JPH0311990A - A/d converter and motor controller using same - Google Patents

A/d converter and motor controller using same

Info

Publication number
JPH0311990A
JPH0311990A JP1142949A JP14294989A JPH0311990A JP H0311990 A JPH0311990 A JP H0311990A JP 1142949 A JP1142949 A JP 1142949A JP 14294989 A JP14294989 A JP 14294989A JP H0311990 A JPH0311990 A JP H0311990A
Authority
JP
Japan
Prior art keywords
output
conversion
converting
matching
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1142949A
Other languages
Japanese (ja)
Other versions
JP2781601B2 (en
Inventor
Sumio Kobayashi
澄男 小林
Mutsuo Tokashiki
睦男 渡嘉敷
Hiroyuki Tomita
浩之 富田
Kazuyuki Nakagawa
中川 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP1142949A priority Critical patent/JP2781601B2/en
Publication of JPH0311990A publication Critical patent/JPH0311990A/en
Application granted granted Critical
Publication of JP2781601B2 publication Critical patent/JP2781601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To make cost low by providing the first - the second A/D conversion measures and a selective means of the output. CONSTITUTION:An analogue speed command VO is inputted to the first A/D conversion measure through an amplifier A1, and the digital output D1 of only positive voltage input is made. Negative input is only converted into positive output through an amplifier A2, and it is inputted to the third A/D conversion measure. In the neighborhood of zero point, a bias is added to an amplifier measure A3 by a bias means 1. Those converted digital values are outputted through matching measures K1-2 and through a change-over circuit 2 of a selective means.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般産業用機械・工作機・aポットなどの移動
機械に使用して好適なA/D変換装置、及びそれを用い
た電動機料iaj装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an A/D conversion device suitable for use in mobile machines such as general industrial machines, machine tools, and A-pots, and an electric motor using the same. Regarding the iaj device.

〔従来の技術〕[Conventional technology]

従来の装置はA/D変換手段のアナログ入力量の変化範
囲が非常に広い場合、例えば入力範囲1:3000等で
は特開昭53−8045号に示すようにアナログ入力の
大きさに応してA/D変換手段前段の増幅器利得を自動
的に切替え、適正なレンジにし、A/D変換するように
構成されていた。
When the range of change in the amount of analog input to the A/D converter is very wide, for example, in an input range of 1:3000, the conventional device changes the amount of analog input according to the magnitude of the analog input, as shown in Japanese Patent Laid-Open No. 8045/1983. The amplifier gain before the A/D conversion means is automatically switched to an appropriate range, and A/D conversion is performed.

〔発明が解決しようとするL1題〕 逐次比較形A/Di換手段は一般に8bit、10bi
t、12bit、16bitと分解11シによって価格
が変わり、12bit以上は急激に高価格となる。
[L1 problem to be solved by the invention] The successive approximation type A/Di conversion means generally has 8 bits and 10 bits.
The price changes depending on the decomposition t, 12 bit, 16 bit, etc., and the price increases rapidly for 12 bit or more.

また、特開昭53−8045号に示しであるようにイリ
得を切替える場合は利得を切替えた後、出力信号が安定
な値に達する迄に時間がかかる。汎用の演算増幅器の動
作スピードは50〜100μs程度であり、更にフィル
タ等が構成されている場合にはその時定数分遅くなる。
Furthermore, when switching the gain as shown in Japanese Patent Application Laid-Open No. 53-8045, it takes time for the output signal to reach a stable value after switching the gain. The operating speed of a general-purpose operational amplifier is about 50 to 100 μs, and if a filter or the like is further included, the operation speed will be delayed by the time constant thereof.

この場合、A/D変換手段は、利得切替後、信号整定ま
で待ち状態となる為1、高速動作ができないという問題
があった。
In this case, the A/D conversion means is in a waiting state until the signal settles after the gain is switched, so there is a problem that high-speed operation cannot be performed.

