JPS61134592A - Manufacture of heat pipe - Google Patents

Manufacture of heat pipe

Info

Publication number
JPS61134592A
JPS61134592A JP25487884A JP25487884A JPS61134592A JP S61134592 A JPS61134592 A JP S61134592A JP 25487884 A JP25487884 A JP 25487884A JP 25487884 A JP25487884 A JP 25487884A JP S61134592 A JPS61134592 A JP S61134592A
Authority
JP
Japan
Prior art keywords
pipe
heat pipe
heat
clamp
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25487884A
Other languages
Japanese (ja)
Inventor
Kenichi Hatanaka
畑中 研一
Masayuki Nishigaito
西垣内 雅之
Koji Nishimura
西村 厚司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP25487884A priority Critical patent/JPS61134592A/en
Publication of JPS61134592A publication Critical patent/JPS61134592A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes

Abstract

PURPOSE:To provide the manufacture of a heat pipe, the welded part and pressed part or the sealed part of which has enough strength against breakdown, by a method wherein processes to introduce heat transfer medium in the pipe and the like are applied after the interior of the pipe is evacuated until the predetermined degree of vacuum is reached. CONSTITUTION:Firstly, a heat pipe 8 is connected with an exhauster by means of a vacuum hose 9 in order to start to evacuate, Fig. (1). Secondly, a certain measured amount of preliminarily treated water is sucked in the heat pipe 8 held under vacuum state in order to perfectly degas the residual gas dissolved in the water under vacuum and, after that, to seal it. Thirdly, the heat pipe 8 is pressed with the clamp 3 consisting o two steps of clamps or the upper step clamp 10 and lower step clamp 11 of a press, Fig. (4). Fourthly, a copper pipe extending above the upper step clamp 10 is cut off with knives. The upper end part of the heat pipe is welded by tungsten inert gas welding process under the condition that the pressing with the lower step clamp 11 is kept on being applied, Fig. (7). Finally, the portion ranging from the tip of the welded part 6 to the lower end of the pressed part 5 is made into a bent part by being bent along the axis of the pipe into a U-shape, a semi-circular shape, a chevron shape or the like, Fig. (9).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートパイプの製造方法8と関するもので、特
にヒートパイプ容器内を減圧して熱媒液を封入した後、
これを密封して完成するヒートパイプの製造法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pipe manufacturing method 8, in particular, after reducing the pressure inside the heat pipe container and sealing in a heat transfer liquid,
The present invention relates to a method for manufacturing a heat pipe, which is completed by sealing the heat pipe.

〔従来技術〕[Prior art]

近年ヒートパイプを比較的高温域で使用する場合が増え
ている。比較的高温域とは100”C以上を言うが、熱
媒液側の熱分解の問題が有り有機物系熱媒液に安定な物
質がないため比較的高温域用熱媒液として水が使用され
る場合がある。水は熱分解に対して絶対に安定であるが
、その反面臨界温度が高いため飽和蒸気圧に示される圧
力がヒートパイプ内に発生する。例えば、ヒートパイプ
を真空管形太陽熱集熱器に採用するとき無負荷で空焚を
行なうと、ヒートパイプ内は実に270℃に達しその時
には内圧として564/csiが発生する。従って、ヒ
ートパイプの封止部分は高温、高圧に対して充分な信頼
性をもたさなければならない。即ち、ヒートパイプに熱
媒液を封入した後ヒートパイプを封止するのにアーク溶
接、例えばタングステンイナートガス溶接(以下Tig
溶接という)を用いる事は設備の面でも最も安価で手軽
な方法である。
In recent years, heat pipes have been increasingly used in relatively high temperature ranges. A relatively high temperature range refers to a temperature of 100"C or higher, but water is used as a heat transfer liquid for a relatively high temperature range because there is a problem of thermal decomposition on the heat transfer liquid side and there are no stable substances in organic heat transfer liquids. Water is absolutely stable against thermal decomposition, but on the other hand, due to its high critical temperature, a pressure corresponding to the saturated vapor pressure is generated in the heat pipe. When used in a heating device, if the heat pipe is heated without any load, the temperature inside the heat pipe reaches 270°C, and at that time an internal pressure of 564/csi is generated.Therefore, the sealed part of the heat pipe is resistant to high temperatures and high pressures. It must have sufficient reliability.That is, arc welding, such as tungsten inert gas welding (hereinafter referred to as TIG
Welding is the cheapest and easiest method in terms of equipment.

