JPS61133306A - Production of pig iron controlled of silicon content - Google Patents
Production of pig iron controlled of silicon contentInfo
- Publication number
- JPS61133306A JPS61133306A JP25506884A JP25506884A JPS61133306A JP S61133306 A JPS61133306 A JP S61133306A JP 25506884 A JP25506884 A JP 25506884A JP 25506884 A JP25506884 A JP 25506884A JP S61133306 A JPS61133306 A JP S61133306A
- Authority
- JP
- Japan
- Prior art keywords
- coke
- ore
- blast furnace
- amount
- pig iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はシリコン含有量の制御さル九銑鉄の製造法に係
り、&含有量の適切に制御さrLe銑鉄の製造し、又斯
かる銑鉄金低コストに製造し得る方法を提供しょうとす
るものでるる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pig iron with controlled silicon content, and a method for producing pig iron with appropriately controlled silicon content, and also enables production of such pig iron at low cost. I am trying to provide a method.
産業上の利用分野
&含有量の制御された銑鉄の製造
従来の技術
高炉から出銑され7を銑鉄中の支分を制御することにつ
いては従来から櫨々に検討されて米九ところで,ある。Industrial applications and production of pig iron with controlled content Conventional technology Controlling the amount of pig iron extracted from the blast furnace has been extensively studied for a long time.
即ち高炉内において銑鉄中に&が移行する機構としては
、次の2つの場酋が考えられる。That is, the following two situations can be considered as the mechanism by which & is transferred into the pig iron in the blast furnace.
■ スラグ中のStOtが銑中CK!つで次式のLうに
還元され、溶銑中に&がt有せしめられる。■ StOt in the slag is CK in the pig! is reduced to L of the following formula, and & is present in the hot metal.
SLO,(4)+20 4St+ 2CO.(2)■
コークスの灰分中におけるSLO2がコークスと高温で
次式のLうに直接反応することにLリStOガスを発生
し、a.i0ガスが銑中Cにエリ還元されて&が溶銑中
に入る。SLO, (4)+20 4St+ 2CO. (2)■
SLO2 in the ash of the coke directly reacts with the coke at high temperature to form the following formula, producing L-StO gas, a. i0 gas is reduced to C in the pig iron and & enters into the hot metal.
sto, (t. s )十〇(s)−+sto(g)
+CO(g)sto(X) + C 4 、!W +
Co(g)なお上記■■によるものは何れも羽ロエり下
部の領域では反対に、
34 + 2 Fao 45tOH+2 Fg、M+2
&0→、!0.+ 2&
のように&が酸化されて銑中&が低下するが、これらの
反応バランスに工って銑中&が決定される。sto, (t.s) 10(s)−+sto(g)
+CO(g)sto(X)+C4,! W +
Co(g) In addition, in all of the above ■■, in the lower region of the feather loe, 34 + 2 Fao 45tOH + 2 Fg, M + 2
&0→,! 0. As shown in + 2 &, & is oxidized and the & in the pig iron decreases, but the & in the pig iron is determined by taking into account the balance of these reactions.
そこでこの工うな銑中&分の制御を図る九め、■装入物
中への焼結鉱配会卓増加し、或いは焼結鉱塩基度の上昇
、東には装入物へ114i0の添加などの装入物の性状
改善、@送風に対する湿分添加や送風1度低下の工うな
羽口先@度の低下、Oスラグ塩基度の上昇、@溶銑温度
の低下、■羽口先からミルスケールなどの酸化物吹込み
の如きが提案されている。Therefore, in order to control the amount of sintered ore in this process, the amount of sintered ore added to the charge was increased, or the basicity of the sintered ore was increased, and 114i0 was added to the charge. Improving the properties of the charge, such as adding moisture to the blast or reducing the blast by 1 degree at the tuyere tip, increasing O slag basicity, decreasing hot metal temperature, mill scale from the tuyere tip, etc. Some methods have been proposed, such as oxide injection.
