JPS6113201A - Manufacture of thin film having high light transmittance - Google Patents

Manufacture of thin film having high light transmittance

Info

Publication number
JPS6113201A
JPS6113201A JP59132019A JP13201984A JPS6113201A JP S6113201 A JPS6113201 A JP S6113201A JP 59132019 A JP59132019 A JP 59132019A JP 13201984 A JP13201984 A JP 13201984A JP S6113201 A JPS6113201 A JP S6113201A
Authority
JP
Japan
Prior art keywords
thin film
film
thickness
light
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132019A
Other languages
Japanese (ja)
Other versions
JPH0570121B2 (en
Inventor
Shigeyuki Takahashi
重之 高橋
Kaoru Yamaki
山木 薫
Takayuki Kuroda
隆之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59132019A priority Critical patent/JPS6113201A/en
Publication of JPS6113201A publication Critical patent/JPS6113201A/en
Publication of JPH0570121B2 publication Critical patent/JPH0570121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Abstract

PURPOSE:To manufacture a thin film transmitting >=96% of light of 300-600nm wavelengths by coating one side or both sides of a transparent thin resin film with a colorless metallic fluoride or oxide to about 100nm thickness. CONSTITUTION:The transparent thin resin film of 0.5-10mum uniform thickness is held in a uniform tension state, and one side or both sides of the film are coated with a colorless metallic fluoride or oxide having a lower refractive index than the resin of the film to about 100nm thickness. When one side is coated, a coating layer is formed on the light emitting side. Since the difference in refractive index between the film and the coating layer is smaller than the difference in refractive index between the film and the air, the reflectance of the film is reduced by forming the coating layer. Reflected light itself is vanished by regulating the thickness of the coating layer to 1/4 of the wavelength of light.

Description

【発明の詳細な説明】 本発明はフォトマスクの装・塵カバーに適した光線透過
率の大きい透明樹脂薄膜の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent resin thin film with high light transmittance suitable for photomask mounting and dust cover.

集積回路の製造には、投影プリント法が使用されている
が、と庇はフォトマスク上のパターンを、光線を用いて
、レヂストを塗布したシリコンウェハー上に投影し、パ
ターンに対応する部分のレヂストの光劣化又は光硬化を
行わすものである。このとき、フォトマスク上のパター
ンに望ましくない付着物(即ちゴミ)が存在すると、そ
れがウェハー上に投影されてしまう。この影響を回避す
るため忙、樹脂薄膜で製した防塵カバーを使用する方法
が考案されている(特公昭54−28716)。
Projection printing is used in the production of integrated circuits, and in this method the pattern on a photomask is projected onto a resist-coated silicon wafer using a beam of light, and the resist is printed in the areas corresponding to the pattern. Photodegradation or photocuring of At this time, if undesirable deposits (ie, dust) are present in the pattern on the photomask, they will be projected onto the wafer. In order to avoid this effect, a method of using a dustproof cover made of a thin resin film has been devised (Japanese Patent Publication No. 54-28716).

このような防塵カバーを使用することによシ、集積回路
チップの製造歩留シが向上し、フォトマスクのクリーニ
ング回数が減少してその寿命を伸ばすなどの効果がある
The use of such a dustproof cover improves the manufacturing yield of integrated circuit chips, reduces the number of times the photomask is cleaned, and extends its life.

投影プ”リント方式には現在2つの方式があり、それぞ
れに適した防塵カバー用薄膜の厚みが決っている。即ち
、投影方式がプロヂエクション方式(等信置光)の場合
は2.86±0.2μmであり、ステッパ一方式(縮小
露光)の場合は0.87±0.02μm厚みの薄膜が用
いられる。この厚みの条件は、いずれも露光に用いられ
る光源がV線(436μm)の場合、薄膜の光線透過率
が96チ以上であるために必要とされる条件である。そ
の理由を以下拠説明する。
There are currently two types of projection printing methods, and the thickness of the thin film for the dustproof cover that is suitable for each has been determined.In other words, when the projection method is the projection method (Isoshiki Hikari), the thickness of the thin film for the dustproof cover is determined. ±0.2 μm, and in the case of one-step stepper type (reduction exposure), a thin film with a thickness of 0.87 ±0.02 μm is used.In both cases, the light source used for exposure is V-line (436 μm). In this case, this condition is required because the light transmittance of the thin film is 96 inches or more.The reason for this is explained below.