しかし上記に述べたごとく高温、高圧のため溶接部及び
加圧部よりなる封止部が破損する場合が多々有る。
However, as mentioned above, the sealing part consisting of the welded part and the pressurized part is often damaged due to high temperature and high pressure.

ヒートパイプに熱媒液を封止する場合、封止時に真空引
きの必要がない場合と、真空引きの必要がある場合とが
ありその従来の工程を第3図及び第4図に示す。
When sealing a heat medium liquid in a heat pipe, there are cases in which evacuation is not necessary at the time of sealing and cases in which evacuation is necessary, and the conventional process is shown in FIGS. 3 and 4.

fil  真空引きの必要のない場合は第3図ta+、
(bl、fclに示すごとく、熱媒液を注入装置1から
パイプ2に注入し該パイプ2の先端部を加圧機のクラン
プ3によって潰しその上方を切断した後、先端部にTi
g溶接4を行なう。
fil If there is no need to vacuum, use ta+ in Figure 3.
(As shown in bl and fcl, the heat transfer liquid is injected from the injection device 1 into the pipe 2, the tip of the pipe 2 is crushed by the clamp 3 of the pressurizer, the upper part is cut off, and the tip is filled with Ti.
g Perform welding 4.

(2)真空引きの必要がある場合は第4図(1)、fb
)、(c)Jζ示すごとく、熱媒液を注入し、てパイプ
2を真空引きし、真空引を継続しつつ       1
加圧機のクランプ3によってパイプ2を潰し、潰した上
方を切断し切断面に71g溶接4を行なう。
(2) If it is necessary to vacuum, see Figure 4 (1), fb
), (c) As shown in Jζ, inject the heat transfer liquid, evacuate the pipe 2, and continue to evacuate the pipe 1.
The pipe 2 is crushed by the clamp 3 of the pressure machine, the crushed upper part is cut, and a 71g weld 4 is performed on the cut surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来の工程では第5図に示すとと(、ヒー
トパイプ8内に蒸気圧により大きな圧力が発生すると加
圧部5が押し拡げられ溶接部6に応力が集中し、そのた
め第6図に示すごとく溶接部6に亀裂が生じついには破
壊する。
However, in the conventional process as shown in FIG. As shown in the figure, cracks occur in the welded part 6 and it eventually breaks.

また、特に真空引きの必要がある場合には、ヒートパイ
プ8の加圧部5に加圧機のクランプ3によって大きな圧
力を加えて形成する必要から、第7図に示すごとく加圧
部5軸方向両端部に傷がつき大きな内圧で加圧部5が押
し拡げられた時、加圧部5両端に亀裂を生じ破壊されや
すくなる。
In addition, especially when it is necessary to create a vacuum, it is necessary to apply a large pressure to the pressurizing part 5 of the heat pipe 8 using the clamp 3 of the pressurizing machine. When both ends are damaged and the pressurizing part 5 is pushed and expanded by large internal pressure, cracks are generated at both ends of the pressurizing part 5, making it easy to break.

本発明は上記欠点に鑑みてなされたもので、溶接部及び
加圧部、即ち封止部の破壊に対し充分な強度を有するヒ
ートパイプの製造法を提供することを目的としたもので
ある。
The present invention was made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a method for manufacturing a heat pipe having sufficient strength against destruction of the welded portion and pressurized portion, that is, the sealing portion.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記問題点を解決するものであって、以下にそ
の内容を第1図、第2図に基づいて説明する。
The present invention is intended to solve the above-mentioned problems, and the details thereof will be explained below based on FIGS. 1 and 2.

