JPS61135062A - Generating system of fuel cell - Google Patents

Generating system of fuel cell

Info

Publication number
JPS61135062A
JPS61135062A JP59256414A JP25641484A JPS61135062A JP S61135062 A JPS61135062 A JP S61135062A JP 59256414 A JP59256414 A JP 59256414A JP 25641484 A JP25641484 A JP 25641484A JP S61135062 A JPS61135062 A JP S61135062A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel cell
pipe
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256414A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azebiru
畔蒜 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59256414A priority Critical patent/JPS61135062A/en
Publication of JPS61135062A publication Critical patent/JPS61135062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable to operate fuel batteries with uniform output of each fuel cell, when numerous fuel cells are used together, by installing a fuel flow control valve and an air flow control valve at each fuel pipe and air pipe respectively. CONSTITUTION:When plural cells N formed by laminating cell units which consist of electrolyte matrixs, positive and negative electrodes, and grooved in interconnectors, are used together to form a large capacity of generating system, the fuel feeding pipe 11 and the fuel exhaust pipe 12 of each fuel cell N are connected to the parent feeding pipe 23 and the parent exhaust pipe 24 through a fuel flow control valve 27. In the same manner, the air feeding pipe 13 and the air exhaust pipe 14 are connected to the parent air feeding pipe 25 and the parent exhaust pipe 26 through an air flow control valve 28. Therefore, by the control of the valves 27 and 28, fuel and air can be fed evenly to each fuel cell, and, uniform output and efficient operation can be acquired.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、複数個の燃料電池を使用した燃料電池発電装
置に係り、特に、個々の燃料電池に供給する水素ガス量
を調節する手段に改良を施した燃料電池に関するもので
ある。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a fuel cell power generation device using a plurality of fuel cells, and in particular to an improved means for adjusting the amount of hydrogen gas supplied to each fuel cell. The present invention relates to a fuel cell that has undergone the following steps.

[発明の技術的背景] 燃料電池は、燃料の持つ化学エネルギーを電気化学ブO
セスで酸化させることにより、酸化反応に伴って放出さ
れるエネルギーを直接電気エネルギーに変換する装置で
ある。この燃料電池を用いた発電プラントは、比較的小
さな規模でも発電の熱効率が40〜50%にも達し、新
鋭火力をはるかにしのぐと期待されている。ざらに、近
年大きな社会問題になっている公害要因であるSOx。
[Technical background of the invention] A fuel cell converts the chemical energy of fuel into electrochemical
This is a device that directly converts the energy released during the oxidation reaction into electrical energy by oxidizing it with a process. Power generation plants using fuel cells are expected to achieve a thermal efficiency of 40 to 50% even on a relatively small scale, far exceeding new thermal power plants. In general, SOx is a pollution factor that has become a major social problem in recent years.

NOXの排出が極めて少ない、発電!i置内に燃焼サイ
クルを含まないので大量の冷却水を必要としない、振動
音が小さいなど、原理的に高いエネルギー変換効率が期
待できると共に、騒音・排ガス等の環境問題が少なく、
ざらに、負荷変動に対して応答性が良い等の特長がある
ことから、その開発、実用化の研究に期待と関心が寄せ
られている。
Power generation with extremely low NOX emissions! It does not require a large amount of cooling water because it does not include a combustion cycle, and has low vibration noise.In principle, high energy conversion efficiency can be expected, and there are few environmental problems such as noise and exhaust gas.
In addition, because it has features such as good responsiveness to load fluctuations, there are expectations and interest in research into its development and practical application.

この様な燃料電池発電装置のうち小規模のものは、すで
に試作され、実験運転の段階に入っている。しかし、大
容農の燃料電池発電装置の実用化への最大の鍵は、その
構造上及び作業性、或いは輸送上の制約等があるため、
燃料電池の単器容量に大幅な増加は望めないことより、
多数台の燃料電池をいかに効率良く配設し、その据付ス
ペースを縮小化し、燃料ガス及び電力端子の接続系統を
いかに効率化できるかにかかっている。
A small-scale fuel cell power generation device of this kind has already been prototyped and is in the stage of experimental operation. However, the biggest key to the practical application of Taiyong Agriculture's fuel cell power generation device is its structure, workability, and transportation constraints.
Since we cannot expect a significant increase in the unit capacity of fuel cells,
This depends on how efficiently a large number of fuel cells can be arranged, how the installation space can be reduced, and how efficiently the connection system for fuel gas and power terminals can be made more efficient.

