JPS61132841A - Method of operating microscope apparatus - Google Patents

Method of operating microscope apparatus

Info

Publication number
JPS61132841A
JPS61132841A JP60250615A JP25061585A JPS61132841A JP S61132841 A JPS61132841 A JP S61132841A JP 60250615 A JP60250615 A JP 60250615A JP 25061585 A JP25061585 A JP 25061585A JP S61132841 A JPS61132841 A JP S61132841A
Authority
JP
Japan
Prior art keywords
imaging area
fluid sample
flow
fluid
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60250615A
Other languages
Japanese (ja)
Other versions
JPH0659782B2 (en
Inventor
フレツド・エイチ・ダインドウフア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATL REMOTE IMAGING SYST
INTERNATL REMOTE IMAGING SYST Inc
Original Assignee
INTERNATL REMOTE IMAGING SYST
INTERNATL REMOTE IMAGING SYST Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATL REMOTE IMAGING SYST, INTERNATL REMOTE IMAGING SYST Inc filed Critical INTERNATL REMOTE IMAGING SYST
Publication of JPS61132841A publication Critical patent/JPS61132841A/en
Publication of JPH0659782B2 publication Critical patent/JPH0659782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は顕微鏡器械、特に内部を流れる流体試料の中の
粒子を分析するための流れ室を有する顕微鏡器械の運用
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a microscopic instrument, particularly a microscopic instrument having a flow chamber for analyzing particles in a fluid sample flowing therethrough.

生物学的粒子のような粒子を分析するための顕微鏡器械
は当業者にとって公知である。スライド上にのせられる
か、流れ室内を流れる流体試料の中に浮遊する粒子に顕
微鏡器械の焦点を合せることが通例であり、後者は当業
者にとりで公知である。米国特許第3.893.786
号およびRE第29.141号ならびに米国特許j14
.338,024号は、中を流れる粒子を分析するため
に顕微鏡器械と共に使用し得る流れ室の一型式を開示す
る。これらの引用文書のいずれも、流れ室は延在する通
路によりつながる入口および出口を特徴としている。通
路は顕微鏡器械を向ける作像区域を有する。流れ室の厚
さは通路が入口から出口へ移行するにつれてかなり減少
する。米国特許第4,331!、024号では、流体試
料を入口から出口に誘導するために包囲流体も流れ室に
導入される。米国特許第3.893.788号では、流
体の流れの方向に延在して試料チューブを包囲する複数
のチューブを含む包囲流装置により包囲流体が運ばれる
Microscopic instruments for analyzing particles, such as biological particles, are known to those skilled in the art. It is customary to focus the microscopic instrument on particles suspended on a slide or in a fluid sample flowing through a flow chamber, the latter being well known to those skilled in the art. U.S. Patent No. 3.893.786
No. and RE No. 29.141 and U.S. Patent J14
.. No. 338,024 discloses one type of flow chamber that can be used with microscopic instruments to analyze particles flowing therethrough. In both of these cited documents, the flow chamber features an inlet and an outlet connected by an extending passageway. The passageway has an imaging area for directing the microscope instruments. The thickness of the flow chamber decreases considerably as the passageway transitions from the inlet to the outlet. U.S. Patent No. 4,331! , 024, an surrounding fluid is also introduced into the flow chamber to direct the fluid sample from the inlet to the outlet. In US Pat. No. 3,893,788, an surrounding fluid is conveyed by an surrounding flow device that includes a plurality of tubes extending in the direction of fluid flow and surrounding a sample tube.

しかし、流れ室の寸法に関連して顕微鏡装置を運用する
のに必要なパラメータを教えたり、示唆したりする文献
は皆無である。
However, there is no literature that teaches or suggests the parameters necessary to operate a microscopy device in relation to the dimensions of the flow chamber.

