has errors concentrated over the KV symbol interval (K is the constraint length and 1/v is the coding rate) compared to the transmission symbol code. There is a difference. Therefore, the BER obtained by the detection circuit 7 is slightly worse than the BIR of the actual received symbol code, but using this BKR, the K of the demodulated signal is
It is possible to obtain a/N o. Figure 4 shows the coding rate 1
/2, Es/No vs. BER of optimal quantified code with constraint length 7
FIG. 3 is a characteristic diagram showing the characteristics, where the solid line A shows the BER of two-phase PSK synchronous detection without error correction, the solid line shows the BER of 13-tia bit soft-decision Viterbi decoding, and the broken line shows the BER of Ca 2-bit soft-decision Viterbi decoding. As is clear from FIG. 4, for the same Es/No, the improvement in BER due to entertainment correction is very large except for the portion where Es/No is less than O dB. Therefore, the B'ER of the detection circuit 7 detected by comparing the symbol code obtained by re-encoding the output of the Viterbi decoder 3 with the output of the A/D converter 2 is the same as the BER of the received symbol code and tl. , From this, E of the demodulated signal is determined from Fig. 4.
#1 s/No can be estimated almost without error.

更に、軟判定しきい値間隔Tの最適値Topt  とE
 s /N oの関係本理論的および実験的に検討され
明確となっている(例えば、電子通信学会技術研究報告
: C380−126,p31〜p36)。第5図は第
4図の場合と同じ符号につきB a/N oとBERを
最良とする最適軟判定しきい値間隔T optの関係を
求めた結果であり、実線りは3ビット軟判定の場合を、
破線Eは2ビット軟判定の場合を送信符号振幅の5で基
準化して示したものである。この第5図と前出の第4図
とから受信シンボル符号のBERが分れば最適な軟判定
しきい値間隔T optを求めることができる。
Furthermore, the optimal value Topt of the soft decision threshold interval T and E
The relationship between s/N o has been theoretically and experimentally investigated and clarified (for example, IEICE technical research report: C380-126, p.31-p.36). Figure 5 shows the relationship between B a/N o and the optimal soft decision threshold interval T opt that optimizes the BER for the same sign as in Figure 4, and the solid line indicates the 3-bit soft decision. case,
A broken line E shows the case of 2-bit soft decision, normalized by 5, which is the transmission code amplitude. If the BER of the received symbol code is known from this FIG. 5 and the above-mentioned FIG. 4, the optimal soft-decision threshold interval T opt can be found.

第1図に示すように復調器1とA/D変換器2の間に可
変減衰器10を挿入して減衰量を制御すれば、軟判定し
きい値の間隔Tを変更することと等価であるから、RO
M8に受信シンボル符号のBERとT optとするた
めの可変減衰器10の制御量とを対応して記憶させてお
けば、Es/Noが変動しても検出回路7の出力でD/
A変換器9を介して可変減衰器10を常に最適な軟判定
しきい値間隔となるよう制御することができ、復号され
たディジタル情報のBIRを常に最良とすることができ
る。ちなみに、上述の符号化率1/2、拘束長7.3ビ
ット軟判定の場合、第5図からEs/Noが5dBのと
きの最適軟判定しきい値間隔はo、zs、r5−である
が、軟判定しきい値間隔をこの値に固定した場合と最適
値に制御した場合とのBERとの比は、′Ets/No
 = OdB及びK s /N 。
As shown in FIG. 1, if a variable attenuator 10 is inserted between the demodulator 1 and the A/D converter 2 to control the amount of attenuation, it is equivalent to changing the interval T of the soft decision threshold. Because there is, RO
If the BER of the received symbol code and the control amount of the variable attenuator 10 for setting Topt are stored in M8 in correspondence, even if Es/No changes, the output of the detection circuit 7
The variable attenuator 10 can be controlled via the A converter 9 so that the soft decision threshold interval is always optimal, and the BIR of the decoded digital information can always be the best. By the way, in the case of the above-mentioned coding rate 1/2 and constraint length 7.3-bit soft decision, the optimal soft decision threshold intervals are o, zs, r5- when Es/No is 5 dB from Fig. 5. However, the ratio of the BER when the soft decision threshold interval is fixed to this value and when it is controlled to the optimal value is 'Ets/No.
= OdB and Ks/N.