さて、この様な燃料電池の原理を示す断面模型図を第2
図に示した。即ち、−組の多孔質電極1の間に、リン酸
等の電解液を含浸させた電解質層2を介在させて単電池
を形成し、この単電池の両端面に水素ガスHと空気Aを
連続して供給する。
Now, a cross-sectional model diagram showing the principle of such a fuel cell is shown in the second section.
Shown in the figure. That is, an electrolyte layer 2 impregnated with an electrolytic solution such as phosphoric acid is interposed between the - set of porous electrodes 1 to form a single cell, and hydrogen gas H and air A are supplied to both end faces of the single cell. Supply continuously.

この様にすると、反応生成物及び反応残余物りが外部に
連続して除去されるので発電が長期にわたり継続される
In this way, reaction products and reaction residues are continuously removed to the outside, so power generation can be continued for a long period of time.

また、この様な燃料電池の基本的な構成は、第3図に示
す通りである。即ち、電解質マトリックス層3の両側に
正極4及び負極5が配設されて四角系の板状をなす単電
池が構成され、この単電池を発電装置として使用するた
めに、多数の単電池が直列に結合されて積層されている
が、これら単電池の間には、ガスを供給するための溝を
設けたインクコネクタ6が配設され、前記単電池と交互
に積重ねられている。この溝付インタコネクタ6には、
対向する二側縁に間口する複数の溝が設けられており、
−側面の溝を流路とする水素ガス流路7と、他の側面の
溝を流路とする空気流路8は、互いに直行する方向に配
列されている。
Further, the basic configuration of such a fuel cell is as shown in FIG. 3. That is, a positive electrode 4 and a negative electrode 5 are arranged on both sides of an electrolyte matrix layer 3 to form a square plate-shaped unit cell, and in order to use this unit cell as a power generation device, a large number of unit cells are connected in series. Ink connectors 6 having grooves for supplying gas are disposed between these unit cells and are stacked alternately with the unit cells. This grooved interconnector 6 has
A plurality of grooves are provided on the two opposing edges,
- The hydrogen gas flow path 7, which uses a side groove as a flow path, and the air flow path 8, which uses a side groove as a flow path, are arranged in directions perpendicular to each other.

ところで、現在開発が進められている燃料電池は、第4
図<A>(B)に示す如く、上記の様な単電池を四角柱
状に複数個積層してセルスタック9が構成され、その四
周の側面には反応ガス供給用のマニホールド10が取付
けられている。このマニホールド10には、それぞれ水
素ガス供給管11、水素ガス排出管12、空気供給管1
3及び空気排出管14が接続されており、水素ガス及び
空気は、セルスタック9内を矢印A、Bの方向に流れる
様に設計されている。また、セルスタック9の運転温度
は高い方が反応論的には好ましいが、構成材料の耐熱性
や電解質の蒸気圧等の制約から200’ C前後に維持
することが望ましい。従って、セルスタック9内に埋設
された導管内に冷加水を循環させて、燃料電池起動時の
加熱と、運転中に発生する熱を冷却している。即ち、こ
の型の燃料電池では、第4図(A)に示した様に、冷却
水供給管15及び冷却水排出管16が配設され、冷却水
はセルスタック9内を破aCの様に循環している。さら
に、燃料N池の出力は直流で、セルスタック9の上下端
に配設された電力端子(正極)17、電力端子(負極)
18から、接続導体19及びブッシング20を介してタ
ンク21外に引出される。
By the way, the fuel cell currently under development is
As shown in Figure <A>(B), a cell stack 9 is constructed by stacking a plurality of cells as described above in a square column shape, and manifolds 10 for supplying reaction gas are attached to the four circumferential sides of the cell stack 9. There is. This manifold 10 includes a hydrogen gas supply pipe 11, a hydrogen gas discharge pipe 12, and an air supply pipe 1, respectively.
3 and an air exhaust pipe 14 are connected, and hydrogen gas and air are designed to flow in the directions of arrows A and B within the cell stack 9. Further, although a higher operating temperature of the cell stack 9 is preferable in terms of reaction theory, it is desirable to maintain it at around 200'C due to constraints such as the heat resistance of the constituent materials and the vapor pressure of the electrolyte. Therefore, chilled water is circulated in the conduit buried in the cell stack 9 to cool down the heating at the time of starting the fuel cell and the heat generated during operation. That is, in this type of fuel cell, a cooling water supply pipe 15 and a cooling water discharge pipe 16 are arranged as shown in FIG. It's circulating. Furthermore, the output of the fuel N pond is direct current, and power terminals (positive electrode) 17 and power terminals (negative electrode) are arranged at the upper and lower ends of the cell stack 9.
18, and is led out of the tank 21 via a connecting conductor 19 and a bushing 20.