そこで、本発明の目的は、変換遅れの少ない、且つ低コ
ストのA/D変19 !* ffi、及びそれを用いた
電動機制御装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an A/D converter with little conversion delay and low cost! * To provide ffi and a motor control device using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する為に本発明ではA/D変換装置を アナログ信号値をデジタル値に変換する第1A/D変換
手段と、 前記アナログ信号を前記第1A/D変換手段へ入力する
信号よりも大きな倍率で増幅する増幅手段と、 該増幅手段の出力をデジタル値に変換する第2A/D変
換手段と、 該第2A/D変換手段の出力に係数を掛け、前記第1A
/D変換手段時の出力の大きさと整合をとる整合手段と
、 前記第1A/D変換手段の出力と前記整合手段の出力と
を選択して前記アナログ信号値に応したデジタル値を出
力する選択手段 とで構成する。
In order to achieve the above object, the present invention provides an A/D converter including a first A/D converter that converts an analog signal value into a digital value, and a signal that inputs the analog signal to the first A/D converter. an amplifying means for amplifying at a large magnification; a second A/D converting means for converting the output of the amplifying means into a digital value; and multiplying the output of the second A/D converting means by a coefficient,
a matching means for matching the magnitude of the output of the A/D converting means; and a selection for selecting the output of the first A/D converting means and the output of the matching means to output a digital value corresponding to the analog signal value. It consists of means and means.

更に、本発明電動機制御装置は、上記A/D変換装置を
フィードバックループ内に有することを特徴とするもの
である。
Furthermore, the motor control device of the present invention is characterized in that it includes the above A/D conversion device in a feedback loop.

〔作用〕[Effect]

A/D変換手段の前段の増幅器は11得を切替えずに増
幅器とA/D変換手段が一対構成しているので電圧が整
定する迄の時間を待つという動作が不要となり、高速動
作が得られる。また、A/D変換手段が複数個必要とな
るが、増幅器の整定時間に比較しても十分短い時間で処
理できるので高速変換が可能である。
The amplifier at the front stage of the A/D conversion means does not switch between 11 outputs, and the amplifier and A/D conversion means form a pair, so there is no need to wait for the voltage to settle, and high-speed operation can be achieved. . Further, although a plurality of A/D conversion means are required, the processing can be performed in a sufficiently short time compared to the settling time of an amplifier, so high-speed conversion is possible.

また、複数のA/D変換手段は出力する全ビット数より
も少ないビット数の、つまり安価なものを復敢個組み合
わせて使用するので、全体を安価に構成することができ
る。
Further, since the plurality of A/D conversion means are used in combination with a number of bits smaller than the total number of bits to be output, that is, inexpensive ones, the whole can be constructed at low cost.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。アナ
ログ信号(Iaとしてのアナログ速度指令VOは正負に
変化する電圧で一例として0〜±IOで入力する。この
電圧は増幅器A1により第2図(A)の特性で示される
ように入力vOが正の時のみ出力する。この出力は個別
のA/D変換手段またはlチップマイコンの第1A/D
変換手段へ/DIに入力され、正電圧入力のみをディジ
タル出力DIとして出力する。
An embodiment of the present invention will be described below with reference to FIG. The analog speed command VO as an analog signal (Ia) is a voltage that changes between positive and negative, and is input as an example from 0 to ±IO. This output is output from the individual A/D conversion means or the first A/D of the chip microcomputer.
/DI is input to the conversion means, and only the positive voltage input is output as a digital output DI.

また増幅器A2は第2図(B)のように入力■0が負の
みを正出力に変換して出力し、個別のA/Dの変換手段
または1チツプマイコンの第3A/D変換手段A/D2
に入力する。このため、負電圧入力のみをA/D9’換
する。A/D2の出力はディジタル処理により反転手段
に1により−1を掛けて極性を反転し、D2を出力する
。D2はDIと加算することにより符号付速度信号ディ
ジタル値が得られる。
In addition, as shown in FIG. 2(B), the amplifier A2 converts only the negative input (0) into a positive output and outputs it. D2
Enter. Therefore, only the negative voltage input is converted into A/D 9'. The output of A/D2 is digitally processed by multiplying the inverting means by 1 by -1 to invert the polarity, and outputs D2. By adding D2 to DI, a signed speed signal digital value is obtained.

また、零点付近は、速度指令VOにバイアス手段1で増
幅手段A3の入力tこバイアスV3を加え、増幅率をl
(とじて増幅器A1やA2よりも利得を高くして第2図
(C)の特性のように設計する。
In addition, near the zero point, the bias means 1 adds the bias V3 to the input t of the amplification means A3 to the speed command VO, and the amplification factor is changed to l.
(The gain is higher than that of the amplifiers A1 and A2, and the characteristics are designed as shown in FIG. 2(C).

