JP2003065490A - Method of manufacturing heat insulator - Google Patents
Method of manufacturing heat insulatorInfo
- Publication number
- JP2003065490A JP2003065490A JP2001259601A JP2001259601A JP2003065490A JP 2003065490 A JP2003065490 A JP 2003065490A JP 2001259601 A JP2001259601 A JP 2001259601A JP 2001259601 A JP2001259601 A JP 2001259601A JP 2003065490 A JP2003065490 A JP 2003065490A
- Authority
- JP
- Japan
- Prior art keywords
- internal space
- vacuum
- getter
- exhaust
- sealed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000003466 welding Methods 0.000 claims description 11
- 239000011888 foil Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 5
- 230000002093 peripheral Effects 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000003213 activating Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 238000011056 performance test Methods 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は真空断熱体の製造方
法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a vacuum heat insulator.
【0002】[0002]
【従来の技術】従来、真空断熱体の製造方法として、例
えば特公平2−55153号公報には、真空加熱炉内に
構造体を配置して加熱温度580〜600℃、10−2
から10−3Pa(10−4〜10−5Torr)の真
空度で略1時間保持した後、径0.5mmの3つの排気
孔を電子ビーム溶接機で封止する方法が開示されてい
る。また、特開平7−298991号公報には、真空加
熱炉内に構造体を配置して加熱温度450℃、1Pa
(10−2Torr)以下の真空度で真空加熱排気した
後、排気孔近傍に配置したろう材をレーザ光で溶融させ
て排気孔(面積0.7〜7.0mm2)を閉塞する方法
が開示されている。2. Description of the Related Art Conventionally, as a method of manufacturing a vacuum heat insulator, for example, in Japanese Patent Publication No. 2-55153, a structure is placed in a vacuum heating furnace and heating temperatures are 580 to 600 ° C. and 10 −2.
To 10 −3 Pa (10 −4 to 10 −5 Torr) for about 1 hour, and then, three exhaust holes having a diameter of 0.5 mm are sealed with an electron beam welding machine. . Further, in Japanese Patent Application Laid-Open No. 7-298991, a structure is placed in a vacuum heating furnace and a heating temperature of 450 ° C. and 1 Pa.
After vacuum heating and exhausting at a vacuum degree of (10 −2 Torr) or less, a method of melting the brazing material arranged in the vicinity of the exhaust hole with laser light and closing the exhaust hole (area 0.7 to 7.0 mm 2 ) is used. It is disclosed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
真空断熱体の製造方法では、1Pa(10−2Tor
r)以下の高真空に排気しているため、高真空用のディ
フュージョンポンプが必要である。このため、設備が大
掛かりとなり、ポンプを水で冷却する配管設備も必要で
ある。また、ディフュージョンポンプの中のオイルを加
熱して動作可能とするのに数十分かかるうえ、炉内又は
構造体の内部空間が高真空度に達してから加熱排気工程
に移るため、予備排気に数十分かかる。さらに、加熱排
気工程においても高真空度を維持するため、約1時間を
要していた。この結果、構造体を設置してから取り出す
までに約2時間の処理時間が必要であった。However, in the conventional method for manufacturing a vacuum heat insulator, 1 Pa (10 -2 Torr) is used.
r) A high-vacuum diffusion pump is required because the vacuum is evacuated to a high vacuum of r) or less. For this reason, the equipment becomes bulky, and piping equipment for cooling the pump with water is also required. In addition, it takes several tens of minutes to heat the oil in the diffusion pump to enable it to operate, and the heating or exhaust process is started after the furnace or the internal space of the structure reaches a high vacuum level. It takes tens of minutes. Further, it takes about 1 hour to maintain a high degree of vacuum even in the heating and exhausting process. As a result, it took about 2 hours from the installation of the structure to the removal.
【0004】本発明は前記従来の問題点に鑑みてなされ
たもので、低真空で排気でき、しかも製造時間を大幅に
減少できる真空断熱体の製造方法を提供することを課題
とするものである。The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a method for manufacturing a vacuum heat insulator which can be evacuated at a low vacuum and which can significantly reduce the manufacturing time. .