本発明は、顕微鏡器械を運用する方法を開示する。顕微
鏡器械は流れ室を流れている粒子を分析するだめの顕微
鏡装置を有する。流れ室は、入口および出口、ならびに
入口と出口の間に延在する通路を有する。顕微鏡装置は
通路の入口と出口の間にある作像区域に向けられる。通
路が入口から作像区域に移るに従って最初は減少し、一
定の厚さに達してから作像区域にて一定のままの厚さを
通路が有することを特徴とする。包囲流体および流体試
料は入口から出口へ運ばれる。さらに顕微鏡装置は作像
区域上に焦点を結ぶ光学レンズを有する。本発明の方法
は、作像区域に平らな層流を生ずるように包囲流体の流
量を選定することを含む。顕微鏡装置は厚さに平行な方
向に作像区域に向けられる。光学レンズの作用距離は作
像区域の流れ室の厚さの2分の1より太き(選ばれる。
The present invention discloses a method of operating a microscopic instrument. The microscopic instrument has a reservoir microscopic device that analyzes particles flowing through the flow chamber. The flow chamber has an inlet and an outlet and a passage extending between the inlet and the outlet. A microscope device is directed at the imaging area between the entrance and exit of the passageway. The passageway is characterized in that it has a thickness that initially decreases as it moves from the inlet to the imaging area, and after reaching a certain thickness remains constant in the imaging area. Surrounding fluid and fluid sample are conveyed from the inlet to the outlet. Furthermore, the microscope device has an optical lens focusing onto the imaging area. The method of the present invention includes selecting the flow rate of the surrounding fluid to produce a flat laminar flow in the imaging area. The microscope device is oriented toward the imaging area in a direction parallel to the thickness. The working distance of the optical lens is chosen to be greater than one-half the thickness of the flow chamber in the imaging area.

光学レンズの焦点深度は作像区域の流れ室の厚さよりず
っと小さいように選ばれる。作像区域における流体試料
の厚さが光学レンズの焦点深度より小さいように流体試
料の流量が保たれる。
The depth of focus of the optical lens is chosen to be much smaller than the thickness of the flow chamber in the imaging area. The flow rate of the fluid sample is maintained such that the thickness of the fluid sample in the imaging area is less than the depth of focus of the optical lens.

第1図を参照すると、本発明の方法に有用な装置(10
)の断面図が示される。装置(lO)は顕微鏡装! (
1B)を向けるべき作像区域(14)を有する流れ室(
12)を含む。顕微鏡装置(IB)は流れ室(12)の
一方の側にある。光源(18)は顕微鏡装置(1B)の
照明を与え、室(12)の他方の側にある。流れ室(1
2)は入口(20)、出口(22)、および入口(20
)と出口(22)の間の通路(24)を有する。通路(
24)は作像区域(14)を通過する。血液または尿の
ような関係粒子を含んだ流体試料は入口(20)から入
って流れ室(12)を通って運ばれ、ついで出口(22
)に向けて通路(24)を通って運ばれる。包囲流体も
また流体入口(2B。
Referring to FIG. 1, apparatus (10
) is shown. The device (lO) is a microscope! (
1B) with an imaging area (14) to be directed.
12). A microscope device (IB) is on one side of the flow chamber (12). A light source (18) provides illumination of the microscope apparatus (1B) and is on the other side of the chamber (12). Flow chamber (1
2) has an inlet (20), an outlet (22), and an inlet (20
) and an outlet (22). aisle(
24) passes through the imaging area (14). A fluid sample containing particles of interest, such as blood or urine, enters through the inlet (20) and is conveyed through the flow chamber (12) and then through the outlet (22).
) through the passageway (24). The surrounding fluid is also the fluid inlet (2B).

28)から流れ室(12)に供給される。流体入口(2
B)と流体入口(28)とはそれぞれ入口(20)の反
対側に、その上流にある。流体試料が通路(24)に入
る入口(20)から作像区域までの距離はLで表わされ
る。
28) to the flow chamber (12). Fluid inlet (2
B) and the fluid inlet (28) are respectively on opposite sides of and upstream of the inlet (20). The distance from the inlet (20) where the fluid sample enters the passageway (24) to the imaging area is denoted by L.

