JPH049061A - Manufacture of dustproof body high in light transmittance - Google Patents

Manufacture of dustproof body high in light transmittance

Info

Publication number
JPH049061A
JPH049061A JP2110966A JP11096690A JPH049061A JP H049061 A JPH049061 A JP H049061A JP 2110966 A JP2110966 A JP 2110966A JP 11096690 A JP11096690 A JP 11096690A JP H049061 A JPH049061 A JP H049061A
Authority
JP
Japan
Prior art keywords
film
light
silicon dioxide
thin film
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2110966A
Other languages
Japanese (ja)
Inventor
Hideo Hama
秀雄 浜
Masato Karaiwa
唐岩 正人
Tetsuya Miyazaki
哲也 宮崎
Mayumi Kawasaki
川崎 まゆみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2110966A priority Critical patent/JPH049061A/en
Publication of JPH049061A publication Critical patent/JPH049061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To obtain a dustproof body high in light transmittance and not causing photodecomposition even when it is irradiated with short wavelength light for a long time by precipitating silicon dioxide on a base plate immersed in an aqueous solution of hexafluorosilic acid saturated with silica and separating the obtained thin film and fixing it to a holding frame. CONSTITUTION:The silicon dioxide thin film is deposited and formed on the surface of the base plate, such as a plastic plate, precoated with an aqueous solution of a surfactant and dried by immersing the base into an aqueous solution of hexafluorosilicic acid saturated with the silica, and this film is peeled from the base and fixed to the holding frame 2. Said solution is prepared by dissolving silicon dioxide, such as silica gel or silica glass, in a solution of hexafluorosilicic acid, thus permitting the obtained dust removing body 1 high in light transmittance to prevent opacification of the film 3 due to photodecomposition caused by long time exposure to short wavelength light and deterioration of mechanical strength of the film 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 IC,LSI等の半導体素子の製造工程に
おけるフォトリングラフィ工程で使用するフォトマスク
やレチクル等に、塵埃等の異物が付着することを防止す
るために使用する防塵体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is designed to prevent foreign matter such as dust from adhering to photomasks, reticles, etc. used in the photolithography process in the manufacturing process of semiconductor devices such as ICs and LSIs. The present invention relates to a method of manufacturing a dustproof body used to prevent this.

C従来の技術〕 ガラスあるいはプラスチック成形体の表面に二酸化珪素
被覆を施す技術として、特開昭57−196744号、
 同58−161944号、 同6112734号およ
び同63−112632号公報がある。しかしこれらは
いずれもガラス基板あるいはプラスチック成形体の表面
に二酸化珪素被覆を施すことによって、金属析出の抑止
あるいは損傷等からの表面保護を行うものに過ぎなかっ
た。
C. Prior art] As a technique for coating the surface of a glass or plastic molded body with silicon dioxide, Japanese Patent Application Laid-Open No. 57-196744,
There are No. 58-161944, No. 6112734, and No. 63-112632. However, all of these techniques merely inhibit metal deposition or protect the surface from damage by coating the surface of the glass substrate or plastic molded body with silicon dioxide.

ところで、半導体素子の製造工程における露光処理では
、ガラス板の表面にクロム等の蒸着遮光膜で回路をパタ
ーンニングしたマスクを用いて、この回路パターンをレ
ジスト等の感光剤が塗布されたシリコンウェハ上に転写
する作業が行われている。
By the way, in the exposure process in the manufacturing process of semiconductor devices, a mask is used in which a circuit is patterned on the surface of a glass plate with a vapor-deposited light-shielding film such as chromium, and this circuit pattern is transferred onto a silicon wafer coated with a photosensitive agent such as a resist. Work is underway to transcribe it.

このとき、マスク上に塵埃等の異物が付着した状態で露
光処理が行われると、この塵埃の陰影がそのままウェハ
上にも転写されてしまうこととなり、製品不良を生じ、
いわゆる歩留りを低下させる要因となる。特に、マスク
としてレチクルを用いてウェハ上のチップ領域に順次回
路パターンを転写する縮小投影露光処理においては、大
半のチップの製品良否を左右することとなり、塵埃付着
の問題は深刻である。
At this time, if exposure processing is performed with foreign matter such as dust attached to the mask, the shadow of this dust will be transferred onto the wafer as it is, resulting in product defects.
This becomes a factor that reduces so-called yield. In particular, in reduction projection exposure processing in which circuit patterns are sequentially transferred onto chip areas on a wafer using a reticle as a mask, the problem of dust adhesion is serious, as it determines the quality of most chips.