【0005】[0005]
【課題を解決するための手段】前記課題を解決するため
に、本発明は、対向する金属製板状体の間に形成される
内部空間内にスペーサを配設し、前記内部空間を排気し
て封止した後、所望形状に変形させる真空断熱体の製造
方法において、前記内部空間内にゲッターを配設し、該
内部空間を1Pa(0.75×10−2Torr)から
1×102Pa(約0.75Torr)の低真空度で排
気して封止した後、前記ゲッターを後加熱して活性化さ
せることにより高真空度を得るものである。In order to solve the above-mentioned problems, according to the present invention, a spacer is arranged in an internal space formed between opposed metal plate-like bodies to exhaust the internal space. In the method of manufacturing a vacuum heat insulator, which is deformed into a desired shape after being sealed with a getter, a getter is provided in the internal space, and the internal space is changed from 1 Pa (0.75 × 10 −2 Torr) to 1 × 10 2. After evacuating and sealing at a low vacuum degree of Pa (about 0.75 Torr), the getter is post-heated and activated to obtain a high vacuum degree.
【0006】本発明によると、低真空で排気するから、
気体分子の排気速度が速く、構造体の温度上昇速度も速
くなるので、構成部材からの脱ガス、閉じられた内部空
間の排気が促進される結果、排気時間が短縮される。According to the present invention, since the gas is exhausted at a low vacuum,
Since the exhaust speed of gas molecules is high and the temperature rise speed of the structure is also high, as a result of degassing from the constituent members and exhaust of the closed internal space, the exhaust time is shortened.
【0007】前記内部空間の排気は、ディフュージョン
ポンプ等の高真空用ポンプでなく、従来補助ポンプとし
て使用されている真空粗引き用ポンプ、具体的には、ロ
ータリーポンプのみを使用し、またはロータリーポンプ
とメカニカルブースターポンプを併用して行うと、排気
の立ち上げが瞬間に行える点で好ましい。For exhausting the internal space, not a high vacuum pump such as a diffusion pump but a vacuum roughing pump conventionally used as an auxiliary pump, specifically, only a rotary pump is used, or a rotary pump is used. It is preferable to use both the mechanical booster pump and the mechanical booster pump because the exhaust can be instantly started.
【0008】前記内部空間の排気するための排気部は、
封止後に切除することで、後の成形加工で邪魔になるこ
とがない。The exhaust part for exhausting the internal space is
By cutting off after sealing, it does not interfere with the subsequent molding process.
【0009】前記内部空間の封止の前に、前記内部空間
のリークテストを行い、前記内部空間内にリークが無い
ことが確認されたときに封止を行うことが好ましい。こ
のように、リークテストと封止を一連の工程で行うこと
により工程が簡略となる。It is preferable to perform a leak test of the internal space before sealing the internal space, and perform sealing when it is confirmed that there is no leak in the internal space. In this way, the process is simplified by performing the leak test and the sealing in a series of processes.
【0010】前記内部空間の封止は、前記対向する金属
製板状体をシーム溶接することにより行うと、封止作業
が非常に簡単になる。If the internal space is sealed by seam-welding the opposing metal plate-like members, the sealing work becomes very simple.
【0011】前記内部空間の排気および封止は、前記対
向する金属製板状体を真空炉に設置して周縁部をシーム
溶接することもできる。For exhausting and sealing the internal space, the opposing metal plate-shaped bodies may be installed in a vacuum furnace and seam welding of the peripheral edge portion may be performed.
【0012】前記内部空間の封止は常温から約250℃
で行い、前記ゲッターの後加熱は250℃から600℃
で行うことが好ましい。The internal space is sealed from room temperature to about 250 ° C.
The post-heating of the getter is from 250 ° C to 600 ° C.
It is preferable to carry out.
【0013】前記ゲッターとして、チタン箔またはジル
コニウム箔を使用することが好ましい。As the getter, it is preferable to use a titanium foil or a zirconium foil.
【0014】前記ゲッターは、前記対向する金属製板状
体の内面に接触させることで、後加熱により昇温する金
属製板状態の熱をゲッターに伝えることができ、ゲッタ
ーを十分に活性化することができる。When the getter is brought into contact with the inner surfaces of the facing metallic plate-like members, the heat of the metallic plate state, which is heated by post-heating, can be transmitted to the getter, and the getter is sufficiently activated. be able to.
【0015】[0015]
【発明の実施の形態】次に、本発明の実施の形態を添付
図面に従って説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to the accompanying drawings.
【0016】図1は、本発明にかかる真空断熱体の製造
方法を示す。1は、真空断熱体となる前の構造体で、該
構造体1は、図3に示すように、対向する金属製薄板2
の間に形成される略平板状の内部空間3内に該内部空間
3と略同形状のスペーサ4を配設し、前記内部空間3内
にゲッター5を配設してなる。FIG. 1 shows a method for manufacturing a vacuum heat insulator according to the present invention. Reference numeral 1 denotes a structure before it becomes a vacuum heat insulating body, and the structure 1 is, as shown in FIG.