零点付近のA/D変換手段は、その前段の増幅器A3の
増幅率を1(、速度制御範囲を1;N01A/D変換手
段のビット数をn、速度指令電圧最大値をVO,、x、
A/D変換手段入力電圧の最大値を■4い。とす)ると
、次のように設定する。
The A/D conversion means near the zero point sets the amplification factor of the amplifier A3 in the preceding stage to 1 (, the speed control range to 1; the number of bits of the N01 A/D conversion means to n, and the maximum value of the speed command voltage to VO, x,
Set the maximum value of the A/D conversion means input voltage to ■4. ), then set as follows.

具体例を上げると、速度側111j範囲を1:3000
(NO=3000)、A/D変換手段のビット数をlO
ビット(n= ] 0) 、VO,、、=10V、VA
MAX=5Vとすると、 に設定する。これにより速度指令■0は■4□よ/に=
1.7V、!=なり−1,7V 〜+1.7V(7)低
速部分の速度指令を10ビット分解能で分割しで、1 
: 3000の速度制御範囲を171図することができ
る。
To give a specific example, the speed side 111j range is 1:3000.
(NO=3000), the number of bits of the A/D conversion means is lO
Bit (n= ] 0) , VO, , = 10V, VA
If MAX=5V, set to . As a result, the speed command ■0 becomes ■4□yo/=
1.7V! = -1.7V ~ +1.7V (7) Divide the speed command of the low speed part with 10 bit resolution,
: The speed control range of 3000 can be mapped to 171.

この出力■4を個別のA/D変換手段またはlチップマ
イコンの第2A/D変換手段A/D3てディジタル値D
4にf喚する。
This output ■4 is converted into a digital value D by an individual A/D converter or by the second A/D converter A/D3 of the l-chip microcomputer.
Shout out to 4.

デインタル値に変換されたD4は次の整合手段に2の回
路により、第2[m (C)のバイアス部分VBのディ
ジタル値に相当する1lIIVBを差し引きその後係数
1(の逆数、つまり1/I(を東してD3と同一レヘル
のIaに戻す。この操作をすることにより、零1寸近の
速度指令電圧vOは高い分解能で変換することができ、
ざらに零付近から正負連続的に変換する為、不連続点が
生しる事はない。第3図は第1図の切換回路を説明する
ためのもので速度指令VOに対しD3出力とD4出力を
同一グラフ上に記載したものである。(ただしD4はバ
イアス分VBを差し引いた(lαで記載している。)速
度指令電圧が高い場合はD3出力を使用し、零点付近は
D4に切替え、高い分解能をligtSすることができ
る。
D4, which has been converted into a digital value, is sent to the next matching means by a circuit 2, after which 1lIIVB, which corresponds to the digital value of the bias portion VB of the second [m (C)], is subtracted, and then the reciprocal of the coefficient 1( east and return to Ia, which is the same level as D3. By performing this operation, the speed command voltage vO, which is close to zero, can be converted with high resolution,
Since the positive and negative values are converted continuously from around zero, there are no discontinuous points. FIG. 3 is for explaining the switching circuit of FIG. 1, and shows the D3 output and D4 output for the speed command VO on the same graph. (However, D4 is obtained by subtracting the bias VB (denoted as lα).) When the speed command voltage is high, the D3 output is used, and near the zero point, it is switched to D4, allowing high resolution to be performed.

次に第4図はA/D変換手段が内蔵されているlチップ
マイコンのブロック図を示したものである。1チツプマ
イコンはCPUと示した部分であり、第1図と異なる所
はアナログ信号V1、V2、■4をアナログマルチプレ
クサMPXにより、信号を切替え、サンプルホールド回
+t8s/Hを通して111i4のA/D変換手段でデ
ィジタル変換する。変19後のディジタルデータD6は
ソフト処理されて演算されるが、ブロック図で示すと分
配回路てDl、D2、D4に分けられ以後は第1図と同
様となる。1チツプマイコンこの場合、1つのチップ上
にこれらが記載されているが、マルチブルサクMPXで
V 1、V2、v4を次々と高速で切替工、ディジタル
変換していくため、簡単な操作でA/D変換できる。こ
のため、A/Df喚器が3個使用したものと全く同一機
能と考えることができる。
Next, FIG. 4 shows a block diagram of an l-chip microcomputer with built-in A/D conversion means. The 1-chip microcontroller is the part indicated as CPU, and the difference from Fig. 1 is that analog signals V1, V2, ■4 are switched by analog multiplexer MPX, and A/D conversion of 111i4 is performed through sample and hold circuit +t8s/H. Convert to digital using means. The digital data D6 after the modification 19 is subjected to software processing and calculations, and as shown in a block diagram, the distribution circuit is divided into D1, D2, and D4, and the subsequent steps are the same as in FIG. 1-chip microcomputer In this case, these are written on one chip, but since V1, V2, and v4 are switched and digitally converted one after another at high speed with Multi-Bus MPX, A/D can be easily operated. Can be converted. Therefore, it can be considered that the function is exactly the same as that using three A/Df converters.