本発明は、一端を閉口するパイプ(8)の内部気体を他
端より真空排気し所定の真空度に到達したる後に熱媒体
をパイプ(8)内に導入する工程と、真空排気を続けな
がらパイプ(8)の他端を2段クランプ(1o)、(1
1)で加圧して上段クランプ(10)の上でパイプ(8
)を切断する工程と、上段クランプ(10)を除去し下
段クランプ(11)で加圧しながら加圧されたパイプ(
8)先端部をアーク溶接する工程と、前記溶接部(6)
及び加圧部(5)よりなる封止部(7)にパイプ(8)
軸を中心とした折り曲げ加工を施す工程とよりなるa−
ドパイブの製造法を特徴とするものである。
The present invention includes the steps of evacuating the internal gas of a pipe (8) with one end closed from the other end, and introducing a heat medium into the pipe (8) after reaching a predetermined degree of vacuum, and while continuing the evacuation. Clamp the other end of the pipe (8) in two stages (1o), (1
1) and place the pipe (8) on the upper clamp (10).
), and the process of removing the upper clamp (10) and pressurizing the pipe (11) with the lower clamp (11).
8) Arc welding the tip and the welded part (6)
and a pipe (8) to the sealing part (7) consisting of the pressurizing part (5).
A- consists of a process of bending around the axis.
The invention is characterized by a method for producing dopaibu.

〔作 用〕[For production]

第1図は本発明の真空引きを必要とするヒートパイプの
製造工程の詳細を示すものである。
FIG. 1 shows details of the manufacturing process of a heat pipe that requires evacuation according to the present invention.

先ず、銅管によって形成されたヒートパイプ8の内壁は
真空排気を行なう前充分に脱脂、超音波洗浄を施こし、
かつヒートパイプ8内の残留脱脂用溶、剤は乾燥し除去
しておく必要がある。
First, the inner wall of the heat pipe 8 formed of a copper tube is thoroughly degreased and ultrasonically cleaned before being evacuated.
In addition, it is necessary to dry and remove any remaining degreasing solution or agent inside the heat pipe 8.

