JPS61132835A - Temporary motion vibration-proof experimental device - Google Patents

Temporary motion vibration-proof experimental device

Info

Publication number
JPS61132835A
JPS61132835A JP59255191A JP25519184A JPS61132835A JP S61132835 A JPS61132835 A JP S61132835A JP 59255191 A JP59255191 A JP 59255191A JP 25519184 A JP25519184 A JP 25519184A JP S61132835 A JPS61132835 A JP S61132835A
Authority
JP
Japan
Prior art keywords
displacement
specimen
target value
given
loading device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255191A
Other languages
Japanese (ja)
Inventor
Shin Okamoto
伸 岡本
Yutaka Yamazaki
裕 山崎
Masayoshi Nakajima
正愛 中島
Takashi Uenosono
上之薗 隆志
Hiroto Kato
博人 加藤
Taisuke Seno
瀬野 泰祐
Jiyunichi Aiki
純一 合木
Takayuki Matsushita
孝之 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO KENCHIKU KENKYU SHOCHO
Mitsubishi Heavy Industries Ltd
Original Assignee
KENSETSUSHO KENCHIKU KENKYU SHOCHO
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO KENCHIKU KENKYU SHOCHO, Mitsubishi Heavy Industries Ltd filed Critical KENSETSUSHO KENCHIKU KENKYU SHOCHO
Priority to JP59255191A priority Critical patent/JPS61132835A/en
Publication of JPS61132835A publication Critical patent/JPS61132835A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To avoid the generation of an error of a higher order mode at the time of a response calculation, and to improve the experimental accuracy by giving an attenuation of the vicinity of the highest order mode of a response of a specimen as a larger value than others, as an attenuation term of a mathematical expression model of the specimen. CONSTITUTION:A displacement target value Xa of a specimen 1 is derived by executing a response calculation by a target value operator 5, based on a load quantity Fa of a displacement loading device 2a for giving a displacement of a prescribed vibration mode by applying a force to the specimen 1, and a mathematical expression model of the specimen 1 given from a constant setting device 6. In this case, to an attenuation term of the mathematical expression model, an attenuation factor of the vicinity of the highest order mode of a response of the specimen 1 is given as a larger value than others. Subsequently, from a displacement target value Xa and a displacement quantity Ya of the specimen 1, a displacement command value Va given to the specimen 1 is calculated by a displacement controller 7, and also based on a deviation of said value and a displacement quantity Wa of the displacement loading device 2a, a load quantity is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造物等の試験体に力を加えて地震波等に対応
する所定振動モードの変位を与える仮動耐震実験装置に
関し、特に前記試験体の変位目標値を算出する手段の改
良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temporary seismic test device that applies force to a test object such as a structure to cause displacement in a predetermined vibration mode corresponding to seismic waves, etc. This invention relates to an improvement in means for calculating a target displacement value of a body.

(従来の技術〕 従来のこの種の仮動耐震実験装置においては、構造物等
の試験体に力を加えて変位させる変位載荷装置の荷重量
と、前記試験体の数式モデルとに基いて応答計算を行な
0変位目標値を算出するものとなっていた。この場合、
上記応答計算に用いる試験体の数式モデルの減衰項は、
通常考えられる減衰率程度の比較的小ざな値に設定され
ていた。
(Prior Art) In this type of conventional pseudo-motion seismic testing equipment, a response is calculated based on the load amount of a displacement loading device that applies force to a test object such as a structure to displace it, and a mathematical model of the test object. It was supposed to perform calculations and calculate the zero displacement target value.In this case,
The damping term of the mathematical model of the test piece used for the above response calculation is:
It was set to a relatively small value, about the level of attenuation that is normally considered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の仮動耐震実験装置においては、前
記変位載荷装置にてアンダーシュートエラーなどのよう
な加力方向に規則性のある誤差が発生した場合、この誤
差により応答計算時において計算結果に高次モードのエ
ラーを生じるおそれがあった。
However, in the above-mentioned conventional temporary motion seismic test equipment, if a regular error occurs in the direction of application, such as an undershoot error, in the displacement loading device, this error may cause the calculation result to change during response calculation. There was a risk of higher-order mode errors occurring.

そこで本発明は、たとえ上記変位載荷装置において加力
方向に規則性のある誤差が発生したとしても、変位目標
値を定める応答計算時に高次モードのエラーを生じるお
それはなく、実験精度の向上をはかれる仮動耐震実験装
置を提供することを目的とする。
Therefore, even if regular errors occur in the applied direction in the displacement loading device, there is no risk of higher-order mode errors occurring during response calculation to determine the displacement target value, and the experimental accuracy can be improved. The purpose of this project is to provide a temporary seismic test device that can be measured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために次の
如き手段を講じたことを特徴としている。
The present invention is characterized by taking the following measures in order to solve the above problems and achieve the objects.