通路(24)は、通路(24)が入口(20)から収縮
区域(21)に移るに従い厚みと幅とが大幅に減するこ
とを特徴とする。流れ室の厚さは収縮区域から出口まで
一定であるが、幅は増大する。流れ室の断面積は入口(
20)から収縮区域(21)まで減少する。その後、断
面積は増す。顕微鏡装置は第2図に示される光学レンズ
(30)を有する。
The passageway (24) is characterized by a significant decrease in thickness and width as the passageway (24) passes from the inlet (20) to the contraction zone (21). The thickness of the flow chamber remains constant from the contraction area to the exit, but the width increases. The cross-sectional area of the flow chamber is the inlet (
20) to the contraction zone (21). After that, the cross-sectional area increases. The microscope device has an optical lens (30) shown in FIG.

第2図を参照するに、第1図の流れ室(12)の一部分
を大きく拡大した断面図が示される。第2図に示す流れ
室(12)の部分は作像区域に近い部分である。光学レ
ンズ(30)は作像区域(14)上に焦点を結ぶ。光学
レンズ(30)は作用距離Vdを有することを特徴とす
る。さらに、光学レンズ(30)は焦点深度Fdを有す
る。作像区域(14)における流れ室(12)の厚さは
pである。最後に作像区域(14)における流体試料の
厚さはtである。
Referring to FIG. 2, a greatly enlarged cross-sectional view of a portion of the flow chamber (12) of FIG. 1 is shown. The portion of the flow chamber (12) shown in FIG. 2 is the portion close to the imaging area. An optical lens (30) focuses onto the imaging area (14). The optical lens (30) is characterized in that it has a working distance Vd. Furthermore, the optical lens (30) has a depth of focus Fd. The thickness of the flow chamber (12) in the imaging area (14) is p. Finally, the thickness of the fluid sample in the imaging area (14) is t.

本発明の方法では、流体試料は包囲流体の流れの中に導
入される。流体(流体試料および包囲流体を含む)はレ
ストリクタ(21)を通過する。レストリクタ(21)
は矩形断面を有し、その幅は厚さの幾倍もある。作像区
域(14)で、流体は平らな流れを保つ。代表的には幅
が0.813111Iで厚さが0.050鰭である。流
体の流量は層流を生ずるように選ばれる。米国特許第3
.893,766号に述べであるように、流れの方向に
導管の中心を通うて延在し試料チューブを取り囲む複数
のチューブを含む包囲液装置により層流を維持すること
ができる。チューブは乱れを防ぐように機能するので、
流れ室に入る流体は平行化され、乱れを生じない。流体
試料が流れ室に入るにつれ、流体は層流の形をとる。
In the method of the invention, a fluid sample is introduced into a surrounding fluid stream. Fluid (including fluid sample and surrounding fluid) passes through the restrictor (21). Restrictor (21)
has a rectangular cross section, the width of which is many times greater than the thickness. In the imaging area (14) the fluid maintains a flat flow. Typically, the width is 0.813111I and the thickness is 0.050 fin. The fluid flow rate is selected to produce laminar flow. US Patent No. 3
.. As described in US Pat. No. 893,766, laminar flow can be maintained by a surrounding liquid device that includes a plurality of tubes extending through the center of the conduit in the direction of flow and surrounding the sample tube. The tube works to prevent turbulence, so
The fluid entering the flow chamber is collimated and unturbulent. As the fluid sample enters the flow chamber, the fluid assumes a laminar flow.

流れ室(12)に入る前にかなり長い導管の中に遅い速
度の流体が導入されるなら、チューブを使用せずに層流
を達成することができる。代表的には、作像区域(14
)における流れ室の包囲流の速度は0.7X 10 ”
〜2.7X 103關/秒の範囲である。
Laminar flow can be achieved without the use of tubes if the slow velocity fluid is introduced into a fairly long conduit before entering the flow chamber (12). Typically, the imaging area (14
) the velocity of the surrounding flow in the flow chamber is 0.7X 10''
~2.7X 103 speeds/sec.