A spacer 4 having substantially the same shape as that of the internal space 3 is provided in the internal space 3 having a substantially flat plate shape, and a getter 5 is provided in the internal space 3.
【0017】構造体1の金属製薄板2は、図3に示すよ
うに2枚の矩形の板2a,2bを重ね合わせたり、図4
に示すように1枚の矩形の板2cを2つ折りすることに
より形成される。金属製薄板2には、板厚が0.05m
mから0.5mmのステンレス鋼、鉄、チタニウム等が
使用できる。金属製薄板2の外縁はスペーサ4とゲッタ
ー5が配設された後、シーム溶接等の圧着接合、TIG
溶接等の突き合わせ溶接、MIGブレージング等によっ
て接合される。図4に示すように、1枚の矩形の板2c
を2つ折りしたものは、接合範囲が少なくて済む。金属
製薄板2の一辺には、矩形の突片からなる排気部6が形
成され、該排気部6に排気口7が形成されている。排気
口7は、金属製薄板2に開口を形成するだけでもよい
し、チップ管を接合してもよい。The metal thin plate 2 of the structure 1 is formed by stacking two rectangular plates 2a and 2b as shown in FIG.
It is formed by folding one rectangular plate 2c into two as shown in FIG. The metal thin plate 2 has a thickness of 0.05 m
It is possible to use stainless steel, iron, titanium or the like having a thickness of m to 0.5 mm. After the spacer 4 and the getter 5 are arranged on the outer edge of the metal thin plate 2, pressure bonding such as seam welding or TIG is performed.
It is joined by butt welding such as welding or MIG brazing. As shown in FIG. 4, one rectangular plate 2c
The one that is folded in two requires a small joining area. On one side of the thin metal plate 2, an exhaust portion 6 formed of a rectangular protruding piece is formed, and an exhaust port 7 is formed in the exhaust portion 6. The exhaust port 7 may be formed only by forming an opening in the thin metal plate 2, or may be joined with a tip tube.
【0018】スペーサ4は、ガラス繊維、セラミック繊
維、カーボン繊維等の織布又は不織布、あるいはマイカ
等を使用できる。非圧縮状態で0.1から15mmの厚
みを有するものが好ましい。ただし、内部空間3の真空
度を高めるために、不織布を使用するのが好ましい。ま
た、後加熱時の加熱温度(例えば、450℃)により損
傷しないような、例えばセラミック材料を使用してもよ
い。スペーサ4は、薄いものを複数枚重ねたものでもよ
い。As the spacer 4, woven or non-woven fabric such as glass fiber, ceramic fiber, carbon fiber, or mica can be used. Those having a thickness of 0.1 to 15 mm in the uncompressed state are preferred. However, in order to increase the degree of vacuum in the internal space 3, it is preferable to use a nonwoven fabric. Further, for example, a ceramic material that is not damaged by the heating temperature during post-heating (for example, 450 ° C.) may be used. The spacer 4 may be formed by stacking a plurality of thin ones.
【0019】ゲッター5としてのチタン箔は、前記構造
体1の排気封止後に、内部空間3に発生するガス等を吸
収して所望の真空度を維持するために使用される。チタ
ン箔は、数厚さ0.01から0.03mmのものが好ま
しい。チタン箔に代えて、厚さ0.02から0.03m
mのジルコニウム箔を使用してもよい。The titanium foil as the getter 5 is used to absorb gas or the like generated in the internal space 3 and maintain a desired degree of vacuum after the structure 1 is exhausted and sealed. The titanium foil preferably has a thickness of 0.01 to 0.03 mm. Thickness of 0.02 to 0.03m instead of titanium foil
m zirconium foil may also be used.
【0020】次に、前記構造体1から真空断熱体を製造
する方法について説明する。Next, a method of manufacturing a vacuum heat insulating body from the structure 1 will be described.
【0021】まず、図2に示すように、構造体1の排気
口7に排気管11をシール部材12を介して押し付け、
当該排気管11に図1に示すように配管8を介してロー
タリーポンプ9を接続し、該配管8にリークテスト装置
10を接続する。なお、ロータリーポンプ9を単独で使
用する代わりに、当該ロータリーポンプ9と図示しない
メカニカルブースターポンプを併用して行うと、排気の
立ち上げが瞬間に行える。First, as shown in FIG. 2, the exhaust pipe 11 is pressed against the exhaust port 7 of the structure 1 through the seal member 12,
A rotary pump 9 is connected to the exhaust pipe 11 via a pipe 8 as shown in FIG. 1, and a leak test device 10 is connected to the pipe 8. If the rotary pump 9 and a mechanical booster pump (not shown) are used together instead of using the rotary pump 9 alone, the exhaust can be instantly started.