発明が解決し工つとする問題点
然し上記し之工うな従来技術によるものはそれぞれに問
題点を有していて好ましい制御法となし得ない。即ち■
は何nにしてもコストアップとなり、又焼結鉱における
塩基度上昇の如きには上限があって何九にしても的確な
制#金な1誌−ない不利を有し、又@は燃料沈金上昇さ
せること全必要としてコストアンプとなるか、或いは設
備的に制限があって結局は■と同じ不利が伴う。然して
θはスラグの粘性に影響することから当然に制限を受け
、に)の方法は出銑お工び出滓の何れの面からも制限を
受けるので低Sc化が充分に得られず、・も操業的に相
当に煩雑であるだけでなく、[相]と同様な制限を受け
5tt−自在且つ的確に制御することができない。Problems to be Solved by the Invention However, the above-mentioned conventional techniques have their own problems and cannot be considered as a preferred control method. That is ■
However, it increases the cost, and there is an upper limit to the increase in basicity in sintered ore, so it has the disadvantage that there is no precise control. Either increasing the amount of gold is necessary and increasing the cost, or there are restrictions on equipment, resulting in the same disadvantages as in (2). However, θ is naturally limited because it affects the viscosity of the slag, and method (2) is limited in terms of both tapping and slag tapping, so a sufficient reduction in Sc cannot be achieved. Not only is the operation considerably complicated, but it is also subject to the same restrictions as [phase] and cannot be controlled freely and accurately.
「発明の構成」
問題点を解決するtめの手段
本発明は上記したLうな実情に鑑み検討を重ねて創案さ
f′L、tものであって、高炉内に鉱石層とコークス層
とを交互に装入形成して安定操業に必要な鉱石対コーク
ス比により出銑作業するに当り、前記鉱石対コークス比
を得るtめのトータルコークス量の−Ht−5〜25m
+の中塊コークスとして用いると共に該中塊コークスを
上記した鉱石層に混入し、しかもこの混入中塊コークス
量の前記トータルコークス量に対する比率q°つて得ら
几る銑鉄中&分を制御することを特徴とするシリコン含
有量の制御された銑鉄の製造法である。``Structure of the Invention'' The present invention has been devised after repeated studies in view of the above-mentioned actual circumstances, and is a method of forming an ore layer and a coke layer in a blast furnace. In tapping the ore to coke ratio necessary for stable operation by alternating charging and forming, -Ht-5 to 25 m of the tth total coke amount to obtain the above ore to coke ratio.
+ Use the medium lump coke as a medium lump coke, mix the medium lump coke into the above-mentioned ore layer, and control the reduced pig iron content obtained by increasing the ratio q° of the mixed medium lump coke amount to the total coke amount. This is a method for producing pig iron with controlled silicon content.
作用
鉱石層に混入さf’L九5〜25m1の中塊コークスは
鉱石層中に均−状態で分布し、このコークスri該誠石
層が高炉内下部の軟化融着帯に到達した際に上部装入原
料にLる荷重を負担する。The medium coke of f'L 95 to 25 m1 mixed into the working ore layer is uniformly distributed in the ore layer, and when the coke layer reaches the softened cohesive zone in the lower part of the blast furnace. The load of L is borne by the upper charging material.
従って溶融メタルとコークスとの緊密な接触を回避し、
該帯域におけるメタル中への0炭を制限する。斯うして
メタル中への0炭が制限されると該メタルのC量に原因
し之銑中&量も制限されることになる。実験に工れば前
記のように鉱石I−中に混入さnt中塊コークスの量と
この銑中&Jlは略整然とし友変化を示し、従ってこの
工つな中塊コークスのトータルコークス量に対する混入
率にJ:り得られる銑鉄中の硯量を適切に制御予測する
ことができる。thus avoiding close contact between molten metal and coke,
Limit zero carbon into the metal in the zone. If zero carbon into the metal is restricted in this way, the amount of carbon in the pig iron will also be restricted due to the amount of carbon in the metal. In the experiment, as mentioned above, the amount of nt medium lump coke mixed in ore I- and this pig iron & Jl show a nearly regular change, and therefore, the mixing of this medium lump coke in the total coke amount. It is possible to appropriately control and predict the amount of inkstone in the pig iron that can be obtained at a certain rate.