第1図は、膜厚2.85μmの硝酸セルロース薄膜の波
長に対する光線透過率を測定し、プロットしたものであ
る。透過率は図の′ように、細いピッチの波形を示し、
波の頂部は、略100%の透過率を示すが、波の谷部は
80チ程度の透過率しかえられない。これは、光線の一
部が膜/大気の界面で反射しで逆行し、そのま°た一部
が反対側の膜/大気の界面で反射して順行する。この2
回反射後の順行光は、直接透過光に対し、膜厚の2倍だ
け遅れた光、即ち同一波長で位相差のある光となって互
に干渉し合うためである。膜厚が2.86±0.02μ
mの場合、2線の透過率が波形の頂部近くにあるが、膜
厚が変動すると、透過率曲線が左右にシフトするので、
この条件を満さなくなる。第2図に同様に、膜厚0.9
0μmの硝酸セルロース薄膜の光線透過率を示す。
FIG. 1 is a plot of the measured light transmittance versus wavelength of a cellulose nitrate thin film having a thickness of 2.85 μm. The transmittance shows a thin pitch waveform as shown in the figure.
The crest of the wave exhibits a transmittance of approximately 100%, but the trough of the wave exhibits a transmittance of only about 80%. In this case, part of the light beam is reflected at the film/atmosphere interface and travels backward, and part of the light is reflected at the film/atmosphere interface on the opposite side and travels forward. This 2
This is because the forward light after the second reflection becomes light delayed by twice the film thickness with respect to the directly transmitted light, that is, light with the same wavelength but a phase difference, and they interfere with each other. Film thickness is 2.86±0.02μ
In the case of m, the transmittance of the two lines is near the top of the waveform, but as the film thickness changes, the transmittance curve shifts left and right.
This condition will no longer be met. Similarly to Fig. 2, the film thickness is 0.9
The light transmittance of a 0 μm cellulose nitrate thin film is shown.

防塵カバーを設けることによって、ゴミの影響は除かれ
るとしても、防塵カバーによして、投影光線量が低下し
てはならない。特公昭54−28716には、防塵カバ
ーを一つの露光装置に複数設ける例も示されており、一
枚の防塵カバーの光線透過率は96チ以上であることが
望ましい。そのような防塵カバーには、薄膜の材質に透
明度が高く、無配向のものを用い、所定、且つ一定の膜
厚に高い精度で作製したものを用いる必要がある。まだ
薄膜は厚さ10μm以下の極めて薄いものであるので、
−均一な緊張状態を保って支持枠に保持させる必要があ
る。硝酸セルロースを用いて、そのような薄膜を作る方
法及び保持させる方法は特開昭58−219023に開
示されている。
Although the influence of dust can be removed by providing a dustproof cover, the amount of projected light must not be reduced by the dustproof cover. Japanese Patent Publication No. 54-28716 also discloses an example in which a single exposure device is provided with a plurality of dustproof covers, and it is desirable that the light transmittance of one dustproof cover be 96 inches or more. For such a dustproof cover, it is necessary to use a material for the thin film that is highly transparent, non-oriented, and manufactured with high precision to a predetermined and constant film thickness. Since the thin film is still extremely thin with a thickness of less than 10 μm,
- It is necessary to maintain uniform tension and hold it in the support frame. A method for making and maintaining such a thin film using cellulose nitrate is disclosed in JP-A-58-219023.

半導体工業における最近の進歩に伴い、集積回路の高密
度、高集積化の傾向があり、ウエノ・−上への投影パタ
ーンの線幅、線間隔共に小さくなって来ている。そのた
め、露光光源として、i線よりも波長が短く、エネルギ
ーの大きいh線(406μm)。
With recent advances in the semiconductor industry, there is a trend toward higher density and higher integration of integrated circuits, and the line widths and line spacings of patterns projected onto wafers are becoming smaller. Therefore, the H-line (406 μm), which has a shorter wavelength and higher energy than the I-line, is used as an exposure light source.

i線(365μm)が使用されだシ、それぞれの光線に
別々に感光するレヂストを使いわけるなどの技術も用い
られるようにな2て来ている。従来のタイプの防塵カバ
ー用薄膜を用いるとすれば、各光源に応じだ膜厚のもの
を用意しておき、使いわける必要がある。
While the i-line (365 μm) is no longer being used, techniques such as using resists that are separately sensitive to each beam are also being used. If a conventional type of thin film for a dustproof cover is to be used, it is necessary to prepare one with a different thickness depending on each light source and use it appropriately.