以上、説明した様な燃料電池の中身は、タンク21内に
収納され、タンク21□内には、断熱材22を施すとと
もにマニホールド10やその他からの反応ガスの漏れを
抑制するために窒素ガス等が封入されている。
The contents of the fuel cell as described above are stored in the tank 21, and inside the tank 21□, a heat insulating material 22 is applied and nitrogen gas etc. is included.

[背景技術の問題点] ところで、第4図(A>(B)に示した様な燃料電池に
おいては、その単器容量は単電池面積とその8!!層園
数に比例する。しかし、単電池を構成する多孔質電極板
は、全面均一な厚さに成形する製作上の$り約や、脆い
材質であることからの積層作業の制約、さらには、全面
均一な締付力が得られにくい等の制約より、その面積を
大幅に増大することは困難であり、また単電池の槓Fi
個数も輸送上の制約或いは積層作業の制約等のため限界
があることより、セルスタフ91個当たりの容蚤は20
0〜500kwに抑制される。従って、大言lの燃料電
池発電装置の実用化に際しては、数十個或いは数百個の
燃料電池を併設する必要がある。
[Problems with Background Art] By the way, in a fuel cell as shown in FIG. 4 (A>(B)), the unit capacity is proportional to the area of the unit cell and the number of its 8 layers. Porous electrode plates that make up single cells have to be manufactured to have a uniform thickness over the entire surface, which is expensive, and because they are made of brittle materials, lamination work is limited.Furthermore, it is difficult to achieve uniform tightening force over the entire surface. It is difficult to significantly increase the area due to constraints such as the difficulty of
Since there is a limit to the number of pieces due to transportation restrictions or lamination work restrictions, the capacity per 91 cellstuffs is 20
It is suppressed to 0 to 500kw. Therefore, in order to put the fuel cell power generation device into practical use, it is necessary to install several tens or hundreds of fuel cells.

そのため、各燃料電池に供給する水素量及び空気量を一
様にすることが燃料電池の出力特性を均一にするうえで
重要なポイントとなる。一般に流体を管路を介して送る
場合、その流量は管路長、管径、流体速度等により決ま
る管路抵抗により大きく左右される。換言すれば前述の
如き多数の燃料電池で構成する発電装置では各燃料電池
への水素及び空気の供給量はそれぞれの管路抵抗により
同一量とはならないことは必然である。このため、燃料
電池発電装置として当初期待した出力を得ることができ
ないという問題を生ずることになる。
Therefore, it is important to make the amount of hydrogen and air supplied to each fuel cell uniform in order to make the output characteristics of the fuel cells uniform. Generally, when a fluid is sent through a pipe, the flow rate is greatly influenced by the pipe resistance determined by the pipe length, pipe diameter, fluid velocity, etc. In other words, in a power generating apparatus configured with a large number of fuel cells as described above, it is inevitable that the amounts of hydrogen and air supplied to each fuel cell will not be the same due to the resistance of each pipe. For this reason, a problem arises in that it is not possible to obtain the initially expected output as a fuel cell power generation device.

[発明の目的] 本発明は上述の如き問題点を解消せんとして提案された
もので、その目的は、各燃料電池への水素量及び空気量
を同一にして各燃料電池の出力特性を均一にし、期待し
た出力を得ることのできる燃料電池発電装置を提供する
ことにある。
[Object of the Invention] The present invention was proposed to solve the above-mentioned problems, and its purpose is to make the output characteristics of each fuel cell uniform by making the amount of hydrogen and air to each fuel cell the same. The object of the present invention is to provide a fuel cell power generation device that can obtain the expected output.

[発明の概要〕 本発明の燃料電池発電装置は、複数の燃料電池発電ユニ
ットが併設される場合、これらの各燃料電池ユニットの
燃料流山及び空気流量を同一にするために、燃料及び空
気の親供給管から分岐する燃料電池発電ユニットの燃料
側配管及び空気側配管にそれぞれ燃料流量調節弁及び空
気流用調節弁を組込んで、流体流m II tinをで
きるようにしたものである。
[Summary of the Invention] When a plurality of fuel cell power generation units are installed together, the fuel cell power generation device of the present invention is designed to adjust the flow rate of the fuel and air so that the fuel flow rate and air flow rate of each fuel cell unit are the same. A fuel flow rate control valve and an air flow control valve are incorporated into the fuel side pipe and air side pipe of the fuel cell power generation unit that branch from the supply pipe, respectively, so that a fluid flow m II tin can be generated.