、、、、73dBのとき、それぞれ約L5倍、3倍とな
ることが計算されている(電子通信学界論文誌:VOL
、J67−B、A8.p930〜931参照)。
, , , 73 dB, it is calculated to be approximately L5 times and 3 times, respectively (Electronic Communication Academic Journal: VOL
, J67-B, A8. (See pages 930-931).

上述の実施例では、検出回路7によってビタビ復号器3
0入力情報と出力情報とから受信シンボル符号のBIR
を求めて復調信号のB s/N oを推定し、Es/N
oと最適軟判定しきい値間隔の関係に従って可変減衰器
を制御する方法について説明したが、E tx/N o
を検出する方法としては実施例に限られず、例えば、ビ
タビ復号器の復号過程でパスメトリックの大小関係から
求める方法や、時間的変化から求める方法(電子通信学
会技術研究報告:C382−43,917〜p24参照
)などが知られており、これらの方法を使用してもよい
。又、復調信号の大きさを制御するしきい値制御回路の
構成も実施例に限定されるものではなく、復調信号の大
きさでなく軟判定しきい値電圧を直接制御するように構
成してもよい。
In the embodiment described above, the detection circuit 7 detects the Viterbi decoder 3
0 BIR of received symbol code from input information and output information
Estimate B s/N o of the demodulated signal by finding Es/N
We have explained the method of controlling the variable attenuator according to the relationship between E tx/N o and the optimal soft-decision threshold interval.
The method of detecting is not limited to the embodiments, but for example, a method of determining from the magnitude relationship of path metrics in the decoding process of a Viterbi decoder, a method of determining from temporal changes (IEICE technical research report: C382-43, 917 - p. 24) are known, and these methods may also be used. Furthermore, the configuration of the threshold control circuit that controls the magnitude of the demodulated signal is not limited to the embodiment, and may be configured to directly control the soft-decision threshold voltage instead of the magnitude of the demodulated signal. Good too.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の軟判定しきい値制
御方式によれば、受信信号のE a/N oが変動して
も、常に軟判定しきい値間隔を最適値に設定することが
できるので誤り訂正機能を最大に発揮することができる
効果がある。
As explained in detail above, according to the soft-decision threshold control method of the present invention, even if E a/N o of the received signal changes, the soft-decision threshold interval can always be set to the optimal value. This has the effect of maximizing the error correction function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は従来
の軟判定ビタビ復号装置の構成を示すブロック図、第3
図は軟判定しきい値の説明図、第4図は復調信号E s
 /N oとBERの関係を示す特性図、第5図はE 
s/N oと基準化された最適しきい値間隔の関係を示
す特性図である。 1・・・・・・復調器、2・・・・・・A/D変換器、
3・・・・・・ビタビ復号器、4・・・・・・畳込み符
号化器、5・・・・・・誤り率検出器、6・・・・・・
遅延メモリ、7・・・・・・検出回路、8・・−−−−
ROM、9・・・・・・D/A変換器、10・・・・・
・可変減衰器、11・・・・・・しきい値制御回路。 第 1 図 第 2I¥l 草 3I!I
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of a conventional soft-decision Viterbi decoding device, and FIG.
The figure is an explanatory diagram of the soft decision threshold, and Fig. 4 shows the demodulated signal E s
A characteristic diagram showing the relationship between /N o and BER, Figure 5 is E
FIG. 3 is a characteristic diagram showing the relationship between s/N o and standardized optimal threshold interval. 1... Demodulator, 2... A/D converter,
3... Viterbi decoder, 4... Convolutional encoder, 5... Error rate detector, 6...
Delay memory, 7...Detection circuit, 8...---
ROM, 9...D/A converter, 10...
- Variable attenuator, 11...Threshold control circuit. Figure 1 2I\l Grass 3I! I