すなわち、構造物等の試験体に力を加えて所定の振動モ
ードの変位を与える如く構成された変位載荷装置による
荷重量と、定数設定器により与えられた前記試験体の数
式モデルとに基いて、目標値演算器により応答計算を行
ない前記試験体の変位目標値を算出する。このとき前記
試験体の数式モデルにおける減衰環には前記試験体応答
の最高次モード近傍の減衰率を他よりも大きな値にして
与えるようにする。そして上゛2目標値演算器の出力で
ある変位目標値と前記試験体の変位量とに基いて前記試
験体に付与すべき変位指令値を変位制御器にて算出し、
この変位制御器の出力である変位指令値と前記変位載荷
装置における変位量との偏差に基いて前記変位載荷装置
の荷重量を制御するようにしたことを特徴としている。
That is, based on the load amount by a displacement loading device configured to apply force to a test object such as a structure and give displacement in a predetermined vibration mode, and the mathematical model of the test object given by a constant setting device. , a response calculation is performed by a target value calculator to calculate a displacement target value of the test object. At this time, the damping ring in the mathematical model of the test object is given a damping rate near the highest mode of the test object response that is larger than the other values. Then, a displacement controller calculates a displacement command value to be given to the test body based on the displacement target value that is the output of the target value calculator and the displacement amount of the test body;
The present invention is characterized in that the load amount of the displacement loading device is controlled based on the deviation between the displacement command value that is the output of the displacement controller and the displacement amount of the displacement loading device.

〔作用〕[Effect]

上記の如き手段を講じたことにより、変位載荷装置にて
アンプ・−シュートなどの加力方向に対し規則性のある
誤差が発生したとしても、変位目標値を定める応答計算
時に高次モードエラーが生じるのを回避できる。
By taking the above measures, even if regular errors occur in the displacement loading device in the direction of force applied by the amplifier, chute, etc., higher-order mode errors will be avoided when calculating the response to determine the displacement target value. This can be avoided.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図は本発明の一実施例の構成を示すブロック図である。The figure is a block diagram showing the configuration of an embodiment of the present invention.

図において1は構造物等の試験体である。In the figure, 1 is a test object such as a structure.

2a、2bは上記゛試験体1に力を加えて所定振動モー
ドの変位を与える二つの変位載荷装置であり、本実施例
では油圧シャツ、キが使用されている。3a、3bは上
記変位載荷装置2a、2bによる前記試験体1に対する
荷重量をそれぞれ検出する荷重検出器であり、その出力
fa、ずl)G;tA/D変換器4a、4bにてディジ
タル変換され、ディジタル荷重信号Fa、Fbとして目
標値演算器5に供給されるものとなっている。上記目標
値演算器5には、定数設定器6からの出力、すなわち試
験体1の質量マトリクス、減衰マトリクスおよび試験入
力(地震波)とからなる前記試験体1の数式モデルが与
えられている。かくして目標値演算器5においては、前
記ディジタル荷重信号Fa、Fbと上記数式モデルとに
暴いて応答計算が行なわれ、前記試験体1の変位目標値
Xa、Xbが算出される。上記変位目標値Xa、Xbは
変位量m器7へ送出されるものとなっている。
Reference numerals 2a and 2b are two displacement loading devices that apply a force to the test specimen 1 to give it displacement in a predetermined vibration mode, and in this embodiment, a hydraulic shirt is used. 3a and 3b are load detectors that respectively detect the amount of load on the test specimen 1 by the displacement loading devices 2a and 2b, and their outputs fa, zl)G;t are digitally converted by A/D converters 4a and 4b. and is supplied to the target value calculator 5 as digital load signals Fa and Fb. The target value calculator 5 is provided with an output from the constant setter 6, that is, a mathematical model of the test object 1 consisting of a mass matrix, an attenuation matrix, and a test input (seismic wave) of the test object 1. Thus, in the target value calculator 5, a response calculation is performed based on the digital load signals Fa, Fb and the mathematical model, and the displacement target values Xa, Xb of the test body 1 are calculated. The displacement target values Xa and Xb are sent to the displacement m unit 7.