【0022】続いて、前記ロータリーポンプ9を駆動し
て、前記構造体1の内部空間3を1Pa(0.75×1
0−2Torr)から1×102Pa(約0.75To
rr)の低真空度で排気する。このとき、スペーサ4の
存在により、金属製薄板2の対向面の接触が確実に防止
される。この排気工程は、常温で行うことができるが、
必要に応じて約250℃以下の温度で加熱した状態で行
ってもよい。Then, the rotary pump 9 is driven to move the internal space 3 of the structure 1 to 1 Pa (0.75 × 1).
0 −2 Torr to 1 × 10 2 Pa (about 0.75 To
Evacuate at a low vacuum degree of rr). At this time, the presence of the spacer 4 reliably prevents the contact between the facing surfaces of the metal thin plate 2. This exhaust step can be performed at room temperature,
If necessary, the heating may be performed at a temperature of about 250 ° C. or lower.
【0023】前記低真空度を維持した状態で、リークテ
スト装置10により、前記構造体1の内部空間3にリー
クが無いことが確認されたときに、金属製薄板2の排気
部6の付け根の図1中S部分をシーム溶接して図2中2
点鎖線で示すように接合し、この接合部分を図2中S−
S線で示す位置で切断する。When it is confirmed by the leak test device 10 that there is no leak in the internal space 3 of the structure 1 while maintaining the low degree of vacuum, the root of the exhaust portion 6 of the metal thin plate 2 is removed. 2 in FIG. 2 by seam welding the S portion in FIG.
Joined as shown by the dotted chain line, this joined portion is S- in FIG.
Cut at the position indicated by the S line.
【0024】続いて、前記構造体1を多数製造して、こ
れらをまとめて図示しない加熱炉に収容し、前記構造体
1を250℃から600℃に加熱する。これにより、前
記構造体1の内部のゲッター5が活性化され、前記構造
体1の金属表面の吸蔵ガスが十分に遊離する。この結
果、構造体1の内部空間3内に遊離した吸蔵ガスは残留
空気とともにゲッター5に吸収される。これにより、構
造体1の内部空間3は、3×10−3Pa(約2.25
×10−5Torr)から3×10−4Pa(約2.2
5×10−6Torr)の高真空度に到達し、真空断熱
体が得られる。Subsequently, a large number of the structures 1 are manufactured, and the structures 1 are collectively housed in a heating furnace (not shown), and the structures 1 are heated from 250 ° C. to 600 ° C. As a result, the getter 5 inside the structure 1 is activated, and the occluded gas on the metal surface of the structure 1 is sufficiently released. As a result, the occlusion gas released in the internal space 3 of the structure 1 is absorbed by the getter 5 together with the residual air. As a result, the internal space 3 of the structure 1 is 3 × 10 −3 Pa (about 2.25 Pa).
3 × 10 −4 Pa (about 2.2) from × 10 −5 Torr).
A high vacuum degree of 5 × 10 −6 Torr) is reached and a vacuum heat insulator is obtained.
【0025】図5は、以上説明した真空断熱体の製造方
法における内部空間の圧力と温度の変化を示す。構造体
1の内部空間3を排気してゆくと、内部空間3の圧力は
1気圧から1Pa(0.75×10−3Torr)まで
低下し、ここで点Tにおいてリークテストを行った後、
点Sで排気部6をシーム溶接により封止して切断する。
このとき、構造体1の内部空間3を封止した後も、金属
製薄板2の表面から吸蔵ガスが遊離し続けるので、内部
空間3の圧力は増加してゆく。次に、構造体1を加熱炉
で450℃に加熱すると、金属製薄板2の表面から吸蔵
ガスが十分に遊離し放出されるので、内部空間3の圧力
はさらに増加する。同時に、ゲッター5が活性化される
ので、遊離した吸蔵ガスは残留空気とともにゲッター5
に吸収される。この結果、構造体1の内部空間3の圧力
は、次第に低下し、3×10−3Pa(約2.25×1
0−5Torr)所望の高真空度に達する。FIG. 5 shows changes in pressure and temperature in the internal space in the above-described method for manufacturing a vacuum heat insulator. As the internal space 3 of the structure 1 is exhausted, the pressure in the internal space 3 drops from 1 atm to 1 Pa (0.75 × 10 −3 Torr), and after performing a leak test at the point T,
At the point S, the exhaust part 6 is sealed and cut by seam welding.