Claims (1)

【特許請求の範囲】[Claims] 畳込み符号化されたシンボル符号列で変調された送信信
号に雑音が加わった受信信号を復調し、復調された復調
信号を複数の軟判定しきい値により量子化してビタビ復
号器で復号する軟判定ビタビ復号装置において、前記ビ
タビ復号器の情報から前記復調信号の信号電力と雑音電
力の比を推定し、この推定値からあらかじめ定められた
関係に従って前記復調信号の大きさ又は前記軟判定しき
い値の電圧を前記軟判定しきい値が最適値になるように
制御することを特徴とする軟判定しきい値制御方式。
A soft method that demodulates the received signal, which is a transmitted signal modulated with a convolutionally encoded symbol code string with noise added to it, quantizes the demodulated signal using multiple soft-decision thresholds, and decodes it with a Viterbi decoder. In the decision Viterbi decoding device, the ratio of the signal power to the noise power of the demodulated signal is estimated from the information of the Viterbi decoder, and the magnitude of the demodulated signal or the soft decision threshold is determined from this estimated value according to a predetermined relationship. A soft decision threshold control method characterized in that a voltage of a value is controlled so that the soft decision threshold becomes an optimal value.
JP25782884A 1984-12-06 1984-12-06 System for controlling soft deciding threshold value Pending JPS61135234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25782884A JPS61135234A (en) 1984-12-06 1984-12-06 System for controlling soft deciding threshold value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25782884A JPS61135234A (en) 1984-12-06 1984-12-06 System for controlling soft deciding threshold value

Publications (1)

Publication Number Publication Date
JPS61135234A true JPS61135234A (en) 1986-06-23

Family

ID=17311690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25782884A Pending JPS61135234A (en) 1984-12-06 1984-12-06 System for controlling soft deciding threshold value

Country Status (1)