[発明の実施例] 本発明による燃料電池発電装置は、第4図に示す如く複
数個の燃料電池Nを配設し、これらの燃料電池Nの水素
ガス供給管11及び水素ガス排出管12を、水素ガス親
供給管23及び水素ガス親排出管24へそれぞれ接続す
る際、水素ガス供給管11には水素ガス流量調節弁27
を組込む。また、空気供給管13及び空気排出管14を
空気親供給管25及び空気親排出管26へそれぞれ接続
する際、空気供給管13には空気流!調節弁28を組込
む。
[Embodiments of the Invention] A fuel cell power generation device according to the present invention has a plurality of fuel cells N arranged as shown in FIG. , a hydrogen gas flow rate control valve 27 is installed in the hydrogen gas supply pipe 11 when connecting to the hydrogen gas main supply pipe 23 and the hydrogen gas main discharge pipe 24, respectively.
Incorporate. Further, when connecting the air supply pipe 13 and the air discharge pipe 14 to the air parent supply pipe 25 and the air parent exhaust pipe 26, respectively, the air supply pipe 13 has an air flow! Incorporate the control valve 28.

この様な構成の燃料電池発電装置においては、個々の燃
料電池Nへの水素流量及び空気流量を独立して調節する
ことができ、したがって個々の燃料電池Nへの水素流量
及び空気流量を同一にして各燃料電池Nの出力を均一に
することができる。
In a fuel cell power generation device with such a configuration, the hydrogen flow rate and air flow rate to each fuel cell N can be adjusted independently, and therefore the hydrogen flow rate and air flow rate to each fuel cell N can be made the same. Thus, the output of each fuel cell N can be made uniform.

以上述べた本発明の実施例では水素及び空気流!l調節
弁を燃料電池Nの供給管側に組込んでいるが、これらの
流量調節弁は排出管側へ組込んででも同様の作用を得る
ことができる。
In the embodiments of the present invention described above, hydrogen and air flow! Although the 1 control valve is installed on the supply pipe side of the fuel cell N, the same effect can be obtained even if these flow rate control valves are installed on the discharge pipe side.

[発明の効果1 以上の通り本発明によれば、多数の燃料電池を併設して
大容量発電装置を形成する際、各燃料電池の出力が偏る
ことなく同一の出力で運転することができるので、発電
装置の寿命を伸ばすのに有利となる。
[Effect of the invention 1 As described above, according to the present invention, when a large number of fuel cells are installed together to form a large-capacity power generation device, each fuel cell can be operated at the same output without biasing the output. , which is advantageous in extending the life of the power generation equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池発電装置の一実施例を示す配
管図、第2図は燃料電池の原理を示す断面模型図、第3
図は燃料電池の基本構成を示す斜視図、第4図(A>は
現在開発が進められている燃料電池の概略構成を示す平
面図、第4図(B)はその縦断面図である。 N・・・燃料電池、1・・・多孔質電極、2・・・電解
質層、3・・・電解質マトリックス層、4・・・正極、
5・・・負極、6・・・溝付インタコネクタ、7・・・
水素ガス流路、8・・・空気流路、9・・・セルスタッ
ク、10・・・マニホールド、11・・・水素ガス供給
管、12・・・水素ガス排出管、13・・・空気供給管
、14・・・空気排出管、15・・・冷却水供給管、1
6・・・冷却水排出管、17・・・電力端子(正It)
、18・・・電力端子(負極)、1つ・・・接続導体、
20・・・ブッシング、21・・・タンク、22・・・
断熱材、23・・・水素ガス親供給管、24・・・水素
ガス親排出管、25・・・空気親供給管、26・・・空
気親排出管、27・・・水素ガス流量調節弁、28・・
・空気流用調節弁。 7317  代理人 弁理士 則近 憲佑(外1名)i
J!;1m 第2図 第4 図(A)
Fig. 1 is a piping diagram showing one embodiment of the fuel cell power generation device of the present invention, Fig. 2 is a cross-sectional model diagram showing the principle of the fuel cell, and Fig. 3 is a piping diagram showing an embodiment of the fuel cell power generation device of the present invention.
The figure is a perspective view showing the basic structure of a fuel cell, FIG. 4A is a plan view showing a schematic structure of a fuel cell currently under development, and FIG. 4B is a longitudinal sectional view thereof. N... Fuel cell, 1... Porous electrode, 2... Electrolyte layer, 3... Electrolyte matrix layer, 4... Positive electrode,
5... Negative electrode, 6... Grooved interconnector, 7...
Hydrogen gas channel, 8... Air channel, 9... Cell stack, 10... Manifold, 11... Hydrogen gas supply pipe, 12... Hydrogen gas discharge pipe, 13... Air supply Pipe, 14... Air discharge pipe, 15... Cooling water supply pipe, 1
6...Cooling water discharge pipe, 17...Power terminal (positive It)
, 18... Power terminal (negative electrode), 1... Connection conductor,
20... Bushing, 21... Tank, 22...
Insulating material, 23...Hydrogen gas parent supply pipe, 24...Hydrogen gas parent discharge pipe, 25...Air parent supply pipe, 26...Air parent discharge pipe, 27...Hydrogen gas flow rate control valve , 28...
・Air flow control valve. 7317 Agent Patent Attorney Kensuke Norichika (1 other person) i
J! ;1m Figure 2 Figure 4 (A)