第1図の工程(1)において、ヒートパイプ8と排気装
置(図示せず)とを真空ホース9で接続し真空排気を開
始する。尚、真空排気装置は油回転ポンプと油拡散ポン
プの組合せで充分であり最大真空度は10” Torr
が達成できる排気系であれば良い。また、熱媒液として
用いる水の純度は銅管ヒートパイプ8の腐蝕を防ぐため
蒸留水を用いる事とし、塩類除去のため陽イオン、陰イ
オン交換樹脂による精製を行ない、水の電気伝導度を5
μs  (5μU / cps )以下の純度にするこ
とがヒートパイプ7の寿命の点から望ましいことが分っ
た。さらに、塩類除去と同時にヒートパイプ封止直前に
水中溶存ガスの脱気が必要である。即ち、純水Cと含ま
れているガスの主成分は炭酸ガスと空気成分である窒素
、酸素であり、これらのガスがそのままヒートパイプ8
に導入され封止されると高温で溶存ガスが分離しヒート
パイプ8の伝熱特性が劣化する。そこで水中溶存ガスを
排出するため封止直前に沸騰処理により脱気を10分以
上行い、工程(2)に示されるとと(液封袋rIL(図
示せず)の弁の切換えによって真空状態に維持されたヒ
ートパイプ8内へ一定量に計量された前処理水を吸引封
止させる。しかる後、さらに工程(3)においてヒート
パイプ8内水中の溶存残留ガスを排気するため、弁を切
換えてヒートパイプ8を真空排気系へ接続して排気し、
水中の溶存残留ガスを完全に真空脱気させる。ヒートパ
イプ8内の真空度は真空ポンプの排気速度、水の温度及
び圧力で決る蒸気圧のレベル迄低下し通常は1〜5To
rr  の平衡圧力となる。尚、この状態で長時間排気
を続行すると、し−ドパイブ8中の水は蒸発し尽すので
真空圧力計を監視して1〜5Tore  になった時点
で工程(4)に移行し、加圧機の上下2段によるクラン
プ3によってヒートパイプ8を加圧し、そして、工程(
5)に示すごとく上段クランプ10上方の銅管をナイフ
カットし切断する。工程(6)で上段クランプ10を開
放し下部クランプ11のみで一定以上の面圧をかけてヒ
ートパイプ8内の真空度を維持しなけ、れば     
    1ならない。そのためには鋼材、銅管径、肉厚
、クランプ巾等の数値により一定圧以上の面圧が要求さ
れる。即ち、下クランプlliζよる加圧で得られる真
空保持性をヘリュームリークテスト法でチェックして、
ヒートパイプ8の性能保持性から作業時間中の洩れによ
り浸入する空気量を制限する目標を定めて、リーク速度
を1O−7atn’cc/sea 以下とし、押し潰す
銅管の肉厚を決定する。その結果銅管(脱リン酸銅0材
)のヒートパイプ8の場合はもとの肉厚の2倍の厚みの
85%以下に上、下段クランプ10,11にクランプ間
隔を設けて加圧する必要がある。例えば肉厚が0.89
.n/lnであれば2X0.89XO,85−1,51
m/I11以下となるようにクランプ間隔を設定する必
要がある。この処置により工程(4)〜(6)の作業中
にはヒートパイプ8内の真空度は実質的に問題の生じな
い範囲で保持される。工程(7)Iζおいて、下段クラ
ンプ11による加圧を続行しつつヒートパイプ上方端部
を71g溶接を行なう。Tig溶接に耐内圧性をもたせ
るためには電流制御が必要で、溶接開始点からの距離と
昇温パターンに応じて電流値を漸減させるいわゆるクレ
ータ−フィラーなる電流制御を行なうことを必須としな
ければ、溶接部6先端こわたり均一な溶け込みしろを確
保することができない。即ち、不均一な溶け込みしろで
あれば溶接面に凹凸が発生し最も溶け込みしるの少ない
所に応力集中が起り発生内圧によって第5図1こ示した
ごと(破壊する。溶接部が破壊されないためには、溶接
が均一であると同時に溶け込みしるが肉厚の2倍以上に
なる様電流及び溶接移動速度を設定すれば信頼性が飛躍
的に向上することを見い出した。工程(8)!とおいて
、Tig溶接溶接上り溶接完了し下段クランプ11を解
放する。工程(9)において、ヒートパイプ8の溶接部
6先端より加圧部5下端まで該パイプ軸に沿ってU字状
、半円状、(の字状等の折り曲げ部を形成することによ
り、加圧部の応力破壊即ち、ヒートパイプ8内に大きな
内圧が発生し加圧部が内圧により楕円形1ζ膨張するこ
とを防止し、変形に耐する形状保持力が飛躍的に向上す
ることを見い出した。尚、ヒートパイプ8の溶接部6及
び加圧部5を除くヒートパイプ自体が応力破壊しないた
めには、まず設定温度での蒸気圧におけるクリープ試験
(例えば270℃で56Kg / crA )の引張り
応力に耐える銅管の肉厚を設定すれば管内部において破
壊することはない。
In step (1) of FIG. 1, the heat pipe 8 and an exhaust device (not shown) are connected with a vacuum hose 9, and evacuation is started. As for the vacuum evacuation device, a combination of an oil rotary pump and an oil diffusion pump is sufficient, and the maximum degree of vacuum is 10” Torr.
Any exhaust system that can achieve this is fine. In addition, the purity of the water used as the heat transfer fluid is determined by using distilled water to prevent corrosion of the copper heat pipe 8, and by purifying it with cation and anion exchange resin to remove salts, and by improving the electrical conductivity of the water. 5
It has been found that it is desirable to have a purity of μs (5 μU/cps) or less in terms of the lifespan of the heat pipe 7. Furthermore, it is necessary to remove the salts and simultaneously remove the gas dissolved in the water immediately before sealing the heat pipe. That is, the main components of pure water C and the gases contained therein are carbon dioxide gas and air components nitrogen and oxygen, and these gases are directly passed through the heat pipe 8.
When the heat pipe 8 is introduced and sealed, the dissolved gas separates at high temperatures and the heat transfer characteristics of the heat pipe 8 deteriorate. Therefore, in order to discharge the dissolved gas in the water, deaeration is performed for 10 minutes or more by boiling immediately before sealing, and as shown in step (2), a vacuum state is created by switching the valve of the liquid seal bag rIL (not shown). A fixed amount of pretreated water is sucked and sealed into the maintained heat pipe 8. Thereafter, in step (3), a valve is switched to exhaust the dissolved residual gas in the water inside the heat pipe 8. Connect the heat pipe 8 to the vacuum exhaust system to exhaust the air,