いったん層流が生ずると、包囲流の流れは速度輪郭を有
する。望ましくは、包囲流体がほぼ一定の速度輪郭に達
してパラボラ(放物線)の形状を示す点、またはその後
に顕微鏡装置t (16)を配置する。
Once laminar flow occurs, the flow of the surrounding flow has a velocity profile. Preferably, the microscopic device t (16) is placed at or after the point at which the surrounding fluid reaches a substantially constant velocity profile and exhibits a parabolic shape.

よって距離りは代表的には12.7Iu1である。Therefore, the distance is typically 12.7 Iu1.

入口から作像区域(14)までの距離りがいったん決ま
ると、流れ室(12)の作像区域(14)における外側
厚さDが決まる。ついでレンズ(30)の作用距離Wd
が、作像区域(14)における作像平面から流れ室(1
2)の外側までの距離より大きくなるように選ばなけれ
ばならない。
Once the distance from the inlet to the imaging area (14) is determined, the outer thickness D of the flow chamber (12) at the imaging area (14) is determined. Next, the working distance Wd of the lens (30)
from the imaging plane in the imaging area (14) to the flow chamber (1
2) must be selected so that it is larger than the distance to the outside.

レンズ(30)の作用距離1fdが決まり、作像区域(
14)における外側厚さDが決っているので、レンズ(
30)の焦点深度Pdを外側厚さDよりずっと小さく選
ぶ。
The working distance 1fd of the lens (30) is determined, and the imaging area (
Since the outer thickness D in 14) is fixed, the lens (
30) Choose the depth of focus Pd to be much smaller than the outer thickness D.

作像区域(14)における流体試料の厚さtはレンズ(
30)の焦点深度Pdに等しいか、それより小さくなけ
ればならない。作像区域(14)における流体試料の厚
さtは流体試料および包囲流体の流量により決定される
。流体試料および包囲流体の流量を調整することにより
、作像区域(14)における流体試料の厚さtを変える
ことができる。勿論、前述のように、包囲流体の流量は
層流を生ずるために制約される。
The thickness t of the fluid sample in the imaging area (14) is determined by the lens (
30) must be equal to or smaller than the depth of focus Pd. The thickness t of the fluid sample in the imaging area (14) is determined by the flow rate of the fluid sample and surrounding fluid. By adjusting the flow rate of the fluid sample and surrounding fluid, the thickness t of the fluid sample in the imaging area (14) can be varied. Of course, as mentioned above, the flow rate of the surrounding fluid is constrained to produce laminar flow.

作像区域(14)における流体試料の厚さtがレンズ(
30)の焦点深度Pdより大きい場合には、流体試料お
よび包囲流の流量を変えて、流体試料内の関係粒子が、
光学レンズ(30)の焦点深度内に入るよう流体試料流
の中心を流れるようにすることにより、本発明の方法を
実施することができる。
The thickness t of the fluid sample in the imaging area (14) is determined by the lens (
30), the flow rates of the fluid sample and the surrounding flow are changed so that the particles of interest in the fluid sample are
The method of the invention can be carried out by directing the fluid sample stream to flow within the depth of focus of the optical lens (30).

最後に、流体試料中の粒子を見るために、光源(18)
はストロボ光となるように選ばれる。光源(18)のス
トロボの時間は流体試料の映像を静止させるのに充分に
短かくなければならない。勿論、映像を静止させる光源
のストロボの時間は流体試料の流量により決定される。
Finally, a light source (18) is used to view the particles in the fluid sample.
is chosen to be a strobe light. The strobe time of the light source (18) must be short enough to freeze the image of the fluid sample. Of course, the duration of the light source strobe to freeze the image is determined by the flow rate of the fluid sample.

しかし、上記のように、流体試料の流量がいったん設定
されると、最少ストロボ時間も決定される。
However, as mentioned above, once the fluid sample flow rate is set, the minimum strobe time is also determined.