動作説明は、第1図の説明と同様である。The explanation of the operation is the same as that of FIG.

第5図は第1図、第4図の増幅器A11、へ2、A3の
具体的実施例を示す。AOはアナログ入力端子VOを反
転増幅する反転増幅回路。この出力はAIの回路で入力
■0が正のときのみ利得l培で出力し、負のとき出力ゼ
ロ(V)とする正出力増幅器である。
FIG. 5 shows a specific embodiment of the amplifiers A11, A2, and A3 in FIGS. 1 and 4. In FIG. AO is an inverting amplifier circuit that inverts and amplifies the analog input terminal VO. This output is an AI circuit, and is a positive output amplifier that outputs a gain of 1 only when the input 0 is positive, and outputs zero (V) when it is negative.

同様にA2の回路はA21 A22で入力VOが負のと
きのみ利得−118で出力し、正の入力のとき出力ゼロ
とする正出力反転増幅回路である。
Similarly, the circuit A2 is a positive output inverting amplifier circuit that outputs a gain of -118 only when the input VO is negative in A21 and A22, and outputs zero when the input is positive.

増幅器A3は、AOの出力に一定バイアス電圧V3を加
算し、利得をAlA2より高く設定した正出力増幅器で
ある。
Amplifier A3 is a positive output amplifier that adds a constant bias voltage V3 to the output of AO and has a gain set higher than AlA2.

第6図は第1図に示した整合手段1(2の詳細例であり
、出力D4とVBの差をディジタル加算器8で演算し、
その結果をディジタル利得演算回路1(2−で処理し、
D5として出力する。
FIG. 6 is a detailed example of the matching means 1 (2) shown in FIG.
The result is processed by the digital gain calculation circuit 1 (2-),
Output as D5.

次に第7図は、第1図、第4図のA/D変換手段部分を
12のA/D変換手段として表わした図でACサーボ電
動機を位置・速度制−として使用した一実施例である。
Next, FIG. 7 is a diagram showing the A/D conversion means shown in FIGS. 1 and 4 as 12 A/D conversion means, and is an example in which an AC servo motor is used as a position/speed controller. be.

14はインバータ主回路で、直流電流15、トランジス
タブリッジ回路で16で構成され、ACサーボモールF
’ 19にに流を供給して回転数を制御する。ACサー
ボ電動機には速度・位置検出器としてエンコーダ20が
取付けられており、ACサーボ電動機の磁極位置信号と
、回転位置信号をパルス出力PFとして、回転数に比例
するパルス周波数をフィードバックする。このPF信号
は、パルス指令P1よりパルス列信号との差を加算器1
0で演算し、差分パルスεを出力する。位置制御増幅部
でεを増幅して、D/A変換手段でアナログ信号■0を
速度指令として出力する。この部分のε−■0特性を第
8図に示す。増幅器11と速度・M流制X部13との開
が離れている場合は、この様にフィードバックループ内
てD/A変1!Jをし、更にそれをA/D変換して、も
とのデジタル信号に戻せば、信号線の本数を少なくする
ことができ有利な場合がある。また、サーボ電動機は、
ロボットや工作機などから見れば駆動装置としての部品
であり、7J117図の■0信号はアナログ信号でしか
与えられない場合がある。この時13でボした速度・電
流制御部の入力信号がデジタル信号てあれば12で示し
たA/D変換手段が必要になろ。
14 is an inverter main circuit, which is composed of a DC current 15, a transistor bridge circuit 16, and an AC servo mall F.
' Supply flow to 19 to control the rotation speed. An encoder 20 is attached to the AC servo motor as a speed/position detector, and uses the magnetic pole position signal and rotational position signal of the AC servo motor as a pulse output PF to feed back a pulse frequency proportional to the number of rotations. The difference between this PF signal and the pulse train signal is calculated from the pulse command P1 by an adder 1.
It calculates with 0 and outputs the difference pulse ε. The position control amplification section amplifies ε, and the D/A conversion means outputs the analog signal ■0 as a speed command. FIG. 8 shows the ε-■0 characteristic of this part. If the amplifier 11 and the speed/M flow control X section 13 are far apart, the D/A change 1! In some cases, it may be advantageous to perform A/D conversion to return the signal to the original digital signal, since the number of signal lines can be reduced. In addition, the servo motor is
From the perspective of robots, machine tools, etc., it is a component as a driving device, and the ■0 signal in Figure 7J117 may only be given as an analog signal. At this time, if the input signal of the speed/current control section mentioned in step 13 is a digital signal, an A/D conversion means shown in step 12 will be required.