Completely vacuum degas the dissolved residual gas in the water. The degree of vacuum inside the heat pipe 8 is reduced to the level of vapor pressure determined by the pumping speed of the vacuum pump, water temperature and pressure, and is usually 1 to 5 To.
The equilibrium pressure is rr. If evacuation continues for a long time in this state, the water in the pipe 8 will evaporate, so monitor the vacuum pressure gauge and when the pressure reaches 1 to 5 Tore, proceed to step (4) and turn off the pressure machine. The heat pipe 8 is pressurized by the upper and lower clamps 3, and then the process (
As shown in 5), cut the copper pipe above the upper clamp 10 with a knife. In step (6), the upper clamp 10 must be opened and the vacuum level inside the heat pipe 8 must be maintained by applying surface pressure above a certain level using only the lower clamp 11.
Must be 1. To achieve this, a surface pressure greater than a certain level is required depending on the steel material, copper pipe diameter, wall thickness, clamp width, etc. That is, the vacuum retention property obtained by applying pressure with the lower clamp lliζ was checked by the helium leak test method,
In view of the performance retention of the heat pipe 8, a goal is set to limit the amount of air that enters due to leakage during working hours, the leak rate is set to 10-7 atn'cc/sea or less, and the wall thickness of the copper tube to be crushed is determined. As a result, in the case of the heat pipe 8 made of copper pipe (dephosphorized copper 0 material), it is necessary to pressurize the upper and lower clamps 10 and 11 with a clamp interval of 85% or less of twice the original wall thickness. There is. For example, the wall thickness is 0.89
.. If n/ln, 2X0.89XO, 85-1,51
It is necessary to set the clamp interval so that m/I is 11 or less. By this procedure, the degree of vacuum within the heat pipe 8 is maintained within a range that does not substantially cause problems during the operations of steps (4) to (6). In step (7) Iζ, the upper end of the heat pipe is welded by 71 g while continuing to apply pressure using the lower clamp 11. In order to provide internal pressure resistance to TIG welding, current control is necessary, and it is essential to perform current control called crater filler, which gradually reduces the current value according to the distance from the welding start point and the temperature rise pattern. , the tip of the welded part 6 is damaged and a uniform penetration margin cannot be ensured. In other words, if the weld margin is uneven, unevenness will occur on the welding surface, and stress will be concentrated in the area where the weld margin is least, and the generated internal pressure will cause the weld to break as shown in Figure 5. We have found that reliability can be dramatically improved by setting the current and welding speed so that welding is uniform and at the same time penetration is at least twice the wall thickness.Step (8)! Then, TIG welding is completed and the lower clamp 11 is released.In step (9), a U-shaped semicircle is formed along the pipe axis from the tip of the welded part 6 of the heat pipe 8 to the lower end of the pressurized part 5. By forming the bent portion in the shape of a shape or the shape of (), it is possible to prevent stress failure of the pressurizing part, that is, a large internal pressure is generated in the heat pipe 8, and the pressurizing part is prevented from expanding into an elliptical 1ζ shape due to the internal pressure. We have found that the ability to maintain the shape against deformation is dramatically improved.In order to prevent the heat pipe itself, excluding the welded part 6 and pressurized part 5, from breaking due to stress, the heat pipe must first be heated at the set temperature. If the thickness of the copper tube is set to withstand the tensile stress of the creep test at steam pressure (for example, 56 kg/crA at 270° C.), the tube will not break inside.