Claims (1)

【特許請求の範囲】 複数個の燃料電池を燃料ガス親供給管と排出管及び空気
親供給管と排出管に並列に接続して各燃料電池の燃料ガ
ス及び空気の供給、排出をする燃料電池発電装置におい
て、 燃料電池の燃料ガス供給管又は燃料ガス排出管に燃料ガ
ス流量調節弁を組込み、燃料電池の空気供給管又は空気
排出管に空気流量調節弁を組込んだことを特徴とする燃
料電池発電装置。
[Claims] A fuel cell in which a plurality of fuel cells are connected in parallel to a fuel gas main supply pipe and a discharge pipe, and an air main supply pipe and a discharge pipe to supply and discharge fuel gas and air from each fuel cell. In a power generation device, a fuel gas flow rate control valve is incorporated in a fuel gas supply pipe or a fuel gas discharge pipe of a fuel cell, and an air flow rate control valve is incorporated in an air supply pipe or an air discharge pipe of a fuel cell. Battery power generator.
JP59256414A 1984-12-06 1984-12-06 Generating system of fuel cell Pending JPS61135062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256414A JPS61135062A (en) 1984-12-06 1984-12-06 Generating system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256414A JPS61135062A (en) 1984-12-06 1984-12-06 Generating system of fuel cell

Publications (1)

Publication Number Publication Date
JPS61135062A true JPS61135062A (en) 1986-06-23

Family

ID=17292341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256414A Pending JPS61135062A (en) 1984-12-06 1984-12-06 Generating system of fuel cell

Country Status (1)

Country Link
JP (1) JPS61135062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528615B2 (en) 2010-07-30 2016-12-27 Ross Operating Valve Company Internally vented valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528615B2 (en) 2010-07-30 2016-12-27 Ross Operating Valve Company Internally vented valve

Similar Documents

Publication Publication Date Title
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
EP3147984B1 (en) Fuel cell module including heat exchanger
CN114361505B (en) Three-runner solid oxide fuel cell unit structure and cell stack
US8778550B2 (en) Battery of fuel cells
JPS63119166A (en) Fuel battery
JPS6093764A (en) Fuel cell power generating system
JP2008251237A (en) Fuel cell
JPS61135062A (en) Generating system of fuel cell
JPH0594830A (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPS6093765A (en) Fuel cell
JPH0521083A (en) Fuel cell
JPH0249640Y2 (en)
JPS5975573A (en) Fuel cell
JPS6093763A (en) Fuel cell
CN216435951U (en) Fuel cell assembly structure and cell
CN220553472U (en) Pile stack structure of solid oxide fuel cell system
JPH06333591A (en) High voltage fuel cell system
JPS61101966A (en) Fuel cell generation device
JPS6093767A (en) Fuel cell power generating system
JP2832640B2 (en) Molten carbonate fuel cell power generator
JPS6093769A (en) Fuel cell
JPH04280081A (en) Fuel cell power generator
JPH0945359A (en) Fuel cell
JPS61294765A (en) Fuel cell power generating system
JP3365453B2 (en) Fuel cell