つまり速度制御部の入力信号■0を第1図、第4図で述
べたl\/D変換手段12でディジタル速度指令N”に
変換して、速度・mIi流制御部13てACサーボ電動
機に与える電流を演算し、インバータ主回路16のトラ
ンジスタのヘース信号をPWMル制御して電流を制御す
る。A/D変換手段12の人出力特性を第9図に示す。
In other words, the input signal 0 of the speed control section is converted into a digital speed command N'' by the l\/D conversion means 12 described in FIGS. The current to be applied is calculated, and the current is controlled by PWM control of the HAS signal of the transistor of the inverter main circuit 16.The output characteristics of the A/D conversion means 12 are shown in FIG.

第9図より低電圧領域では分解能を高く、中閘電圧〜高
電圧領域では通常通りの分解能として、位置決め時の性
能を確促することができる。
As shown in FIG. 9, the resolution is high in the low voltage region, and the normal resolution is maintained in the medium voltage to high voltage region to ensure performance during positioning.

〔発明の効果〕〔Effect of the invention〕

本発明によれば分解能の高い高価なA/D変換手段を使
用しなくて済むので、安価である。
According to the present invention, there is no need to use expensive A/D conversion means with high resolution, so the cost is low.

また本発明ではi′1幅手段のゲインは、動作中は切り
変^ないので動作遅れが少ない。
Further, in the present invention, the gain of the i'1 width means does not change during operation, so there is little delay in operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のA/D変換装置の実施例を示すブロッ
ク図、第2図(A)、(B)、(C)は速度指令アナロ
グ部の人出力特性図、第3図は速度指令ディジタル邪の
特性図、第41は本発明の異なる実施例を示すブロフク
図、第5図は本発明の増幅回路Ah A2、A3の一実
施例を示す回路図、第6図は第1図の整合手段+< 2
の詳細ブロック図、第7図はACサーボ電動機の速度制
御・位置ff、II iJ中のアナログ速度指令に本発
明のA/D変酒手段を使用した一実施例、第8図は11
7置制御人カーD/A変換手段人出力特性図、第9図は
A/D変換手段人出力特性図である。 A/D Iは第1A/D変換手段、A/D2は第3A/
D変換手段、A/D3は第2A/D変換手段、A3は増
幅手段、K2は整合手段、2は選択手段としての切換回
路である。 第 2 図 茅 凹 0 第 図
Figure 1 is a block diagram showing an embodiment of the A/D conversion device of the present invention, Figures 2 (A), (B), and (C) are human output characteristics diagrams of the speed command analog section, and Figure 3 is the speed Characteristic diagram of the command digital signal, No. 41 is a block diagram showing different embodiments of the present invention, FIG. 5 is a circuit diagram showing one embodiment of the amplifier circuits Ah A2 and A3 of the present invention, and FIG. Matching means + < 2
7 is a detailed block diagram of the AC servo motor, speed control and position ff, an example in which the A/D variable speed control means of the present invention is used for analog speed commands in II iJ, and FIG. 8 is a detailed block diagram of 11
7-position control person car D/A conversion means person output characteristic diagram, FIG. 9 is an A/D conversion means person output characteristic diagram. A/D I is the first A/D conversion means, and A/D2 is the third A/D conversion means.
A D conversion means, A/D3 is a second A/D conversion means, A3 is an amplification means, K2 is a matching means, and 2 is a switching circuit as a selection means. Fig. 2 Chiko 0 Fig.