以下に具体例”を記載する。流れ室(12)は作像区域
において幅0.4c+n、内のり厚さ 0.005cm
の寸法を冑する。長さは3.81 anである。入口(
20)から作像区域(14)までの距離りは作像区域(
14)内の室の厚さdの5倍よりも大きく選ばれる。望
ましくはLは1.27 amである。作像区域(14)
における流れ室(12)の外側厚さDは0.7cm以下
である。望ましくは、厚さDはO,157cm程度であ
る。顕微鏡器械は作像区域(14)において厚さDに平
行な方向に向けられる。光学レンズ(30)の作用距離
Vdは作像区域(14)における厚さDの2分の1より
も大きいQ、137CI11が選ばれる。光学レンズF
dの焦点深度は、作像区域(14)における室(12)
の厚さDより遥かに小さい0,6〜4.5μが選ばれる
。代表的には、このような光学レンズ(30)はアメリ
カ光学会社(American 0ptical Ma
nufacturing Corp)の製作した焦点深
度±1.1μのものである。
A specific example is described below.The flow chamber (12) has a width of 0.4c+n in the imaging area and an inner thickness of 0.005cm.
Measure the dimensions. The length is 3.81 an. entrance(
20) to the imaging area (14) is the imaging area (
14) selected to be greater than 5 times the thickness d of the inner chamber. Preferably L is 1.27 am. Imaging area (14)
The outer thickness D of the flow chamber (12) in is less than or equal to 0.7 cm. Desirably, the thickness D is about 0.157 cm. The microscope instrument is oriented parallel to the thickness D in the imaging area (14). The working distance Vd of the optical lens (30) is selected to be Q, 137CI11, which is greater than half the thickness D in the imaging area (14). optical lens F
The depth of focus of d is the depth of focus of the chamber (12) in the imaging area (14).
A value of 0.6 to 4.5 μm, which is much smaller than the thickness D of , is selected. Typically, such optical lenses (30) are manufactured by American Optical Company.
It has a depth of focus of ±1.1μ and was manufactured by Nufacturing Corp.

最後に、作像区域(14)における流体試料の厚さtが
光学レンズ(30)の焦点深度F、dに等しいか、それ
以下になるように包囲流体および流体試料の流量を調整
する。流体試料およ゛び包囲流体の代表的流量の比は1
対2乃至1対50である。望ましくは、全流量0.05
4m1 /秒においてそれぞれの流量は0.0036 
Elf/秒と0.050m1 /秒である。光源(18
)のストロボは2マイクロ秒の時間で、60回/秒であ
る。
Finally, the flow rates of the surrounding fluid and fluid sample are adjusted such that the thickness t of the fluid sample in the imaging area (14) is less than or equal to the depth of focus F, d of the optical lens (30). The ratio of the typical flow rates of the fluid sample and the surrounding fluid is 1
The ratio ranges from 2 to 50 to 1 to 50. Preferably, the total flow rate is 0.05
At 4 m1/sec, each flow rate is 0.0036
Elf/sec and 0.050 m1/sec. Light source (18
) strobe has a duration of 2 microseconds and a rate of 60 times/second.

以上のように、本発明は、中を流体試料が流れる流れ室
の作像区域に焦点を結ぶ顕微鏡装置の最適運用パラメー
タを決定する方法を示す。
Thus, the present invention provides a method for determining optimal operating parameters for a microscopy device that focuses on the imaging area of a flow chamber through which a fluid sample flows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いられる装置の断面図、 第2図は第1図に示す装置の一部分の拡大断面図、 第3図は本発明の方法に使用する装置の平面図、第4図
は第3図の装置の断面図。 10・・・顕微鏡器械  12・・・流れ室14・・・
作像区域゛   16・・・顕微鏡装置18・・・光源
     2G・・・入口21・・・レストリクタ(収
縮区域) 22・・・出口     24・・・通路26.28・
・・流体人口  30・・・光学レンズ図面のi1′+
ご(内容に変更なし) 1=エロシ−4− 手続補正絣 昭和60年12月71日
FIG. 1 is a sectional view of the apparatus used in the method of the present invention, FIG. 2 is an enlarged sectional view of a portion of the apparatus shown in FIG. 1, and FIG. 3 is a plan view of the apparatus used in the method of the present invention. FIG. 4 is a sectional view of the device shown in FIG. 3. 10...Microscope equipment 12...Flow chamber 14...
Imaging area 16... Microscope device 18... Light source 2G... Inlet 21... Restrictor (contraction area) 22... Outlet 24... Passage 26.28...
...Fluid population 30...i1'+ of optical lens drawing
(No change in content) 1=Erosy-4- Procedural amendment Kasuri December 71, 1985