発明者等は鋭意研究の結果、膜内2回反射光の干渉によ
る影響′を除去すれ゛ば、1線、h線、i線のすべての
露光用光線に対し高い透過率を与え、且つ微小膜厚変動
の影響も除かれた薄膜かえられることを見出した。即ち
、薄膜の一方又は両方の表面に、薄膜材質よシも屈折率
の低い透明物質を約1100nの厚みにコーティングす
ることによって、300〜700nmの波長の光を96
チ以上透過するコーテッド薄膜を得ることができた。
As a result of intensive research, the inventors have found that if the influence of the interference of twice-reflected light within the film is removed, high transmittance can be achieved for all exposure light beams, including 1-line, H-line, and I-line, and at the same time It has been found that thin films can be changed that eliminate the effects of film thickness fluctuations. That is, by coating one or both surfaces of the thin film with a transparent material having a refractive index lower than that of the thin film material to a thickness of about 1100 nm, light with a wavelength of 300 to 700 nm can be absorbed by 96 nm.
We were able to obtain a coated thin film that transmits more than

本発明に使用する樹脂薄膜には、セルロース誘導体が適
当である。セルロース誘導体−は、光線透過率特に近紫
外領域での透過率が高く、成型時に配向する傾向も少い
。セルロース誘導体としては、硝酸セルロース、酢酸セ
ルロース、酪酸酢酸セルロース、プロピオン酸セルロー
スなどがあるが、特に硝酸セルロースが? <:れてい
る。セルロース誘導体以外の物質としては、ポリエチレ
ンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデ
ン。
Cellulose derivatives are suitable for the resin thin film used in the present invention. Cellulose derivatives have high light transmittance, particularly in the near-ultraviolet region, and have little tendency to become oriented during molding. Cellulose derivatives include cellulose nitrate, cellulose acetate, cellulose acetate butyrate, and cellulose propionate, but what about cellulose nitrate in particular? <:It is. Substances other than cellulose derivatives include polyethylene terephthalate, polyvinyl chloride, and polyvinylidene chloride.

ポリスチレン、ポリアクリル酸メチル、ポリカーボネー
トなどを用いて樹脂薄膜を製造することができる。
A resin thin film can be manufactured using polystyrene, polymethyl acrylate, polycarbonate, or the like.

樹脂薄膜の表面コーティング層を形成させる物質として
は、透明な無機材料例えば、金属弗化物。
The substance forming the surface coating layer of the resin thin film includes transparent inorganic materials such as metal fluorides.

金属酸化物から選択することができるが、反射光による
干渉の影響を除去する目的においては、樹脂薄膜材質よ
シも屈折率の低い物質を用いる必要がある。即ち、セル
ロース誘導体の場合、露光に、使用する300°〜70
0nmの波長の範囲に対する屈折率は1.50〜1.5
5程度であるので、コーティングに適する物質としては
、弗化カルシラ・ム(436nmにおける屈折率1,2
3、以下同様)。
The material can be selected from metal oxides, but for the purpose of eliminating the influence of interference caused by reflected light, it is necessary to use a material with a low refractive index than the resin thin film material. That is, in the case of cellulose derivatives, the exposure angle used is 300° to 70°.
The refractive index for the wavelength range of 0 nm is 1.50-1.5
5, therefore, suitable materials for coating include calsilyl fluoride (with a refractive index of 1 and 2 at 436 nm).
3. The same applies hereafter).

弗化バリウム(1,3) 、弗化ナトリウム(1,34
)。
Barium fluoride (1,3), sodium fluoride (1,34
).