一方、上記変位制御器7には前記試験体1の変位量を検
出する第1の変位検出器8a、8bの出力Ya、Ybも
与えられる。かくして上記変位制御器7においては、前
記目標値演算器5の出力Xa、xbと、前記第1の変位
検出器8a、8bの出力ya、ybとに基いて、前記変
位載荷装置2a、2bが前記試験体1に対し付与すべき
変位指令値Va、Vbが算出されるものとなっている。
On the other hand, outputs Ya and Yb of first displacement detectors 8a and 8b for detecting the amount of displacement of the test object 1 are also supplied to the displacement controller 7. Thus, in the displacement controller 7, the displacement loading devices 2a, 2b are controlled based on the outputs Xa, xb of the target value calculator 5 and the outputs ya, yb of the first displacement detectors 8a, 8b. Displacement command values Va and Vb to be given to the test object 1 are calculated.

上記変位指令値Va、VbはD/A変換器9a。The displacement command values Va and Vb are provided by the D/A converter 9a.

9bにてアナログ信号va、vbに変換されたのち加減
算a1oa、iobの一方の入力端子に供給されるもの
となっている。上記加減算器10a。
After being converted into analog signals va and vb at 9b, they are supplied to one input terminal of the addition/subtraction a1oa and iob. The above adder/subtractor 10a.

10bの他方の入力端子には、前記変位載荷装置2a、
 2bの変位量を検出する第2の変位検出器11a、1
1bからの出力wa、vybが供給されている。かくし
て上記加減算器10a、10bにおいて上記各出力va
、vbおよびwa、wbの偏差が演算されるものとなっ
ている。上記加減算器10a、10bの出力は電圧増幅
器12a、12bを介して前記変位載荷装置2a、2b
に供給される。変位載荷装置2a、 2bは図示しない
電気−油圧変換機構にて与えられた電気信号を油圧に変
換し、試験体1に対して所定の荷重を加えて変位させる
ものとなっている。
The other input terminal of 10b is connected to the displacement loading device 2a,
A second displacement detector 11a, 1 detects the amount of displacement of 2b.
Outputs wa and vyb from 1b are supplied. Thus, in the adder/subtractor 10a, 10b, each of the outputs va
, vb and the deviations of wa, wb are calculated. The outputs of the adders and subtracters 10a and 10b are supplied to the displacement loading devices 2a and 2b via voltage amplifiers 12a and 12b.
supplied to The displacement loading devices 2a and 2b convert an electric signal given by an electro-hydraulic conversion mechanism (not shown) into hydraulic pressure, apply a predetermined load to the test specimen 1, and displace it.

ところで、前記定数設定器6にて設定される試験体1の
数式モデルにおける減衰マトリクスとしては、前記試験
体応答の最高次モード近傍の減衰率を故意に大きく与え
るものとする。
Incidentally, the attenuation matrix in the mathematical model of the test specimen 1 set by the constant setter 6 is designed to intentionally give a large attenuation rate near the highest mode of the test specimen response.

かくして、本実施例によれば、変位載荷装置2a、2b
においてアンダーシュートエラーなどのような加力方向
に規則性のある誤差が発生したとしても、目標値演算器
5における応答計算時において従来のような高次モード
のエラーを生じるおそれがない。したがって仮動耐展実
験の精度を高めることができる。
Thus, according to this embodiment, the displacement loading devices 2a, 2b
Even if a regular error such as an undershoot error occurs in the applied force direction, there is no risk of higher-order mode errors occurring during response calculation in the target value calculator 5 as in the prior art. Therefore, the accuracy of the pseudodynamic extension test can be improved.

なお本発明は上記一実施例に限定されるものではない。Note that the present invention is not limited to the above embodiment.

たとえば上記実施例では変位載荷装置を二つ設けた場合
を示したが、二つに限らず、単一または3個以上設ける
ようにしてもよい。このほか本発明の要旨を越えない範
囲で種々変形実施可能であるのは勿論である。
For example, in the above embodiment, two displacement loading devices are provided, but the number is not limited to two, and a single displacement loading device or three or more may be provided. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、応答計算を行なうことにより前記試験
体の変位目標値を算出する目標値演算器に与える試験体
の数式モデルにおける減讃項として、前記試験体応答の
最高次モード近傍の減衰率を他よりも大きな値にして与
えるようにしたので、たとえ前記変位載荷装置において
加力方向に対し規則性のある誤差が発生したとしても、
変位目標値を定める応答計算時に高次モードのエラーが
生じるおそれはな(、実験精度の向上がはかれる仮動耐
震実験装置を提供できる。
According to the present invention, attenuation near the highest mode of the response of the test body is used as a subtraction term in the mathematical model of the test body given to a target value calculator that calculates a target displacement value of the test body by performing response calculation. Since the ratio is given as a larger value than the others, even if a regular error occurs in the applied direction in the displacement loading device,
There is no risk of higher-order mode errors occurring during response calculations to determine displacement target values (and a pseudo-seismic seismic experimental device that improves experimental accuracy can be provided).