Claims (1)

【特許請求の範囲】 1、アナログ信号値をデジタル値に変換する第1A/D
変換手段と、前記アナログ信号を前記第1A/D変換手
段へ入力する信号よりも大きな倍率で増幅する増幅手段
と、該増幅手段の出力をデジタル値に変換する第2A/
D変換手段と、該第2A/D変換手段の出力に係数を掛
け、前記第1A/D変換手段時の出力の大きさと整合を
とる整合手段と、前記第1A/D変換手段の出力と前記
整合手段の出力とを選択して前記アナログ信号値に応じ
たデジタル値を出力する選択手段とを有することを特徴
とするA/D変換装置。 2、前記第1A/D変換手段へ入力する信号に対する前
記増幅手段の倍率と前記整合手段の係数とは逆数の関係
にあることを特徴とする請求項第1項記載のA/D変換
装置。 3、前記選択手段は変換階層が密な範囲では前記整合手
段の出力を選択し、変換階層が疎な範囲では前記第1A
/D変換手段の出力を選択するように構成してあること
を特徴とする請求項第1項記載のA/D変換装置。 4、アナログ信号値の第1範囲をデジタル値に変換する
第1A/D変換手段と、アナログ信号値の第3範囲をデ
ジタル値に変換する第3A/D変換手段と、前記第1範
囲と第3範囲との間だの第2範囲の前記アナログ信号を
前記第1A/D変換手段、第3A/D変換手段へ入力す
る信号よりも大きな倍率で増幅する増幅手段と、該増幅
手段の出力をデジタル値に変換する第2A/D変換手段
と、前記第3A/D変換手段の出力の極性を反転する反
転手段と、前記第2A/D変換手段の出力に係数を掛け
、前記第1A/D変換手段及び前記反転手段の出力の大
きさと整合をとる整合手段と、前記第1A/D変換手段
、前記反転手段、及び前記整合手段の出力を選択して前
記アナログ信号値に応じたデジタル値を出力する選択手
段とを有することを特徴とするA/D変換装置。 5、前記第2範囲は極性が正負に股がっていることを特
徴とする請求項第4項記載のA/D変換装置。 6、前記第2範囲の最小値を零にバイアスして前記第2
A/D変換手段に入力するバイアス手段を有しているこ
とを特徴とする請求項第5項記載のA/D変換装置。 7、前記第1ないし第3A/D変換手段は単一のマイク
ロコンピュウタの中に有していることを特徴とする請求
項第4項ないし第6項記載のA/D変換装置。 8、請求項第1項ないし第7項記載のA/D変換装置を
フィードバックループ内に有することを特徴とする電動
機制御装置。 9、前記A/D変換装置を、電動機の停止位置を制御す
るフィードバックループ内に有することを特徴とする請
求項第8項記載の電動機制御装置。
[Claims] 1. First A/D that converts analog signal values into digital values
a converting means, an amplifying means for amplifying the analog signal by a larger factor than the signal input to the first A/D converting means, and a second A/D converting means for converting the output of the amplifying means into a digital value.
D converting means; matching means for multiplying the output of the second A/D converting means by a coefficient to match the magnitude of the output of the first A/D converting means; and selecting means for selecting the output of the matching means and outputting a digital value according to the analog signal value. 2. The A/D converter according to claim 1, wherein the magnification of the amplifying means with respect to the signal input to the first A/D converting means and the coefficient of the matching means have a reciprocal relationship. 3. The selection means selects the output of the matching means in a range where the conversion hierarchy is dense, and selects the output of the matching unit in a range where the conversion hierarchy is sparse.
2. The A/D conversion device according to claim 1, wherein the A/D conversion device is configured to select the output of the A/D conversion means. 4. a first A/D conversion means for converting a first range of analog signal values into digital values; a third A/D conversion means for converting a third range of analog signal values into digital values; an amplifying means for amplifying the analog signal in a second range between the three ranges at a magnification greater than the signal input to the first A/D converting means and the third A/D converting means, and an output of the amplifying means; a second A/D conversion means for converting the output into a digital value; an inversion means for inverting the polarity of the output of the third A/D conversion means; a matching means for matching the magnitudes of the outputs of the converting means and the inverting means; and a matching means that selects the outputs of the first A/D converting means, the inverting means, and the matching means to generate a digital value corresponding to the analog signal value. 1. An A/D conversion device comprising output selection means. 5. The A/D conversion device according to claim 4, wherein the polarity of the second range is positive and negative. 6. Bias the minimum value of the second range to zero and set the second range to zero.
6. The A/D conversion device according to claim 5, further comprising bias means for inputting to the A/D conversion means. 7. The A/D conversion device according to claim 4, wherein the first to third A/D conversion means are included in a single microcomputer. 8. A motor control device comprising the A/D conversion device according to any one of claims 1 to 7 in a feedback loop. 9. The motor control device according to claim 8, wherein the A/D conversion device is included in a feedback loop that controls a stop position of the motor.
JP1142949A 1989-06-07 1989-06-07 Motor control device Expired - Lifetime JP2781601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142949A JP2781601B2 (en) 1989-06-07 1989-06-07 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142949A JP2781601B2 (en) 1989-06-07 1989-06-07 Motor control device