そこで、返歌 前記マスクの回路パターン上の所定距離
位置にニトロセルロース等の有機物からなる透明防塵体
(ペリクル)を張設して、回路パターン上に塵埃が直接
付着するのを防止することが知られている。
Therefore, it is known that a transparent dustproof material (pellicle) made of organic material such as nitrocellulose is placed at a predetermined distance above the circuit pattern of the mask to prevent dust from directly adhering to the circuit pattern. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、半導体素子の集積度の向上にともない、露光時
の光線波長がg線(436nm)からi線(365nm
)、さらにエキシマレーザ(248nm)へと短波長側
にシフトしてくると、従来の有機物からなる透明薄膜を
用いた防塵体では、分子の結合状態が弱く、薄膜内で光
線の吸収中に光分解を起こし、膜自体が不透明化してし
まい、安定的な光透過率が得られないこと、および膜の
機械的強度の劣化が生じることが明らかにされた。
However, as the degree of integration of semiconductor devices improves, the wavelength of the light beam during exposure has changed from the G-line (436 nm) to the I-line (365 nm).
), and as the wavelength shifts further to excimer lasers (248 nm), conventional dustproof bodies using transparent thin films made of organic materials have weak molecular bonding, and light is absorbed during light absorption within the thin film. It was revealed that decomposition occurs and the film itself becomes opaque, making it impossible to obtain stable light transmittance and deteriorating the mechanical strength of the film.

本発明の目的は、上記の点に鑑みてなされたものであり
、基板上に無機物質を析出させて形成した薄膜を光線透
過性膜として用いることによって、エキシマレーザ等の
短波長光を長期間にわたって照射しても光分解をきたさ
ない高光線透過性防塵体を提供することにある。
The object of the present invention has been made in view of the above points, and by using a thin film formed by depositing an inorganic substance on a substrate as a light-transmitting film, it is possible to transmit short wavelength light such as excimer laser for a long period of time. It is an object of the present invention to provide a dustproof body with high light transmittance that does not cause photodecomposition even when irradiated over a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、マスクに装着される保持枠と、この保持枠に
取付けられる透明な光線透過性膜とを備えた防塵体にお
いて、珪弗化水素酸からなるシリカ飽和水溶液中に浸漬
した基板上に二酸化珪素を析出させて薄膜を形成し、こ
の薄膜を光線透過性膜として基板から単独膜化し保持枠
を設けたことを要旨とする。
The present invention provides a dustproof body comprising a holding frame attached to a mask and a transparent light-transmitting film attached to the holding frame, in which a substrate is immersed in a saturated aqueous solution of silica made of hydrosilicofluoric acid. The gist of this invention is to deposit silicon dioxide to form a thin film, use this thin film as a light-transmissive film to separate the substrate from the substrate, and provide a holding frame.

ここで、基板とはたとえばアクリル樹脂等のプラスチッ
ク基板、シリコンウェハ等の珪素基板、石英ガラス基板
、さらにはアルミニウム等の金属基板等を用いることが
できる。
Here, the substrate may be, for example, a plastic substrate such as an acrylic resin, a silicon substrate such as a silicon wafer, a quartz glass substrate, or a metal substrate such as aluminum.

ここで、前記プラスチック基板を用いる場合には、たと
えばプラスチック基板の表面にあらかじめ界面活性剤水
溶液を塗布してこれを乾燥させた後に、このプラスチッ
ク基板を珪弗化水素酸からなるシリカ飽和水溶液中に浸
漬することによって、二酸化珪素薄膜を析出形成するこ
とが可能である。
Here, when using the plastic substrate, for example, after applying an aqueous surfactant solution to the surface of the plastic substrate and drying it, the plastic substrate is placed in a saturated aqueous silica solution made of hydrosilicofluoric acid. By dipping, it is possible to deposit a silicon dioxide thin film.