実施例
前記し之工うな本発明によるものを更に説明する台本発
明者等は低st溶銑を高炉から出銑させることについて
仔細な検討と推考を重ねt結果、前述した従来技術にン
ける銑中&移行機構■■はその何への場合においても銑
中Cがある程度以上にならないとそれらの反応が進行し
ないものと言える。然して高炉内においては炉頂部から
装入された鉱石とコークスが次第に下部に送られ、鉱石
が予熱、還元、軟化、溶融さルて出銑することなり、斯
様な一連の過檻においてメタル中に滲炭さaることとな
るが、斯うし友参炭速[1−制御するならば銑中5tt
−制御し得るものと推定される。EXAMPLES The present invention will be further explained in accordance with the above-mentioned work.The present inventors have made detailed studies and speculations regarding tapping low-stack hot metal from a blast furnace. & Migration mechanism ■■ In any case, it can be said that those reactions do not proceed unless the C in the pig iron reaches a certain level. However, in a blast furnace, ore and coke are charged from the top of the furnace and are gradually sent to the bottom, where the ore is preheated, reduced, softened, and melted to be tapped. However, if the coal speed is controlled to 1-5tt in the pig iron,
- Estimated to be controllable.
そこで前記し之工うなメタル中への滲炭速度金制゛御す
ることについて検討を重ね、実験的にコークス層間にお
ける鉱石層が70〜80%程度に収縮し九後に軟化融着
した後の荷重に;る圧縮でメタルとコークスとが緊密状
態に接触せしめられることにLつて発生することが知ら
nt0従ってその8炭原因である荷重を殆んど掛けない
工つにし、少なくともメタルとコークスと9.′$密接
触原因を解消することにエリメタルのメルトダクンが避
けられ8炭も避は得るし、斯かる荷it制御して銑中S
Lfコントロールできる。Therefore, we have repeatedly studied how to control the rate of decoalization into the metal during the above-mentioned process, and have experimentally determined that the load after the ore layer between the coke layers has shrunk to about 70 to 80% and has softened and fused after 90 minutes. It is known that this phenomenon occurs when the metal and coke are brought into close contact during compression. Therefore, the process is designed to apply almost no load, which is the cause of the 8 coal, and to at least reduce the contact between the metal and coke. .. 'By eliminating the cause of close contact, Elimetal's meltdown can be avoided and 8 coals can also be avoided, and by controlling such loads, S
Can control Lf.
即ちこの工うに軟化融7W帯において鉱石層に荷iL?
!−制御゛rるtめの手法について検討し之結果、上記
の工つな鉱石層に適量な斂のコークスt−混合すること
に想到し、この混入さt″LtLtコークスて荷重を支
持しメタルとコークスとの高温条件ドにおける緊密接触
を回避するならば特別な添加物などを必要としないで、
又簡易な構法でメタルへの8炭を回避ないし制限せしめ
、それに伴うメタルへの&移行を防止し得ること全知つ
之。In other words, in this process, there is a load iL?
! - As a result of considering a control method, we came up with the idea of mixing an appropriate amount of coke into the above-mentioned solid ore layer, and using this mixed coke to support the load, the metal If close contact between coke and coke under high temperature conditions is avoided, no special additives are required.
Also, I am fully aware that it is possible to avoid or limit 8 carbon to metal by a simple construction method, and prevent the accompanying migration to metal.