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の構成を示すブロック図である。 1・・・試験体、2a、2b・・・変位載荷装置、3a
。 3b・・・荷重検出器、4a、4b・A/D変換器、5
・・・目標値演算器、6・・・定数設定器、7・・・変
位制御器、8a、8b−・・第1の変位検出器、9a、
9b ・O/ A変換器、10a、10b・・・加減算
器、11a、11b・・・第2の変位検出器、128.
12b・・・電力増幅器。
The figure is a block diagram showing the configuration of an embodiment of the present invention. 1... Test specimen, 2a, 2b... Displacement loading device, 3a
. 3b...Load detector, 4a, 4b/A/D converter, 5
...Target value calculator, 6...Constant setter, 7...Displacement controller, 8a, 8b-...First displacement detector, 9a,
9b O/A converter, 10a, 10b...addition/subtractor, 11a, 11b...second displacement detector, 128.
12b...power amplifier.

Claims (1)

【特許請求の範囲】[Claims] 構造物等の試験体に力を加えて所定の振動モードの変位
を与える変位載荷装置と、前記試験体の数式モデルにお
ける減衰項として試験体応答の最高次モード近傍の減衰
率を他よりも大きな値にして付与する定数設定器と、こ
の定数設定器により与えられた前記試験体の数式モデル
と前記変位載荷装置による荷重量とに基いて応答計算を
行ない前記試験体の変位目標値を算出する目標値演算器
と、この目標値演算器の出力である変位目標値と前記試
験体の変位量とに基いて前記試験体に付与すべき変位指
令値を算出する変位制御器と、この変位制御器の出力で
ある変位指令値と前記変位載荷装置における変位量との
偏差に基いて前記変位載荷装置の荷重量を制御する制御
手段とを具備したことを特徴とする仮動耐震実験装置。
A displacement loading device that applies force to a test object such as a structure to cause displacement in a predetermined vibration mode, and a method that sets a damping rate near the highest mode of the test object response larger than others as a damping term in a mathematical model of the test object. A response calculation is performed based on a constant setter that is given as a value, a mathematical model of the test body given by this constant setter, and a load amount by the displacement loading device, and a target displacement value of the test body is calculated. a target value calculator; a displacement controller that calculates a displacement command value to be given to the test piece based on the displacement target value that is the output of the target value calculator and the displacement amount of the test piece; and this displacement control. 1. A pseudo-seismic seismic testing device comprising: control means for controlling the load amount of the displacement loading device based on the deviation between the displacement command value that is the output of the device and the displacement amount of the displacement loading device.
JP59255191A 1984-12-03 1984-12-03 Temporary motion vibration-proof experimental device Pending JPS61132835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255191A JPS61132835A (en) 1984-12-03 1984-12-03 Temporary motion vibration-proof experimental device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255191A JPS61132835A (en) 1984-12-03 1984-12-03 Temporary motion vibration-proof experimental device

Publications (1)

Publication Number Publication Date
JPS61132835A true JPS61132835A (en) 1986-06-20

Family

ID=17275298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255191A Pending JPS61132835A (en) 1984-12-03 1984-12-03 Temporary motion vibration-proof experimental device

Country Status (1)

Country Link
JP (1) JPS61132835A (en)

Similar Documents

Publication Publication Date Title
US3781626A (en) Optimized p.i.d.controller
JPS61132835A (en) Temporary motion vibration-proof experimental device
JPH07319558A (en) Detection of force in force controller
JPWO2007141839A1 (en) Test apparatus and drive control method of test apparatus
JPH03110606A (en) Servo controller
JPS61132836A (en) Temporary motion vibration-proof experimental device
JPH0416195Y2 (en)
JPH02148102A (en) Controller
JPH01292405A (en) Digital position servo device
JPH02307384A (en) Motor speed controller
JP2000171374A (en) Active vibrating table
SU838665A2 (en) Device for program control of fatigue-testing rack
JP3690077B2 (en) Test equipment
JPH06123686A (en) Material testing machine
JPH04116701A (en) Servo controller
JPH0311990A (en) A/d converter and motor controller using same
JP3638690B2 (en) Analog divider circuit and crosstalk compensation circuit in vibrator using the analog divider circuit
JPH01279304A (en) Integral proportion compensator for servo control system
JPH06230820A (en) Device and method for controlling feedback
JPH0118281B2 (en)
JPH02152899A (en) Simple positioning control method of balancer
JP3341498B2 (en) Observer control arithmetic unit
SU913048A1 (en) Device for measuring deformations in an object
JPS59201116A (en) Equidisplacement controller
JP2539484B2 (en) Simulated circuit of generator for analog simulator