弗化マグネシウム(1,38)などがある。本発明の目
的には屈折率1.3以下の物質が特に適している。樹脂
薄膜は、極めて薄いため、均一な緊張下に保持していて
も、外力により振動することがあるが、この振動に追随
できるだけの可撓性あるいは柔軟性がないと、コーティ
ング層がひび割れを起す危険性があるが、弗化カルシウ
ムは、適度の柔軟性があるので、屈折率の値とともに、
本発明の実施に特に有用である。また、弗化カルシウム
は比較的吸湿性が低いことも利点の一つである゛。
Examples include magnesium fluoride (1,38). Materials with a refractive index of 1.3 or less are particularly suitable for the purposes of the invention. Because the thin resin film is extremely thin, it may vibrate due to external force even when held under uniform tension.If it is not flexible or pliable enough to follow this vibration, the coating layer will crack. Although it is dangerous, calcium fluoride has a certain degree of flexibility, so the refractive index value and
Particularly useful in the practice of the present invention. Another advantage of calcium fluoride is that it has relatively low hygroscopicity.

表面コーティング層の反射防止のメカニズムは次のよう
に考えられる。まず片面コーティングの場合は、薄膜の
光線出口側に設ける。この場合、■膜/大気の屈折率差
に比べて、膜/コーティング層の屈折率差は小さいので
、膜/コーチインク界面での反射率は、膜/大気界面で
の反射率、即ち、コーティング層のない場合に比して小
さい。しかし、コーティング層/大気界面でも反射が起
る。
The antireflection mechanism of the surface coating layer is thought to be as follows. First, in the case of single-sided coating, it is provided on the light exit side of the thin film. In this case, ■The refractive index difference between the film/coating layer is smaller than the refractive index difference between the film/atmosphere, so the reflectance at the film/coach ink interface is equal to the reflectance at the film/atmosphere interface, that is, the coating It is smaller than when there is no layer. However, reflection also occurs at the coating layer/atmosphere interface.

■このとき、コーティング層の厚みを、光の波長の1/
4としておけば、膜/コーチ4フフ層界面での反射光と
、コーティング層/太気界面での反射光が丁度1/2波
長の差を以て干渉し、反射光自体を減殺させる。同様に
両面コーティングを行えば第2反射光は無視できる程度
になり、直進透過光に対する干渉効果はさらに減少する
。その結果、透過率〜波長曲線の波形が殆んど消失し、
全領域にわたって高透過率を得ることができる。
■At this time, the thickness of the coating layer is set to 1/1/1 of the wavelength of the light.
4, the reflected light at the film/coach 4 fu layer interface and the reflected light at the coating layer/air interface interfere with each other with a difference of exactly 1/2 wavelength, thereby attenuating the reflected light itself. Similarly, if both sides are coated, the second reflected light becomes negligible, and the interference effect on the straight transmitted light is further reduced. As a result, the waveform of the transmittance-wavelength curve almost disappears,
High transmittance can be obtained over the entire area.

薄膜に対するコーティングは、真空蒸着によって行う。Coating of the thin film is performed by vacuum deposition.

即ち、コーティング材料を10−3〜1O−5Tor:
rのの高真空中で加熱し、発生した蒸気を薄膜上に蒸着
させる。このとき、コーティどグ層形成面の反対側から
、特定の波長の光線で反射率を測定しながら蒸着させて
ゆくモニタリングシステムが開発されており、光の波長
の1/4の厚さにコーティングしたとき、反射光が最小
になるので、その時点でコーティングを終了させればよ
い。片面コーティングを終了したあと、薄膜を反転し、
もう一方の面に同様にコーティングすれば両面コーティ
ングが完了する。
That is, the coating material is heated to 10-3 to 1O-5 Tor:
It is heated in a high vacuum at room temperature and the generated vapor is deposited on the thin film. At this time, a monitoring system has been developed in which the coated dog layer is deposited from the opposite side to the surface on which the coated dog layer is formed, measuring the reflectance with a light beam of a specific wavelength. When this happens, the reflected light will be at its minimum, so coating can be finished at that point. After completing one-sided coating, flip the thin film and
Double-sided coating is completed by coating the other side in the same manner.

適切なコーティングを、適切な薄膜上に形成させること
によって、300nm〜700nmの全領域にわたる光
線透過率の高い防塵カバーかえられる。
By forming an appropriate coating on an appropriate thin film, a dustproof cover with high light transmittance over the entire range of 300 nm to 700 nm can be obtained.