第2図に茗接部6及び加圧部5よりなる封止部7に折り
曲げ部を形成した場合のクリープ試験結果を示す。ヒー
トパイプ8に該パイプ8のを施した場合と、折り曲げ加
工を施さなかった場合(8)の270℃の耐クリープ試
験を行った結果、270℃テノ内圧は56に/cli1
発生1.1000hr経過後のサンプル残存率は折り曲
げ加工の有るサンプルが100%であるのに対し、折り
曲げ加工の無いサンプルは10%以下であった。
FIG. 2 shows the results of a creep test in the case where a bent portion was formed in the sealing portion 7 consisting of the tongue contact portion 6 and the pressurizing portion 5. As a result of performing a creep resistance test at 270°C on the case where the heat pipe 8 was subjected to the bending process (8) and the case (8) where the bending process was not performed, the internal pressure at 270°C was 56/cli1.
The sample survival rate after 1000 hours of generation was 100% for the sample with the bending process, while it was less than 10% for the sample without the bending process.

〔発明の効果〕〔Effect of the invention〕

本発明は上記した構成により下記の効果を奏するもので
ある。
The present invention achieves the following effects with the above-described configuration.

l)熱媒体1こ蒸留水を用い、蒸留水を陽、陰イオン交
換を行ない電気伝導度を5μS以下とし80℃以上に加
熱した状態で脱気を行ないヒートパイプ内へ導入し、七
−トパイプ内を常温で真空排気を行ない水中の残留ガス
を除去させたものであるから、水板外の熱媒体に比べ安
価に製作できるとともに銅製ヒートパイプの腐蝕防止及
び伝熱特性の劣化防止が図れ永久品質が保証できる。
l) Using 1 heat medium and distilled water, the distilled water is subjected to cation and anion exchange to make the electrical conductivity 5 μS or less, heated to 80°C or higher, degassed, introduced into the heat pipe, and heated to 80°C or higher. Since the inside of the heat pipe is evacuated at room temperature to remove residual gas in the water, it can be produced at a lower cost than a heat medium outside the water plate, and it also prevents corrosion of copper heat pipes and prevents deterioration of heat transfer characteristics, making them permanent. Quality can be guaranteed.

2)封止部の肉厚を、2段クランプにより加圧前の肉厚
の85%以下に加圧形成させたので、作業中の真空度は
問題の生じない範囲で保持され且つ容易に溶接作業がで
きる。
2) Since the wall thickness of the sealing part is pressurized to 85% or less of the wall thickness before pressurization using a two-stage clamp, the degree of vacuum during work is maintained within a range that does not cause problems and welding is easy. I can work.

3) ヒートパイプ先端部をクレータ−フィラーなる電
流制御可能なTig溶接を行ない、溶接部をヒートパイ
プ肉厚の2倍以上の溶け込みしろを設けたので、均一な
溶け込みしるが形成でき且つ内圧化よる溶接部の破損が
防止できる。
3) The tip of the heat pipe is TIG welded with a crater filler that can control current, and the welded part is provided with a weld margin that is more than twice the thickness of the heat pipe, so a uniform weld margin can be formed and the internal pressure can be reduced. This prevents damage to the welded parts due to

4)封止部にパイプ軸を中心とした折り曲げ加工を施し
たので、加圧部が内圧により破壊、即ち、変形するのが
防止できる。
4) Since the sealing part is bent around the pipe axis, the pressurizing part can be prevented from being destroyed or deformed by internal pressure.

従って上記1)乃至4)の効果によって高温     
  1高圧に対して極めて信依性の高いヒートパイプが
得られる。
Therefore, due to the effects of 1) to 4) above, high temperature
1. A heat pipe with extremely high reliability for high pressures can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す工程図、第2図は本発明
によるヒートパイプと他のサンプルとの比較図、第3図
及び第4図は従来の実施例を示す工程図、第5図は従来
の応力集中による変形を示す部分正面図及び側面図、第
6図は応力集中による溶接部の破壊を示す断面図、第7
図は応力集中蓚こよる加圧部の断面図及びその詳細図で
ある。 符号の説明 1、注入装置     2.パイプ 3、加圧機のクランプ 4.  Tf溶接5、加圧部 
     6.溶接部 7、封止部      8. ヒートパイプ9 真空ホ
ース    10.上段クランプ11、下段クランプ 鴎店社若林邦彦 第1図 第2図 710熟@tlfl (hr) 第4図 (a)       (b)      (c)第5図 第6図 第7図       1
FIG. 1 is a process diagram showing an embodiment of the present invention, FIG. 2 is a comparison diagram of the heat pipe according to the present invention and other samples, and FIGS. 3 and 4 are process diagrams showing a conventional embodiment. Figure 5 is a partial front view and side view showing deformation due to conventional stress concentration, Figure 6 is a sectional view showing fracture of a welded part due to stress concentration, and Figure 7
The figure is a cross-sectional view of a pressurizing part where stress is concentrated and a detailed view thereof. Explanation of symbols 1. Injection device 2. Pipe 3, pressurizer clamp 4. Tf welding 5, pressure section
6. Welding part 7, sealing part 8. Heat pipe 9 Vacuum hose 10. Upper clamp 11, lower clamp Kunihiko Wakabayashi, Kamodensha Figure 1 Figure 2 710 ripe @tlfl (hr) Figure 4 (a) (b) (c) Figure 5 Figure 6 Figure 7 1