上記した工つな鉱石層に対するコークスの混入量につい
ては成る程度以上であることが好ましいものであること
は当然であるが、又251111以下の通気性を阻害し
ない範囲における中塊コークスを用いることは比較的少
ない混入量で均一状態に鉱石J4内に分布せしめて上記
目的を達する一上において有意と言える。即ちこの工う
な高炉姿入用コークスとしては従来251111以上を
用いるべきものとされ、具体的にこのコークスtl−製
造するに当っては、25111mで篩別され1’F:、
@下は副生物として、価格的には2分の1以下の工つな
高炉装入コークスLり充分に低置なコークスとして高炉
装入以外の用途に供せらルているものであるが、このも
のt−前記鉱石層混入コークスとして用いることに工り
有利に本発明の目的を達し得るもので、且つ低コスト化
さA7を出銑目的にも有効に即応する。この場合のコー
クス粒度としては一般的に5〜251a1.好ましくは
8〜25m1l(以下こt′Lt−中塊コークスという
)である。又混入量については余分なコークスを用いる
ことが好ましいものでないことは当然で、燃料比として
500に9/ T−Pig以下、特に490ゆ/T−P
ig以下、460緯/T−Pig以上の工つな従来法に
おいて安定し7′2:ガス通過と荷下り条件を確保する
に必要とされる程度のトータルコークス量の範囲ないし
七ル以下の装入コークストータルにおける2%程度を鉱
石層中に混甘し71%合においても前記のLうな中塊コ
ークス金用いることにより20%前後の銑中低減の得ら
ルることが確認さnる。なおその上限についてはこの工
うに鉱石層混入コークス量が増加すると鉱石層間におけ
るコークス層の童が減少し該コークス、−における本来
のIス通過特性に影4を釆すことから前d己トータルコ
ークス量の30%糧度とすることが好ましい。斯かる範
囲について具体的に鉱石層混入コークス量を植々に変化
させて実施した結果を、その比較例(鉱石層混入コーク
ス5$苓)と共に、ばらつき範囲をも併せて要約して示
しているのが添付図面であって混入コークス並如何にL
f)整然とした低&銑鉄を得しめることは明らかである
。It goes without saying that it is preferable that the amount of coke mixed into the above-mentioned solid ore layer be at least a certain amount, but it is also preferable to use medium lump coke of 251111 or less in a range that does not impede the permeability. It can be said that it is significant in achieving the above objective by uniformly distributing it in the ore J4 with a relatively small amount of mixing. In other words, it has been said that coke of 251111 or higher should be used as the coke for use in blast furnaces, and specifically, when producing this coke TL, it is sieved at 25111m and 1'F:
Below is a by-product that can be used for purposes other than blast furnace charging as coke that is less than half the cost and is sufficiently low to be charged into a blast furnace. This product can advantageously achieve the object of the present invention when used as the coke mixed with the ore layer, and can also be effectively applied to the purpose of tapping iron at low cost. In this case, the coke particle size is generally 5 to 251a1. Preferably it is 8 to 25 ml (hereinafter referred to as t'Lt-medium lump coke). Regarding the amount of coke mixed in, it is natural that it is not preferable to use extra coke, and the fuel ratio is 500 to 9/T-Pig or less, especially 490 Yu/T-P.
ig or less, 460 latitude/T-Pig or more is stable in the conventional method. It has been confirmed that a reduction in iron content of around 20% can be obtained by mixing about 2% of the total coke into the ore layer and using the above-mentioned L-sized coke gold even when the content is 71%. Regarding the upper limit, as the amount of coke mixed in the ore layer increases in this process, the amount of coke layer between the ore layers decreases, which affects the original I-ss passage characteristics of the coke. It is preferable to set the food content to 30% of the amount. The results of experiments conducted by specifically varying the amount of coke mixed in the ore layer in this range are summarized together with comparative examples (coke mixed in the ore layer: 5$), as well as the range of variation. This is the attached drawing, which shows the amount of coke mixed in.
f) It is obvious to obtain a well-ordered low & pig iron.
不発明方法K J:るものの具体的な操業例について説
明すると、装入原料としてのトータルコークス量を48
1鐸/T−Pigとし7を鉱石対コークス比(0/C)
に1って操業するに当り、銑中SL il ’z 0.
18%として−pべく、前i己0 / Cによるトータ
ルコークス量の3.5%を8〜25111110中塊コ
ークスとしてその鉱石層に混入して操業したoなおこの
工うに鉱石層に混入されない、鉱石層間におけるコーク
スノーとしてのコークスは25101以上の常法にLる
コークスである。Non-inventive method K J: To explain a specific operational example of
1 Taku/T-Pig and 7 is ore to coke ratio (0/C)
When operating at 1 in 1, the pig iron SL il'z 0.