本発明の方法によって得られるコーテッド薄膜は、コー
ティング層のない薄膜に比べて、膜厚の選択性に対する
要求がきびしくないので、防塵カバー生産時の歩留シが
向上する。また、一つの防塵カバーで以て、を線、h線
、i線のように異る波長の光線の使用に対応できる。さ
らに、コーティング層の表面硬度は、樹脂よシも高いの
で、防塵カバーの耐久性もまたすぐれたものになるが、
この点では両面コーチイツトのものが特にすぐれている
The coated thin film obtained by the method of the present invention has less stringent requirements for film thickness selectivity than a thin film without a coating layer, so the yield during production of the dustproof cover is improved. Furthermore, with one dustproof cover, it is possible to use light beams of different wavelengths such as rays, h-rays, and i-rays. Furthermore, the surface hardness of the coating layer is higher than that of the resin, so the durability of the dustproof cover is also excellent.
In this respect, those with double-sided coating are particularly excellent.

以上、本発明は、全域にわたって厚みが均一であり、厚
み05〜10μmの透明樹脂薄膜を、均一な緊張状態に
保持し、その片面又は両面に、無色の金属弗化物又は金
属酸化物を、それぞれ約100圃の厚さにコーティング
することを特徴とする、300〜500nmの範囲内の
特定波長の光線を96%以上透過するコーテッド薄膜の
製造法に関するものである。
As described above, the present invention maintains a transparent resin thin film having a uniform thickness of 05 to 10 μm over the entire area under uniform tension, and coats a colorless metal fluoride or metal oxide on one or both sides of the thin film, respectively. The present invention relates to a method for producing a coated thin film that transmits 96% or more of light of a specific wavelength within the range of 300 to 500 nm, which is characterized by coating the film to a thickness of about 100 nm.

以下に実施例をあげて本発明を説明するが、本発明はこ
れによシ限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

〔実施例〕〔Example〕

特開昭58−219023号明細書に示された方法で膜
厚2.90μmの硝酸セルロース薄膜を作成し、内径6
1mm、外径65mm、高さ3閤の円形フレー上記薄膜
に弗化カルシウムコーティングを行った。ジンクロン真
空蒸着装置(真空器械工業)′を用い、438nmの光
でモニターしながら反射率が最小となるまでコーティン
グを行った。コーティング層の厚さは、約1’l’、O
nmである。片面コーテッド薄膜の光線透過率を第3図
の鎖線(−・−・−・→で示す。
A cellulose nitrate thin film with a film thickness of 2.90 μm was prepared by the method disclosed in JP-A No. 58-219023, and the inner diameter was 6.
Calcium fluoride coating was applied to the thin film of a circular flake having a diameter of 1 mm, an outer diameter of 65 mm, and a height of 3 squares. Using a Zincron vacuum evaporation device (Shinku Kikai Kogyo), coating was carried out while monitoring with 438 nm light until the reflectance was at its minimum. The thickness of the coating layer is approximately 1'l', O
It is nm. The light transmittance of the single-sided coated thin film is shown by the chain line (-・-・-・→) in FIG.

片面コーテッド薄膜を反転し同様にして両面コーテッド
薄膜とした。両面コーテッド薄膜の光線透過率を第3図
の実線(□)で示す。
The single-sided coated thin film was reversed and made into a double-sided coated thin film in the same manner. The light transmittance of the double-sided coated thin film is shown by the solid line (□) in FIG.

3種類の露光光源を線(436nm)、h線(406n
m)、i線(365nm)に対し、片面コーテッド膜は
96%以上、両面コーテッド膜は98チ以上の光線透過
率を示すものであった。
Three types of exposure light sources are used: line (436nm), h-line (406nm)
m) and i-line (365 nm), the single-sided coated film showed a light transmittance of 96% or more, and the double-sided coated film showed a light transmittance of 98% or more.

また、コーテッド薄膜に対し、1mの距離から3 KI
i/cdの風圧を与えるツアーガンで1分間ブローした
が、コーティング層のひびわれ、脱落はみられなかった
Also, for coated thin films, 3 KI from a distance of 1 m
The coating layer was blown for 1 minute using a tour gun applying an air pressure of I/CD, but no cracking or falling off of the coating layer was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図鵜膜厚g、85μm、第2図は膜厚0.90μm
の硝酸セルロース薄膜の光線透過率をプロットしたグラ
フである。第3図は膜i2.9oμmの薄膜(−−−−
−−−、)及び片面コーテッド薄膜(−−一・−)なら
びニ両面コーテッド薄膜(□)のそれぞれの光線透過率
をプロットしたグラフである。
Figure 1 cormorant membrane thickness g, 85 μm, Figure 2 film thickness 0.90 μm
2 is a graph plotting the light transmittance of a cellulose nitrate thin film. Figure 3 shows a thin film with a film i of 2.9 μm (---
---, ), one-sided coated thin film (--1.-), and two-sided coated thin film (□) are graphs plotting the respective light transmittances.