At this time, even after the internal space 3 of the structure 1 is sealed, the stored gas continues to be released from the surface of the metal thin plate 2, so that the pressure in the internal space 3 increases. Next, when the structure 1 is heated to 450 ° C. in the heating furnace, the stored gas is sufficiently released and released from the surface of the metal thin plate 2, so that the pressure in the internal space 3 further increases. At the same time, the getter 5 is activated, so that the liberated occlusion gas is removed along with the residual air.
Is absorbed by. As a result, the pressure in the internal space 3 of the structure 1 gradually decreases, and becomes 3 × 10 −3 Pa (about 2.25 × 1).
0 -5 Torr) reaches a desired high vacuum degree.
【0026】このようにして得られた真空断熱体は、所
望の形状に成形加工することができる。例えば、電気ポ
ット、炊飯ジャー、ランチジャー等の胴部および蓋、車
両のボンネットの裏面、自動販売機の内面、金庫の内
面、家屋の壁面内、電気温水器の胴部等、保温や遮熱を
必要とする種々の場所に応じて所望の形状に加工するこ
とができる。図6に示すように、折り曲げ加工等によ
り、円筒(a)や角筒(b)、箱状(f)にしたり、絞
り加工により、半球状(e)、円筒状(c)、角状
(d)等の有底筒状とすることができる。The vacuum heat insulator thus obtained can be formed into a desired shape. For example, the body and lid of electric pots, rice cookers, lunch jars, the back of the hood of vehicles, the inside of vending machines, the inside of safes, the wall of houses, the body of electric water heaters, etc. Can be processed into a desired shape according to various places that require. As shown in FIG. 6, a cylinder (a), a square tube (b), or a box shape (f) is formed by bending or the like, or a hemispherical shape (e), a cylinder shape (c), or a square ( It may be a bottomed cylinder such as d).
【0027】なお、発明者らは、以上のようにして得ら
れた真空断熱体の断熱性能試験を行った。この断熱性能
試験では、20℃の雰囲気において、真空断熱体の下面
中央部に100℃の水蒸気を当てた状態で、上面中央部
での温度を測定した。この結果、図7に示すように、本
発明により製造された真空断熱体は、真空引きしていな
いものに比べて格段の優れた保温性を発揮し、十分に実
用性のあることが分かった。また、厚みが3.1mmで
あれば、それ以上の厚みを有するものと断熱性能はそれ
ほど差がないことが分かった。さらに、厚さが2mm以
下の、例えば0.8mmのものでは、3.1mmのもの
に比べて断熱性能は若干劣るが、加工しやすく、狭い領
域であっても余裕を持って配設することが可能であっ
た。さらにまた、95℃の雰囲気中に6日間放置するこ
とを繰り返す、いわゆるエイジング(aging)試験を行
ったところ、断熱性能が維持され、電気ポット等の高温
環境で使用する場合にも何ら問題のないことが分かっ
た。The inventors conducted a heat insulation performance test on the vacuum heat insulator obtained as described above. In this heat insulation performance test, in an atmosphere of 20 ° C., the temperature at the center of the upper surface of the vacuum heat insulator was measured while steam at 100 ° C. was applied to the center of the lower surface. As a result, as shown in FIG. 7, it was found that the vacuum heat insulator manufactured according to the present invention exhibited remarkably excellent heat retention property as compared with the vacuum heat insulator which was not evacuated, and was sufficiently practical. . It was also found that when the thickness is 3.1 mm, the heat insulating performance is not so different from that having a thickness of more than 3.1 mm. Further, if the thickness is 2 mm or less, for example 0.8 mm, the heat insulation performance is slightly inferior to that of 3.1 mm, but it is easy to process and should be arranged with a margin even in a narrow area. Was possible. Furthermore, when a so-called aging test was conducted in which the sample was left to stand in an atmosphere of 95 ° C. for 6 days, heat insulation performance was maintained, and there was no problem even when used in a high temperature environment such as an electric pot. I found out.
【0028】なお、前記実施形態では、予め構造体1を
形成してロータリーポンプ9により排気し、封止するよ
うにしたが、前記内部空間の排気および封止は、前記対
向する金属製薄板2の間にスペーサ4とゲッター5を配
設した状態で真空炉に設置し、1Pa(0.75×10
−2Torr)から1×102Pa(約0.75Tor
r)の低真空度に排気した後、構造体1の周縁部をシー
ム溶接することで封止するようにしてもよい。In the above embodiment, the structure 1 was formed in advance and the rotary pump 9 evacuated and sealed, but the internal space is evacuated and sealed by the opposing metal thin plate 2. The spacer 4 and the getter 5 are installed in the vacuum furnace and the space between them is set to 1 Pa (0.75 × 10
-2 Torr to 1 × 10 2 Pa (about 0.75 Torr)
After evacuation to the low vacuum degree of r), the peripheral edge of the structure 1 may be sealed by seam welding.