In order to set 18% -p, 3.5% of the total amount of coke according to the previous I0/C was mixed into the ore layer as 8~25111110 medium lump coke and operated. The coke as coke snow between ore layers is conventional L coke of 25101 or higher.
然してこの工うにして操業し高炉から出銑された銑鉄に
ついてその&分tljIII定した結果は0.18%で
あって、目標としたst値に略的中したものであつ之。However, the result of the &minute tljIII determination for the pig iron tapped from the blast furnace operated in this manner was 0.18%, which approximately hit the target st value.
又これとは別に装入原料としてのトータルコークス量t
−483H7T−pigとし7to/CKJ:つて操業
するに当り、銑中&量を0.10%とすることを目標と
して、前記0/CVcよるトータルコークス量の10%
t−8〜251111の中塊コークスとして鉱石層中に
1曾して炉内装入した。In addition to this, the total coke amount t as a charging raw material
-483H7T-pig and 7to/CKJ: When operating, the aim is to set the pig iron volume & amount to 0.10%, and 10% of the total coke amount according to the above 0/CVc.
It was poured into the ore layer as medium coke of t-8 to 251111 and introduced into the furnace.
コークス層用コークスとしてはzssw以上のものであ
ることは上記と同じであるが、この工うにして操業し、
高炉から出銑されたものについてその3分を測定し7t
m果ri0.105%であって前記同様に目標&量に曾
攻したものと言える。The coke for the coke layer is the same as above, but it is operated in this way,
We measured 3 minutes of the iron tapped from the blast furnace and 7 tons
The yield was 0.105%, and it can be said that the target and amount were fully met as described above.
なお添附図面から明らかな工うに&が0.10%以下を
目標とする場曾には中塊コークス混入率が高くなるのに
対し&の低下は少なくなり、例えば、中塊コークス混入
率を25%としても5trio、os%8i度でろって
、実際にコークス混入率を10〜25%の範囲内とし建
場4!1−はその何れの場せにおいても銑中&が0.0
8〜0810%の範囲内のものであつt6又鉱石層中混
入中塊コークスが増加するにつnて高炉内ガス流分布が
中心流傾向になったtめムーバグルアーマーに工す鉱石
全中心部に入れ中心流を抑制したo「発明の効果」
以上説明し九りうな本発明によるときは銑鉄中5Lt−
適切に制御せしめて出銑することができ、しかもトータ
ルコークス量としては従来法と同等ないしそれ以下であ
り、又特別な添加物や煩雑な制御操作という程のことな
しに制御目的を達成し、褥に25−以下の中塊コークス
金柑いて好ましい制御結果を得しめるものであるから低
コスト化を充分に確保せしめ工業的にその効・果の大き
い発明である。It is clear from the attached drawing that if the target is 0.10% or less, the mixture rate of medium lump coke will increase, but the decrease in & will be small.For example, if the mixture rate of medium lump coke is 25 Even if the percentage is 5trio and os%8i degrees, the actual coke mixing rate is within the range of 10 to 25%, and in both cases, the & in the pig iron is 0.0.
In addition, as the amount of coke mixed in the ore layer increases, the gas flow distribution in the blast furnace tends to be a central flow. ``Effects of the Invention'' As explained above, when the present invention is applied, the central flow is suppressed.
It is possible to tap iron with appropriate control, and the total amount of coke is equal to or less than that of the conventional method, and the control objective is achieved without the need for special additives or complicated control operations. Since favorable control results can be obtained by using medium-sized coke kumquats of 25 or less in the bed, it is an invention that can sufficiently reduce costs and has great industrial effects.