これに用いられる界面活性水溶液としては、塗布後にプ
ラスチック基板の表面で水滴状にならない程度であれ+
f、  希薄水溶液であってもよい。この限界濃度は界
面活性剤の種類によっても異なるが、パーフルオロアル
キルカルボン酸誘導体の如きフッ素系界面活性剤との併
用によってさらに低濃度にまで希釈したものを使用でき
る。
The surfactant aqueous solution used for this purpose must be of a level that does not form water droplets on the surface of the plastic substrate after application.
f. It may be a dilute aqueous solution. This critical concentration varies depending on the type of surfactant, but it can be diluted to a lower concentration by using a fluorine-based surfactant such as a perfluoroalkylcarboxylic acid derivative.

また、珪弗化水素酸からなるシリカ飽和水溶液は、たと
えば珪弗化水素酸溶液にシリカゲルあるいはシリカガラ
ス等の酸化珪素源を溶解することにより得られる。
Further, a silica saturated aqueous solution made of hydrofluorosilicic acid can be obtained, for example, by dissolving a silicon oxide source such as silica gel or silica glass in a hydrofluorosilicic acid solution.

また、前記珪弗化水素酸水溶液中にたとえば一定時間あ
るいは継続的にほう酸を添加することにより、基板上の
二酸化珪素薄膜の成長が一定に維持さ札 基板の全面に
わたって均一な膜を形成することができる。このほう酸
の量は、少なすぎると二酸化珪素が基板上に析出しなく
なり、また多すぎると水溶液中に二酸化珪素の沈澱物を
生じさせることになる。
Further, by adding boric acid to the hydrosilicofluoric acid aqueous solution for a certain period of time or continuously, the growth of the silicon dioxide thin film on the substrate can be maintained constant. Forming a uniform film over the entire surface of the substrate I can do it. If the amount of boric acid is too small, silicon dioxide will not be deposited on the substrate, and if it is too large, silicon dioxide will precipitate in the aqueous solution.

二酸化珪素の析出によって得られる薄膜 すなわち光線
透過性膜の厚さは、好ましくは10μm未満で、特に好
ましくは0.2〜5.0μmで、240ないし500n
mの光を平均光線透過率で85%以上透過するものであ
る。ここで平均光線透過率とは、240ないし500n
mの間で起こる光線透過率の干渉波の山部と谷部をとり
平均した値である。
The thickness of the thin film, i.e. the light-transparent film, obtained by precipitation of silicon dioxide is preferably less than 10 μm, particularly preferably from 0.2 to 5.0 μm, and from 240 to 500 nm.
It transmits 85% or more of the light of m in average light transmittance. Here, the average light transmittance is 240 to 500n
This is the average value of the peaks and troughs of the interference waves of light transmittance occurring between m.

膜厚としては、前記10Pmよりもさらに薄い方が好ま
しいが、一般に0.2μm未満の場合には十分な強度が
得られないことが多い。しかし、強度の点で問題がなけ
ればこの数値未満の膜厚であっでもよいことは勿論であ
る。一方、膜の厚さが10μm以−Lであってもかまわ
ないが、露光時の光収差の増大等を考慮すると、 10
μm以下であることが好ましい。
As for the film thickness, it is preferable that the film is thinner than the above-mentioned 10 Pm, but in general, if it is less than 0.2 μm, sufficient strength cannot be obtained in many cases. However, it goes without saying that the film thickness may be less than this value if there is no problem in terms of strength. On the other hand, the thickness of the film may be 10 μm or more, but considering the increase in optical aberration during exposure, etc.
It is preferable that it is less than μm.

光線透過性膜の厚さは、露光に使用する波長に対して透
過率が高くなるように選択する。本発明において、この
ような膜厚は、析出時間および珪弗化水素酸水溶液の濃
度等により制御可能である。
The thickness of the light-transmitting film is selected so that the transmittance is high for the wavelength used for exposure. In the present invention, such film thickness can be controlled by the deposition time, the concentration of the hydrosilicic acid aqueous solution, and the like.