【0029】[0029]
【発明の効果】以上の説明から明らかなように、本発明
によれば、1Pa(0.75×10 −2Torr)から
1×102Pa(約0.75Torr)の低真空度で排
気するために、ディフュージョンポンプ等の高真空用ポ
ンプを使用する必要がなく、設備を大幅に簡略化でき
る。また、真空粗引き用ポンプを使用して低真空で加熱
排気を行えるので、排気の立ち上げが瞬間に行え、気体
分子の排気速度が速く、構造体の温度上昇速度も速くな
るので、構成部材からの脱ガス、閉じられた内部空間の
排気が促進される結果、排気時間が著しく短縮される。As is apparent from the above description, the present invention
According to, 1 Pa (0.75 × 10 -2From Torr)
1 x 10TwoExhausted at a low vacuum of Pa (about 0.75 Torr)
The high vacuum port such as a diffusion pump.
There is no need to use a pump, which greatly simplifies the equipment.
It Also, use a vacuum vacuum pump to heat at low vacuum.
Since it can be exhausted, the exhaust can be started up instantly and
The molecular exhaust speed is fast, and the temperature rise speed of the structure is also fast.
Therefore, degassing from the components and
As a result of the promotion of exhaust, the exhaust time is significantly shortened.
【図1】 本発明にかかる真空断熱体の製造方法を示す
概略図。FIG. 1 is a schematic view showing a method for manufacturing a vacuum heat insulator according to the present invention.
【図2】 図1の構造体のI−I線断面図。FIG. 2 is a cross-sectional view of the structure of FIG. 1 taken along the line II.
【図3】 矩形板を重ね合わせて組み立てる例の構造体
の分解斜視図。FIG. 3 is an exploded perspective view of a structure of an example in which rectangular plates are stacked and assembled.
【図4】 矩形板を2つ折りして組み立てる他の例の構
造体の分解斜視図。FIG. 4 is an exploded perspective view of a structure of another example in which a rectangular plate is folded in two and assembled.
【図5】 本発明にかかる真空断熱体の製造時における
構造体の内部空間の圧力と温度の変化を示す図。FIG. 5 is a diagram showing changes in pressure and temperature in the internal space of the structure during manufacturing of the vacuum heat insulator according to the present invention.
【図6】 真空断熱体の加工例を示す斜視図である。FIG. 6 is a perspective view showing a processing example of a vacuum heat insulator.
【図7】 本発明により製造された真空断熱体の断熱性
能試験の結果を示すグラフ。FIG. 7 is a graph showing the results of a heat insulating performance test of the vacuum heat insulator manufactured according to the present invention.
1 構造体 2 金属製薄板 3 内部空間 4 スペーサ 5 ゲッター 6 排気部 7 排気口 8 配管 9 ロータリーポンプ 10 リークテスト装置 1 structure 2 Metal thin plate 3 internal space 4 spacers 5 getters 6 exhaust 7 exhaust port 8 piping 9 Rotary pump 10 Leak test equipment
Claims (9)
内部空間内にスペーサを配設し、前記内部空間を排気し
て封止した後、所望形状に変形させる真空断熱体の製造
方法において、前記内部空間内にゲッターを配設し、該
内部空間を1Pa(0.75×10−2Torr)から
1×102Pa(約0.75Torr)の低真空度で排
気して封止した後、前記ゲッターを後加熱して活性化さ
せることにより高真空度を得ることを特徴とする真空断
熱体の製造方法。1. Manufacturing of a vacuum heat insulator in which a spacer is disposed in an internal space formed between opposed metal plate-like bodies, the internal space is evacuated and sealed, and then deformed into a desired shape. In the method, a getter is disposed in the internal space, and the internal space is evacuated and sealed at a low vacuum degree of 1 Pa (0.75 × 10 −2 Torr) to 1 × 10 2 Pa (about 0.75 Torr). After stopping, a high degree of vacuum is obtained by post-heating and activating the getter to obtain a high degree of vacuum insulation.
プのみを使用し、またはロータリーポンプとメカニカル
ブースターポンプを併用して行うことを特徴とする請求
項1に記載の方法。2. The method according to claim 1, wherein the exhaust of the internal space is performed by using only a rotary pump or by using a rotary pump and a mechanical booster pump together.