図面は本発明の技術的内容を示すものであって、本発明
方法と従来法によるものの鉱石層中混入中塊コークス率
と銑中糞の関係をばらつき範囲と共に要約して示した図
表である。
特許出願人 日本鋼管株式会社
発明者 古川 和博
同 単重 綿幸
同 釜中 秀臣The drawing shows the technical contents of the present invention, and is a chart summarizing the relationship between the percentage of lump coke mixed in the ore layer and the feces in the pig iron, as well as the range of variation, according to the method of the present invention and the conventional method. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Kazuhiro Furukawa Unit weight: Kodo Wata Hideomi Kamanaka
Claims (1)
定操業に必要な鉱石対コークス比により出銑作業するに
当り、前記鉱石対コークス比を得るためのトータルコー
クス量の一部を5〜25mmの中塊コークスとして用い
ると共に該中塊コークスを上記した鉱石層に混入し、し
かもこの混入中塊コークス量の前記トータルコークス量
に対する比率によつて得られる銑鉄中Si分を制御する
ことを特徴とするシリコン含有量の制御された銑鉄の製
造法。When tapping the ore to coke ratio necessary for stable operation by charging ore layers and coke layers alternately in the blast furnace, a part of the total amount of coke to obtain the ore to coke ratio is Use it as a medium lump coke of 5 to 25 mm, mix the medium lump coke into the above-mentioned ore layer, and control the Si content in the pig iron obtained by the ratio of the mixed medium lump coke amount to the total coke amount. A method for producing pig iron with controlled silicon content, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25506884A JPS61133306A (en) | 1984-12-04 | 1984-12-04 | Production of pig iron controlled of silicon content |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25506884A JPS61133306A (en) | 1984-12-04 | 1984-12-04 | Production of pig iron controlled of silicon content |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61133306A true JPS61133306A (en) | 1986-06-20 |
JPS6365725B2 JPS6365725B2 (en) | 1988-12-16 |
Family
ID=17273690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25506884A Granted JPS61133306A (en) | 1984-12-04 | 1984-12-04 | Production of pig iron controlled of silicon content |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61133306A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5941402A (en) * | 1982-09-02 | 1984-03-07 | Nippon Kokan Kk <Nkk> | Operation of blast furnace |
-
1984
- 1984-12-04 JP JP25506884A patent/JPS61133306A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5941402A (en) * | 1982-09-02 | 1984-03-07 | Nippon Kokan Kk <Nkk> | Operation of blast furnace |
Also Published As
Publication number | Publication date |
---|---|
JPS6365725B2 (en) | 1988-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2871115A (en) | Method of preparing self-fluxing synthetic iron scrap | |
EP0249006A1 (en) | Method for manufacturing chromium-bearing pig iron | |
JPS61133306A (en) | Production of pig iron controlled of silicon content | |
US3454395A (en) | Process for the reduction of iron ore in a cupola-type furnace | |
Spirin et al. | The use of combined-blast is the main way to improve the energy efficiency of blast furnaces | |
US3083090A (en) | Production of sinter | |
JPS61133305A (en) | Blast furnace operating method for obtaining low silicon pig iron | |
US3165398A (en) | Method of melting sponge iron | |
JPS62158810A (en) | Method for determining main material charging quantity in converter operation | |
JPS61261408A (en) | Operating method for blast furnace | |
US2308984A (en) | Synthetic ore | |
JPS58197208A (en) | Melt reduction method of metallic oxide ore | |
JPS6043403B2 (en) | Blast furnace operation method using pulverized coal injection | |
US2569215A (en) | Open-hearth process | |
JP2843604B2 (en) | Production method of molten iron by combined smelting reduction and scrap melting method | |
RU2190667C1 (en) | Blast smelting method | |
JPS61153211A (en) | Low-silicon operation method in blast furnace | |
US141419A (en) | Improvement in the manufacture of manganese, ferro-manganese, and spiegeleisen | |
Stapleton et al. | Ferromanganese Production with Oxygen Enrichment | |
SU740834A1 (en) | Charge for blast furnaces | |
JPS6365726B2 (en) | ||
US97718A (en) | Howard spencer and laffayette k | |
SU1285005A1 (en) | Method of charging blast furnace | |
JPH0637646B2 (en) | Method for producing low Si concentration hot metal in blast furnace | |
CN112011721A (en) | Pig iron for directly producing low-silicon low-titanium low-trace-element nodular cast iron and preparation method thereof |