Claims (1)

【特許請求の範囲】 1、一端を閉口するパイプの内部気体を他端より真空排
気し所定の真空度に到達したる後に熱媒体をパイプ内に
導入する工程と、真空排気を続けながらパイプの他端を
2段クランプで加圧して上段クランプの上でパイプを切
断する工程と、上段クランプを除去し下段クランプで加
圧しながら加圧されたパイプ先端部をアーク溶接する工
程と、前記溶接部及び加圧部よりなる封止部にパイプ軸
を中心とした折り曲げ加工を施す工程とよりなるヒート
パイプの製造法。 2、熱媒体が、蒸留水を陽、陰イオン交換を行い電気伝
導度を5μs以下とし80℃以上に加熱した状態で脱気
を行ってヒートパイプ内へ導入し、ヒートパイプ内を常
温で真空排気を行ない水中の残留ガスを除去したもので
あることを特徴とする特許請求の範囲第1項記載のヒー
トパイプの製造法。 3、ヒートパイプが、銅管により形成されたものである
ことを特徴とする特許請求の範囲第1項、第2項記載の
ヒートポンプの製造法。 4、封止部の肉厚か、加圧前の肉厚の85%以下に加圧
形成したものであることを特徴とする特許請求の範囲第
1項記載のヒートポンプの製造法。 5、アーク溶接が、ヒートパイプ先端をクレーターフィ
ラーなる電流制御可能なタングステンイナートガス溶接
であることを特徴とする特許請求の範囲第1項記載のヒ
ートパイプの製造法。 6、溶接部が、ヒートパイプ肉厚の2倍以上の溶け込み
しろを有するものであることを特徴とする特許請求の範
囲第1項、第3項記載のヒートパイプの製造法。
[Claims] 1. The process of evacuating the internal gas of a pipe from the other end with one end closed and introducing a heat medium into the pipe after reaching a predetermined degree of vacuum; A process of pressurizing the other end with a two-stage clamp and cutting the pipe above the upper stage clamp, a process of removing the upper stage clamp and arc welding the pressurized tip of the pipe while applying pressure with a lower stage clamp, and a process of arc welding the tip of the pressurized pipe, and a process of arc welding the tip of the pressurized pipe while applying pressure with a lower stage clamp. and a method for manufacturing a heat pipe, comprising the steps of bending the sealing part, which is a pressurizing part, around the pipe axis. 2. The heat medium is distilled water that undergoes positive and anion exchange to make the electrical conductivity 5 μs or less, heated to 80°C or higher, deaerated, introduced into the heat pipe, and vacuumed inside the heat pipe at room temperature. 2. The method of manufacturing a heat pipe according to claim 1, wherein the heat pipe is evacuated to remove residual gas in the water. 3. The method for manufacturing a heat pump according to claims 1 and 2, wherein the heat pipe is formed of a copper tube. 4. The method for manufacturing a heat pump according to claim 1, wherein the sealing portion is formed under pressure to have a wall thickness of 85% or less of the wall thickness before pressurization. 5. The method for manufacturing a heat pipe according to claim 1, wherein the arc welding is tungsten inert gas welding in which the tip of the heat pipe is a crater filler and is current controllable. 6. The method for manufacturing a heat pipe according to claims 1 and 3, wherein the welded portion has a penetration margin that is at least twice the thickness of the heat pipe.
JP25487884A 1984-11-30 1984-11-30 Manufacture of heat pipe Pending JPS61134592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25487884A JPS61134592A (en) 1984-11-30 1984-11-30 Manufacture of heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25487884A JPS61134592A (en) 1984-11-30 1984-11-30 Manufacture of heat pipe