は、封止後に切除することを特徴とする請求項1または
2に記載の方法。3. The method according to claim 1, wherein the exhaust part for exhausting the internal space is cut off after sealing.
間のリークテストを行い、前記内部空間内にリークが無
いことが確認されたときに封止を行うことを特徴とする
請求項1から3のいずれかに記載の方法。4. The leak test of the internal space is performed before the internal space is sealed, and the sealing is performed when it is confirmed that there is no leak in the internal space. The method according to any one of 1 to 3.
属製板状体をシーム溶接することにより行うことを特徴
とする請求項1から4のいずれかに記載の方法。5. The method according to claim 1, wherein the sealing of the internal space is performed by seam welding the facing metal plate-like bodies.
対向する金属製板状体を真空炉に設置して周縁部をシー
ム溶接することにより行うことを特徴とする請求項1に
記載の方法。6. The exhaust and sealing of the internal space is performed by installing the facing metal plate-like bodies in a vacuum furnace and seam welding the peripheral edge portion. Method.
℃で行い、前記ゲッターの後加熱は250℃から600
℃で行うことを特徴とする請求項1から6のいずれかに
記載の方法。7. The internal space is sealed from room temperature to about 250.
The getter is post-heated from 250 ° C to 600 ° C.
The method according to any one of claims 1 to 6, wherein the method is performed at a temperature of ° C.
ルコニウム箔を使用することを特徴とする請求項1から
7に記載の方法。8. The method according to claim 1, wherein a titanium foil or a zirconium foil is used as the getter.
状体の内面に接触させることを特徴とする請求項1から
8のいずれかに記載の方法。9. The method according to claim 1, wherein the getters are brought into contact with the inner surfaces of the facing metallic plate-shaped bodies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001259601A JP2003065490A (en) | 2001-08-29 | 2001-08-29 | Method of manufacturing heat insulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001259601A JP2003065490A (en) | 2001-08-29 | 2001-08-29 | Method of manufacturing heat insulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003065490A true JP2003065490A (en) | 2003-03-05 |
JP2003065490A5 JP2003065490A5 (en) | 2004-10-28 |
Family
ID=19086948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001259601A Pending JP2003065490A (en) | 2001-08-29 | 2001-08-29 | Method of manufacturing heat insulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003065490A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183853A (en) * | 2004-12-26 | 2006-07-13 | Keiji Sakamoto | Metallic vacuum heat insulating material |
JP2006275186A (en) * | 2005-03-29 | 2006-10-12 | Tohoku Univ | Insulated container and its manufacturing method |
JP2006275187A (en) * | 2005-03-29 | 2006-10-12 | Tohoku Univ | Insulated container and its manufacturing method |
JP2010190257A (en) * | 2009-02-16 | 2010-09-02 | Mitsubishi Electric Corp | Vacuum heat insulating material and method for manufacturing the same |
JP2010242975A (en) * | 2010-07-13 | 2010-10-28 | Toshiba Home Technology Corp | Insulating material and its manufacturing method |
JP2013015222A (en) * | 2012-08-28 | 2013-01-24 | Toshiba Home Technology Corp | Method of manufacturing heat insulating material |
JP2014190443A (en) * | 2013-03-27 | 2014-10-06 | Zojirushi Corp | Vacuum insulation panel |
KR101470565B1 (en) * | 2014-03-07 | 2014-12-10 | 주식회사 에스앤피 | Method for manufacturing vacuum insulation panel, and vacuum insulation panel made thereby |
CN104369921A (en) * | 2013-08-12 | 2015-02-25 | 苏州维艾普新材料股份有限公司 | Device and method for measuring internal pressure of bag during packaging of vacuum insulated panel |
CN109746598A (en) * | 2019-01-29 | 2019-05-14 | 广东诺巴特智能设备有限公司 | A kind of vacuum cup getter welder |
WO2022092969A1 (en) * | 2020-11-02 | 2022-05-05 | Lg Electronics Inc. | Method for manufacturing vacuum adiabatic body |
WO2022092955A1 (en) * | 2020-11-02 | 2022-05-05 | Lg Electronics Inc. | Vacuum adiabatic body and method for manufacturing the vacuum adiabatic body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5740350B2 (en) * | 1976-11-30 | 1982-08-26 | ||
JPS6254396U (en) * | 1985-09-25 | 1987-04-04 | ||
JPH01268521A (en) * | 1988-04-20 | 1989-10-26 | Zojirushi Corp | Metallic vacuum double structure and manufacture thereof |
JPH04210198A (en) * | 1990-12-13 | 1992-07-31 | Kubota Corp | Vacuum insulated container |