Claims (1)

【特許請求の範囲】 1)全域にわたって厚みが均一であり、厚み0.5〜1
0μmの透明樹脂薄膜を、均一な緊張状態に保持し、そ
の片面又は両面に、無色の金属弗化物又は金属酸化物を
、それぞれ約100nmの厚さにコーティングすること
を特徴とする300〜600nmの範囲内の特定波長の
光線を96%以上透過するコーテッド薄膜の製造法。 2)樹脂薄膜が硝酸セルローズであり、コーティング物
質が弗化カルシウムである特許請求範囲第1項記載のコ
ーテッド薄膜の製造法。
[Claims] 1) The thickness is uniform over the entire area, and the thickness is 0.5 to 1.
A transparent resin thin film of 0 μm is maintained under uniform tension, and one or both sides thereof are coated with a colorless metal fluoride or metal oxide to a thickness of about 100 nm. A method for producing a coated thin film that transmits 96% or more of light of a specific wavelength within a range. 2) The method for producing a coated thin film according to claim 1, wherein the resin thin film is cellulose nitrate and the coating material is calcium fluoride.
JP59132019A 1984-06-28 1984-06-28 Manufacture of thin film having high light transmittance Granted JPS6113201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132019A JPS6113201A (en) 1984-06-28 1984-06-28 Manufacture of thin film having high light transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132019A JPS6113201A (en) 1984-06-28 1984-06-28 Manufacture of thin film having high light transmittance

Publications (2)

Publication Number Publication Date
JPS6113201A true JPS6113201A (en) 1986-01-21
JPH0570121B2 JPH0570121B2 (en) 1993-10-04

Family

ID=15071618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132019A Granted JPS6113201A (en) 1984-06-28 1984-06-28 Manufacture of thin film having high light transmittance

Country Status (1)

Country Link
JP (1) JPS6113201A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057216A (en) * 1973-09-19 1975-05-19
JPS5666802A (en) * 1979-11-05 1981-06-05 Seiko Epson Corp Antireflection film of optical parts made of synthetic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057216A (en) * 1973-09-19 1975-05-19
JPS5666802A (en) * 1979-11-05 1981-06-05 Seiko Epson Corp Antireflection film of optical parts made of synthetic resin

Also Published As

Publication number Publication date
JPH0570121B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
KR101388828B1 (en) Reflective mask blank for exposure, reflective mask for exposure, semiconductor device manufacturing method, and substrate with multilayered reflective films
JPH0690505B2 (en) Photo mask
JPS6235359A (en) Production of coated thin film
US20020182519A1 (en) Non absorbing reticle and method of making same
US6764792B1 (en) Halftone phase shift photomask and blanks for halftone phase shift photomask for producing it
US6627356B2 (en) Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
KR900001665B1 (en) Method of applying a resist
JPS6113201A (en) Manufacture of thin film having high light transmittance
JPS63216052A (en) Exposing method
JPH02124572A (en) Thin transparent resin film
JPH049061A (en) Manufacture of dustproof body high in light transmittance
JPS5825379Y2 (en) photo mask
JPH07111235A (en) Method and device for exposure
JPS62246889A (en) Manufacture of mirror surface parts
JP2003151881A (en) Pattern transfer method and photomask thereof
JPS6053871B2 (en) Exposure method
JPH04309952A (en) Photomask
JP3442874B2 (en) Method of forming fine pattern
JPH09211842A (en) Light reflection preventive method in formation of electronic circuit by using optical means and apparatus therefor as well as its product
JP2003131356A (en) Method for manufacturing photomask and pattern exposure system
JPS58171818A (en) Method and apparatus for manufacturing semiconductor device
JPS6327019A (en) Mask for x-ray exposure
JPS635344A (en) Production of antireflection coated pellicle
JPH01302723A (en) Mask for x-ray exposure and manufacture thereof
JPH0470749A (en) Production of high ray transmittable dustproof body