Publications (1)

Publication Number Publication Date
JPS61134592A true JPS61134592A (en) 1986-06-21

Family

ID=17271084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25487884A Pending JPS61134592A (en) 1984-11-30 1984-11-30 Manufacture of heat pipe

Country Status (1)

Country Link
JP (1) JPS61134592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509836B1 (en) * 2002-09-10 2005-08-23 이흥재 Hit pipe manufacture method and the device
CN100441999C (en) * 2004-02-13 2008-12-10 郑文瑞 Thermal pipe sealing structure
US7467466B2 (en) 2005-09-30 2008-12-23 Foxconn Technology Co., Ltd. Method for sealing a heat pipe
US8905737B2 (en) 2008-02-18 2014-12-09 Nanyang Technological Univerity Revolving vane compressor and method for its manufacture
CN111660025A (en) * 2019-12-27 2020-09-15 东莞市万维热传导技术有限公司 Sealing welding method for multi-cavity type temperature-equalizing plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509836B1 (en) * 2002-09-10 2005-08-23 이흥재 Hit pipe manufacture method and the device
CN100441999C (en) * 2004-02-13 2008-12-10 郑文瑞 Thermal pipe sealing structure
US7467466B2 (en) 2005-09-30 2008-12-23 Foxconn Technology Co., Ltd. Method for sealing a heat pipe
US8905737B2 (en) 2008-02-18 2014-12-09 Nanyang Technological Univerity Revolving vane compressor and method for its manufacture
CN111660025A (en) * 2019-12-27 2020-09-15 东莞市万维热传导技术有限公司 Sealing welding method for multi-cavity type temperature-equalizing plate
JP2021107760A (en) * 2019-12-27 2021-07-29 東莞市万維熱傳導技術有限公司Dongguan Wanwei Thermal Conduction Technology Co., Ltd. Welding method of opening of uniform heat plate of multi-storage chamber

Similar Documents

Publication Publication Date Title
EP0595582B1 (en) Passivation of metal tubes
CN115647555B (en) Welding method and welding product of high-temperature alloy microchannel heat exchanger
JPS61134592A (en) Manufacture of heat pipe
US4603801A (en) Diffusion bonding of mechanically held components by hot isostatic pressure
KR102371872B1 (en) Method for repairing defects on hot parts of turbomachines through hybrid hot isostatic pressing (hip) process
KR101600663B1 (en) Heat Pipe Manufacturing Method
JP2003065490A5 (en)
JP2003065490A (en) Method of manufacturing heat insulator
JPH1082591A (en) Plate type heat pipe and its manufacture
US5096110A (en) Control system for vacuum brazing process
CN116026529A (en) Method for detecting leakage of packaging sleeve subjected to powder filling and sealing welding
EP1025920B1 (en) A method for producing a multilayer thin-walled bellows of stainless steel
RU2277464C2 (en) Method of and device for evacuating of multilayer packs for rolling
US20160244191A1 (en) Pipe, apparatus and method
JP2008056963A (en) Method for degassing and sealing vessel for powder pressurized sintering
JPH0698109B2 (en) Metal vacuum double structure and manufacturing method thereof
JPS6356281B2 (en)
JPS61191888A (en) Manufacture of heat pipe
JPH06331090A (en) Sealing method of inside of vessel from peripheral environment
JP2007105710A (en) Evacuation sealing device
US6015080A (en) Method of manufacturing clad metal plates
JP2923534B2 (en) Annealing method for coil-shaped workpiece and heat treatment furnace
JPS62196595A (en) Sealing of operating liquid sealing port for heat pipe
JP3781389B2 (en) Sealing method for containers filled with gas
KR0164885B1 (en) Color braun tube reproducing method