Publications (2)

Publication Number Publication Date
JPH0311990A true JPH0311990A (en) 1991-01-21
JP2781601B2 JP2781601B2 (en) 1998-07-30

Family

ID=15327397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142949A Expired - Lifetime JP2781601B2 (en) 1989-06-07 1989-06-07 Motor control device

Country Status (1)

Country Link
JP (1) JP2781601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586655B1 (en) * 2000-06-28 2006-06-09 임재규 Device and method for collecting dust generated during vehicle travel
US20090122339A1 (en) * 2007-11-13 2009-05-14 Brother Kogyo Kabushiki Kaisha Communication device capable of organizing duplicated address book records
JP2010259035A (en) * 2009-03-31 2010-11-11 Renesas Electronics Corp Data processing device and data processing system
JP2015042120A (en) * 2013-08-23 2015-03-02 日本電産サーボ株式会社 Motor drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030985A (en) * 1973-04-03 1975-03-27
JPS52122072A (en) * 1976-03-03 1977-10-13 Us Government Wide dynamic range wideeband analoggtoodigital converting system
JPS62171486A (en) * 1986-01-22 1987-07-28 Shinko Electric Co Ltd Ac servo motor controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030985A (en) * 1973-04-03 1975-03-27
JPS52122072A (en) * 1976-03-03 1977-10-13 Us Government Wide dynamic range wideeband analoggtoodigital converting system
JPS62171486A (en) * 1986-01-22 1987-07-28 Shinko Electric Co Ltd Ac servo motor controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586655B1 (en) * 2000-06-28 2006-06-09 임재규 Device and method for collecting dust generated during vehicle travel
US20090122339A1 (en) * 2007-11-13 2009-05-14 Brother Kogyo Kabushiki Kaisha Communication device capable of organizing duplicated address book records
JP2010259035A (en) * 2009-03-31 2010-11-11 Renesas Electronics Corp Data processing device and data processing system
JP2015042120A (en) * 2013-08-23 2015-03-02 日本電産サーボ株式会社 Motor drive device

Also Published As

Publication number Publication date
JP2781601B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US4509003A (en) Vector control method and system for an induction motor
JPS5924635B2 (en) Method and apparatus for generating motor drive current
JPH0311990A (en) A/d converter and motor controller using same
WO1988007229A1 (en) Output system for determining axial speed
EP0121792B1 (en) Vector control method and system for an induction motor
JPS5892012A (en) Positioning signal split circuit
JP2008005596A (en) Current detector, motor controller, and method of current detection
JP2001141753A (en) Current and electric quantity measuring circuit
JP3000326B2 (en) Digital type distance relay
US4250559A (en) Coordinate converter for changing polar vector variable into Cartesian vector variables
JP2003199240A (en) Digital protective relay
JPH08274642A (en) D/a converter and device therefor
JPH06178550A (en) Current control device of vvvf inverter
JPH0947071A (en) Controller for brushless motor
JPH082183B2 (en) Control method of series N-fold inverter
JPH07241093A (en) Motor controller
JPH11137000A (en) Controller for ac machine
JPS60167691A (en) Speed controller of motor
SU1049928A1 (en) Hybrid approximator of function y = a miltiply x pouwer 3
JP2007192777A (en) Current detecting device and method, and motor controlling device
JP3275201B2 (en) Control device for welding robot
JPH01298977A (en) Apparatus and method for controlling motor
JPH01103183A (en) Servo device
JPS63105528A (en) Preamplifier device
JPH05260776A (en) Motor control apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12