Claims (12)

【特許請求の範囲】[Claims] (1)流れ室の中を包囲流体と共に流れる流体試料の中
の粒子を分析する顕微鏡装置を有する顕微鏡器械におい
て、 入口、出口および、前記顕微鏡装置を向ける作像区域を
有して前記入口から前記出口まで延在する通路、ならび
に前記入口から前記作像区域までに前記流体試料および
前記包囲流体を分布してほぼ平らな流れにする装置、を
前記流れ室が有し、前記平らな流れは幅と厚さを特徴と
し、前記包囲流体および前記流体試料は前記入口から前
記出口に運ばれ、前記顕微鏡装置は前記作像区域上に焦
点を結ぶ光学レンズを有している、前記顕微鏡器械を運
用する方法であって、 前記作像区域において平らな層流を生ずるように前記包
囲流体の流量を選択することと、前記厚さに平行な方向
に前記作像区域に前記顕微鏡装置を向けることと、前記
作像区域における映像平面から前記流れ室の外側までの
距離よりも大きくなるように前記光学レンズの作用距離
を選択することと、前記作像区域における前記室の厚さ
よりずっと小さくなるように前記光学レンズの焦点深度
を選択することと、前記流体試料の粒子が前記光学レン
ズの焦点深度の中を流れるように前記流体試料および前
記包囲流体の流量を維持することと、を含む方法。
(1) A microscopic instrument having a microscopic device for analyzing particles in a fluid sample flowing in a flow chamber with an surrounding fluid, the microscopic device having an inlet, an outlet, and an imaging area for directing the microscopic device from the inlet to the The flow chamber has a passage extending to an outlet and a device for distributing the fluid sample and the surrounding fluid from the inlet to the imaging area into a generally flat flow, the flat flow having a width and a thickness, the surrounding fluid and the fluid sample are conveyed from the inlet to the outlet, and the microscopy device has an optical lens focusing on the imaging area. selecting a flow rate of the surrounding fluid to produce a flat laminar flow in the imaging area; and directing the microscopy device at the imaging area in a direction parallel to the thickness. , selecting the working distance of the optical lens to be greater than the distance from the imaging plane to the outside of the flow chamber in the imaging area and much less than the thickness of the chamber in the imaging area; A method comprising selecting a depth of focus of the optical lens and maintaining flow rates of the fluid sample and the surrounding fluid such that particles of the fluid sample flow through the depth of focus of the optical lens.
(2)前記包囲流体の流れの中に前記流体試料を導入す
ることと、幅が厚さよりかなり大きい矩形断面を有する
レストリクタを通して前記包囲流体を前記流体試料と共
に流すことと、をさらに含む、特許請求の範囲第(1)
項に記載の方法。
(2) further comprising: introducing the fluid sample into the flow of the surrounding fluid; and flowing the surrounding fluid with the fluid sample through a restrictor having a rectangular cross section with a width substantially greater than a thickness. Range number (1)