JPH07269780A (en) * | 1994-03-30 | 1995-10-20 | Toshiba Corp | Vacuum heat insulating body and manufacture thereof |
-
2001
- 2001-08-29 JP JP2001259601A patent/JP2003065490A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5740350B2 (en) * | 1976-11-30 | 1982-08-26 | ||
JPS6254396U (en) * | 1985-09-25 | 1987-04-04 | ||
JPH01268521A (en) * | 1988-04-20 | 1989-10-26 | Zojirushi Corp | Metallic vacuum double structure and manufacture thereof |
JPH04210198A (en) * | 1990-12-13 | 1992-07-31 | Kubota Corp | Vacuum insulated container |
JPH07269780A (en) * | 1994-03-30 | 1995-10-20 | Toshiba Corp | Vacuum heat insulating body and manufacture thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183853A (en) * | 2004-12-26 | 2006-07-13 | Keiji Sakamoto | Metallic vacuum heat insulating material |
JP2006275186A (en) * | 2005-03-29 | 2006-10-12 | Tohoku Univ | Insulated container and its manufacturing method |
JP2006275187A (en) * | 2005-03-29 | 2006-10-12 | Tohoku Univ | Insulated container and its manufacturing method |
JP2010190257A (en) * | 2009-02-16 | 2010-09-02 | Mitsubishi Electric Corp | Vacuum heat insulating material and method for manufacturing the same |
JP2010242975A (en) * | 2010-07-13 | 2010-10-28 | Toshiba Home Technology Corp | Insulating material and its manufacturing method |
JP2013015222A (en) * | 2012-08-28 | 2013-01-24 | Toshiba Home Technology Corp | Method of manufacturing heat insulating material |
JP2014190443A (en) * | 2013-03-27 | 2014-10-06 | Zojirushi Corp | Vacuum insulation panel |
CN104369921A (en) * | 2013-08-12 | 2015-02-25 | 苏州维艾普新材料股份有限公司 | Device and method for measuring internal pressure of bag during packaging of vacuum insulated panel |
KR101470565B1 (en) * | 2014-03-07 | 2014-12-10 | 주식회사 에스앤피 | Method for manufacturing vacuum insulation panel, and vacuum insulation panel made thereby |
CN109746598A (en) * | 2019-01-29 | 2019-05-14 | 广东诺巴特智能设备有限公司 | A kind of vacuum cup getter welder |
WO2022092969A1 (en) * | 2020-11-02 | 2022-05-05 | Lg Electronics Inc. | Method for manufacturing vacuum adiabatic body |
WO2022092955A1 (en) * | 2020-11-02 | 2022-05-05 | Lg Electronics Inc. | Vacuum adiabatic body and method for manufacturing the vacuum adiabatic body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003065490A (en) | Method of manufacturing heat insulator | |
JP6269984B2 (en) | Method for manufacturing vacuum insulated glass (VIG) window unit including active getter | |
US9157230B2 (en) | Vacuum insulated panels of arbitrary size and method for manufacturing the panels | |
JP2013544747A (en) | Vacuum glass sealing device | |
CA2152833A1 (en) | Vacuum insulation panel and method for manufacturing | |
JP2003065490A5 (en) | ||
JP2010170873A (en) | Airtight container and method for manufacturing image display device | |
WO2001012942A1 (en) | Evacuated glass panel having a getter | |
JP5301816B2 (en) | Heat resistant vacuum insulation | |
US7476426B2 (en) | Evacuated glass panel having degassing device | |
JP3379916B2 (en) | High melting point material melt bonding equipment | |
WO2020026624A1 (en) | Method for producing glass panel unit | |
JPH11340348A (en) | Package structure for sealing element and production thereof | |
JP2020133655A (en) | Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel | |
JPH0592136A (en) | Adsorbent packing bag and production thereof | |
KR19980061511A (en) | Field emission display device | |
JP2005529459A (en) | Method for manufacturing gas discharge device | |
JP2001311497A (en) | Vacuum heat insulation member | |
JPH0727552Y2 (en) | Charged particle beam generator | |
JP3520180B2 (en) | Manufacturing method of vacuum structure | |
JPH0746562B2 (en) | Display tube manufacturing equipment | |
JP2001309858A (en) | Vacuum insulator used for pot | |
JP2001311496A (en) | Vacuum heat insulation member | |
JP2006333971A (en) | Method of manufacturing vacuum structure and the vacuum structure | |
JP4314955B2 (en) | Vacuum laminating apparatus and vacuum laminating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070320 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070710 |