Country Link
JP (1) JPS61135234A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344360A (en) * 1986-08-05 1988-02-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Reader for recording system
EP0585427A1 (en) * 1992-03-19 1994-03-09 Motorola, Inc. Method and apparatus for estimating signal weighting parameters in a receiver
JPH06111478A (en) * 1992-08-13 1994-04-22 Internatl Business Mach Corp <Ibm> Method and device for adjusting asynchronous gain of prml disk driving system
US5414737A (en) * 1991-11-20 1995-05-09 Matsushita Electric Industrial Co., Ltd. Data decoding device with error rate estimation
WO1996037972A1 (en) * 1995-05-23 1996-11-28 Ericsson Inc. Open-loop power control scheme for a portable radio
JP2919072B2 (en) * 1992-03-30 1999-07-12 モトローラ・インコーポレーテッド Error detection system
WO2000018018A1 (en) * 1998-09-17 2000-03-30 Asahi Kasei Kabushiki Kaisha Branch metric operation device and viterbi decoding device
JP2002152295A (en) * 2000-08-28 2002-05-24 Sony Internatl Europ Gmbh Soft-value generator and soft-value generation method therefor
WO2003026239A1 (en) * 2001-09-13 2003-03-27 Mitsubishi Denki Kabushiki Kaisha Optical reception apparatus
US6637003B1 (en) 1999-12-16 2003-10-21 Mitsubishi Denki Kabushiki Kaisha Viterbi decoder and synchronism controlling method
JP2006165966A (en) * 2004-12-07 2006-06-22 Mitsubishi Electric Corp Light-receiving device
US7817753B2 (en) 2005-05-27 2010-10-19 Panasonic Corporation Reception quality estimating apparatus, wireless communication system, and reception quality estimating method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344360A (en) * 1986-08-05 1988-02-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Reader for recording system
US5414737A (en) * 1991-11-20 1995-05-09 Matsushita Electric Industrial Co., Ltd. Data decoding device with error rate estimation
EP0585427A1 (en) * 1992-03-19 1994-03-09 Motorola, Inc. Method and apparatus for estimating signal weighting parameters in a receiver
EP0585427A4 (en) * 1992-03-19 1995-03-08 Motorola Inc Method and apparatus for estimating signal weighting parameters in a receiver.
JP2919072B2 (en) * 1992-03-30 1999-07-12 モトローラ・インコーポレーテッド Error detection system
JPH06111478A (en) * 1992-08-13 1994-04-22 Internatl Business Mach Corp <Ibm> Method and device for adjusting asynchronous gain of prml disk driving system
WO1996037972A1 (en) * 1995-05-23 1996-11-28 Ericsson Inc. Open-loop power control scheme for a portable radio
US5710981A (en) * 1995-05-23 1998-01-20 Ericsson Inc. Portable radio power control device and method using incrementally degraded received signals
WO2000018018A1 (en) * 1998-09-17 2000-03-30 Asahi Kasei Kabushiki Kaisha Branch metric operation device and viterbi decoding device
US6637003B1 (en) 1999-12-16 2003-10-21 Mitsubishi Denki Kabushiki Kaisha Viterbi decoder and synchronism controlling method
JP2002152295A (en) * 2000-08-28 2002-05-24 Sony Internatl Europ Gmbh Soft-value generator and soft-value generation method therefor
WO2003026239A1 (en) * 2001-09-13 2003-03-27 Mitsubishi Denki Kabushiki Kaisha Optical reception apparatus
US7239673B2 (en) 2001-09-13 2007-07-03 Mitsubishi Denki Kabashiki Kaisha Optical reception apparatus
JP2006165966A (en) * 2004-12-07 2006-06-22 Mitsubishi Electric Corp Light-receiving device
JP4507089B2 (en) * 2004-12-07 2010-07-21 三菱電機株式会社 Optical receiver
US7817753B2 (en) 2005-05-27 2010-10-19 Panasonic Corporation Reception quality estimating apparatus, wireless communication system, and reception quality estimating method

Similar Documents

Publication Publication Date Title
US5432822A (en) Error correcting decoder and decoding method employing reliability based erasure decision-making in cellular communication system
EP0854581A2 (en) Coding and decoding system using crc check bit
AU758213B2 (en) Method for the transmission of speech inactivity with reduced power in a TDMA system
KR100554322B1 (en) Convolutional decoding with the ending state decided by crc bits placed inside multiple coding bursts
CA2020899C (en) Generalized viterbi decoding algorithms
EP0908025B1 (en) Methods for generating side information in the presence of time-selective fading
EP0689312A2 (en) Soft decision signal outputting receiver
JPS61135234A (en) System for controlling soft deciding threshold value
JPH06508253A (en) error detection system
KR100344605B1 (en) Bad frame detector and turbo decoder
EP0910907B1 (en) Method and apparatus for concatenated coding of mobile radio signals
WO2005043317A2 (en) System and method for adjusting soft decision thresholds in a soft-decision error correction system
US5987631A (en) Apparatus for measuring bit error ratio using a viterbi decoder
EP0961436B1 (en) Method of identifying a frame for erasure in a digital data transmission system
JPH07509357A (en) Data decoder and method using dynamically indexed channel state metrics
JPH04278743A (en) Data transmitter
JP3676460B2 (en) Decoding device for input modulation signal
JP3360724B2 (en) Erased frame identification method
JP3285090B2 (en) Digital data decoder
US7269551B2 (en) Apparatus including an error detector and a limiter for decoding an adaptive differential pulse code modulation receiving signal
US20030016080A1 (en) Apparatus for decoding receiving signal
JP3282562B2 (en) Method of determining metric value threshold in Viterbi synchronization determination circuit and metric value threshold determination device
JP3383561B2 (en) Decoding quality estimation device
JP2744791B2 (en) Viterbi decoder
JP4918059B2 (en) Receiving apparatus and Viterbi decoding method