The method described in section.
(3)前記包囲流体がほぼ一定の速度輪郭に達した点ま
たはその後にて、前記顕微鏡装置が或る距離をもって配
置される、特許請求の範囲第(1)項に記載の方法。
3. The method of claim 1, wherein the microscopy device is positioned at a distance at or after the surrounding fluid reaches a substantially constant velocity profile.
(4)前記輪郭がパラボラ(放物線)形状を有する、特
許請求の範囲第(3)項に記載の方法。
(4) The method according to claim (3), wherein the contour has a parabolic shape.
(5)前記作像区域における前記流体試料の厚さが前記
光学レンズの焦点深度に等しいか、それより小さい、特
許請求の範囲第(1)項に記載の方法。
5. The method of claim 1, wherein the thickness of the fluid sample in the imaging area is less than or equal to the depth of focus of the optical lens.
(6)前記作像区域における前記室の外側厚さが0.7
cm以下である、特許請求の範囲第(1)項に記載の方
法。
(6) the outer thickness of the chamber in the imaging area is 0.7;
2. The method according to claim 1, wherein the amount is less than or equal to cm.
(7)前記光学レンズが0.6〜4.5μの焦点深度を
有する、特許請求の範囲第(1)項に記載の方法。
(7) The method of claim (1), wherein the optical lens has a depth of focus of 0.6-4.5μ.
(8)前記作像区域から前記入口までの距離が前記室の
内側厚さの5倍より大きい、特許請求の範囲第(3)項
に記載の方法。
8. The method of claim 3, wherein the distance from the imaging area to the entrance is greater than five times the interior thickness of the chamber.
(9)前記流体試料と前記包囲流体の流量比が1対2乃
至1対50である、特許請求の範囲第(1)項に記載の
方法。
(9) The method according to claim (1), wherein the flow rate ratio of the fluid sample to the surrounding fluid is between 1:2 and 1:50.
(10)前記流体試料の映像を静止させる時間で、前記
作像区域にて前記流体試料をストロボ照射する段階をさ
らに含む、特許請求の範囲第(1)項に記載の方法。
10. The method of claim 1, further comprising strobing the fluid sample at the imaging area for a period of time to freeze the image of the fluid sample.
(11)前記流体試料の流量が約0.0036ml/秒
である、特許請求の範囲第(9)項に記載の方法。
(11) The method of claim (9), wherein the flow rate of the fluid sample is about 0.0036 ml/sec.
(12)前記ストロボが2マイクロ秒の照射時間で約6
0回/秒作動する、特許請求の範囲第(10)項に記載
の方法。
(12) The strobe has an irradiation time of about 6 microseconds
The method according to claim 10, which operates 0 times/second.
JP63250615A 1984-11-29 1985-11-08 Seal structure of hood type sunroof device Expired - Lifetime JPH0659782B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67619084A 1984-11-29 1984-11-29
US676190 1984-11-29

Publications (2)

Publication Number Publication Date
JPS61132841A true JPS61132841A (en) 1986-06-20
JPH0659782B2 JPH0659782B2 (en) 1994-08-10

Family

ID=24713579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250615A Expired - Lifetime JPH0659782B2 (en) 1984-11-29 1985-11-08 Seal structure of hood type sunroof device

Country Status (5)

Country Link
JP (1) JPH0659782B2 (en)
AU (1) AU563260B2 (en)
DE (1) DE3539922A1 (en)
FR (1) FR2573870A1 (en)
GB (1) GB2167880B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU599053B2 (en) * 1985-09-09 1990-07-12 Commonwealth Scientific And Industrial Research Organisation Flow cell for particle scanner
JPH02212742A (en) * 1989-02-13 1990-08-23 Kowa Co Measuring apparatus for fine particle in liquid
US5412466A (en) * 1991-07-26 1995-05-02 Toa Medical Electronics Co., Ltd. Apparatus for forming flattened sample flow for analyzing particles
WO2014145983A1 (en) 2013-03-15 2014-09-18 Iris International, Inc. Sheath fluid systems and methods for particle analysis in blood samples
EP2972211B1 (en) 2013-03-15 2018-12-19 Iris International, Inc. Flowcell systems and methods for particle analysis in blood samples
US9857361B2 (en) 2013-03-15 2018-01-02 Iris International, Inc. Flowcell, sheath fluid, and autofocus systems and methods for particle analysis in urine samples
CN103558153B (en) * 2013-10-31 2016-05-25 长春迪瑞医疗科技股份有限公司 Particle imaging chamber and method for designing thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT304756B (en) * 1970-03-23 1973-01-25 Max Planck Gesellschaft Measuring device for measuring certain properties of particles suspended in liquid
US3649829A (en) * 1970-10-06 1972-03-14 Atomic Energy Commission Laminar flow cell
DE2050672C3 (en) * 1970-10-15 1975-02-06 Phywe Ag, 3400 Goettingen Flow cell for microscopic photometric measurement of particles suspended in a liquid
US3893766A (en) * 1973-06-14 1975-07-08 Coulter Electronics Apparatus for orienting generally flat particles for slit-scan photometry
GB1471976A (en) * 1974-09-20 1977-04-27 Coulter Electronics Particle sensing apparatus including a device for orienting generally flat particles
DE2521236C3 (en) * 1975-05-10 1978-12-14 Hildegard Dr. 4400 Muenster Goehde Geb. Kuhl Device for counting and measuring particles suspended in a liquid
DE2543310C2 (en) * 1975-09-27 1982-04-29 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Device for counting and classifying particles suspended in a liquid
DE3315194A1 (en) * 1982-04-29 1983-11-03 International Remote Imaging Systems Inc., 91311 Chatsworth, Calif. METHOD FOR SEPARATING PARTICLES FLOWING IN A FLUID SAMPLE
DE3315195A1 (en) * 1982-04-29 1983-11-03 International Remote Imaging Systems Inc., 91311 Chatsworth, Calif. METHOD FOR ALIGNING PARTICLES IN A FLUID SAMPLE
US4683212A (en) * 1982-09-30 1987-07-28 Technicon Instruments Corporation Random access single channel sheath stream apparatus

Also Published As

Publication number Publication date
FR2573870A1 (en) 1986-05-30
GB8529039D0 (en) 1986-01-02
AU563260B2 (en) 1987-07-02
JPH0659782B2 (en) 1994-08-10
GB2167880A (en) 1986-06-04
AU4906085A (en) 1986-06-05
GB2167880B (en) 1988-07-06
DE3539922A1 (en) 1986-06-05

Similar Documents

Publication Publication Date Title
US4110043A (en) Apparatus for counting and classifying particles
US5530540A (en) Light scattering measurement cell for very small volumes
US4352558A (en) Apparatus for measuring particle characteristics
US4983038A (en) Sheath flow type flow-cell device
US5594544A (en) Flow type particle image analyzing method and apparatus
CA1147182A (en) Redirecting surface for desired light intensity profile
US3871770A (en) Hydrodynamic focusing method and apparatus
US8253938B2 (en) Method and apparatus for rapidly counting and identifying biological particles in a flow stream
JP4805575B2 (en) Method and apparatus for detecting individual particles in a flowable sample
US5552885A (en) Measuring chamber for flow cytometer
US9649803B2 (en) Sheath flow methods
JPH0260256B2 (en)
US5808737A (en) Pre-analysis chamber for a flow particle analyzer
US5446532A (en) Measuring apparatus with optically conjugate radiation fulcrum and irradiated area
JPS61132841A (en) Method of operating microscope apparatus
NO924335L (en) APPARATUS FOR DETERMINING FIBER LENGTH IN FLUIDS
JPS62190438A (en) Illumination method of particle and dispersoid analyzer using said method
JPH08510839A (en) Apparatus and method for measuring particle size using light scattering
US20020167656A1 (en) Apparatus for determining radiation beam alignment
DE2853703A1 (en) Microscopic observation and measurement cuvette for suspended particle - has height adjustable curved base, with flow guide slots and made of reflective transparent material
DE4341573C1 (en) Optical measuring arrangement for determining particle size
JPS63201554A (en) Particle analyzing device
GB2352515A (en) Measuring and counting particles in a flowing fluid
JPH0552895B2 (en)
JPH0425746A (en) Analysis apparatus for cell or fine particle