ここで、光線透過性膜の厚さをd3、屈折率をno、波
長をλとした場合、 (ただしmは1以」二の整数) のとき反射が防止さ汰 透過率が最高になる。例えばn
、=1.5の場合は、g線(436nm)の透光率を高
くするには、膜厚d、を0.87μmとし、エキシマレ
ーザ(248nm)の透過率を高くするには、膜厚d1
  を0.83または2.48μmにする。
Here, when the thickness of the light-transmitting film is d3, the refractive index is no, and the wavelength is λ, reflection is prevented and the transmittance is the highest when (m is an integer of 1 or more). For example n
, = 1.5, to increase the transmittance of the g-line (436 nm), the film thickness d is set to 0.87 μm, and to increase the transmittance of the excimer laser (248 nm), the film thickness d1
to 0.83 or 2.48 μm.

ここで、目的とする膜厚が得られないための透過率の低
下、あるいは波長の変動にともなう透過率のイく安定化
を防止するためには、第2図に示すように、光線透過性
膜3のL層にさらに反射防止層5を積層形成してもよい
Here, in order to prevent a decrease in transmittance due to the inability to obtain the desired film thickness, or to prevent the transmittance from becoming too stable due to fluctuations in wavelength, it is necessary to An antireflection layer 5 may be further laminated on the L layer of the film 3.

このような反射防止層5を積層形成した場合、光線透過
性膜3の屈折率をn2、反射防止層5の屈折率を02、
反射防止層5の厚さをd2 とした場合、co v’n
 + = n2、■d2−mλ/(4n2)の両式を満
たす屈折率と膜厚とを選択すると反射が防止さL 透過
率は最高となる。また反射防止層5は、光線透過性膜3
の片面あるいは両面のいずれに積層してもよい。
When such an antireflection layer 5 is laminated, the refractive index of the light transmitting film 3 is n2, the refractive index of the antireflection layer 5 is 02,
When the thickness of the antireflection layer 5 is d2, co v'n
If the refractive index and film thickness are selected to satisfy both the equations +=n2 and d2-mλ/(4n2), reflection will be prevented and the transmittance will be the highest. Further, the antireflection layer 5 is a light transmitting film 3.
It may be laminated on either one side or both sides.

このように、基板上に形成された二酸化珪素薄膜を光線
透過性膜3とした場合の屈折率n、は1、4−1.6で
ある。したがって、n 2 = V’n I  は1.
18〜1.26の屈折率を有する物質を反射防止層5と
して積層すればよいことになる。このような物質として
は、たとえばフッ化カルシウム(CaF2)をあげるこ
とができる。
In this way, when the silicon dioxide thin film formed on the substrate is used as the light-transmitting film 3, the refractive index n is 1.4-1.6. Therefore, n 2 = V'n I is 1.
This means that a material having a refractive index of 18 to 1.26 may be laminated as the antireflection layer 5. An example of such a substance is calcium fluoride (CaF2).

このような化合物を積層するには、真空蒸着法、スパッ
タリング法等を用いることができる。
In order to laminate such a compound, a vacuum evaporation method, a sputtering method, etc. can be used.

また、反射防止層5が、第3図に示すように、高屈折率
層5aと低屈折率層5 bとの2層構造となっている場
合、光線透過性膜3の屈折率をnl、高屈折率層5aの
屈折率をn2、その膜厚をd2、低屈折率層5bの屈折
率をn3、その膜厚をd3とした場合、■v’n + 
 = 12 / na、■d2−mλ/4n2、および
■c13=mλ/4n3の3式を満たす屈折率と膜厚と
を選択すると反射が完全に防止さ汰 高い透過率を得る
ことができる。
Further, when the antireflection layer 5 has a two-layer structure of a high refractive index layer 5a and a low refractive index layer 5b as shown in FIG. 3, the refractive index of the light transmitting film 3 is nl, When the refractive index of the high refractive index layer 5a is n2, its film thickness is d2, the refractive index of the low refractive index layer 5b is n3, and its film thickness is d3, ■v'n +
If the refractive index and film thickness are selected to satisfy the following three equations: = 12/na, d2-mλ/4n2, and c13=mλ/4n3, reflection can be completely prevented and high transmittance can be obtained.

高屈折率層5aの素材となる物質として、たとえばフッ
化セリウム(CeF3)、臭化セシウl\(Cs B 
r )、酸化マグネシウム(MgO)、フッ化鉛(Pb
F2)などの無機物をあげることができる。
For example, cerium fluoride (CeF3), cesium bromide (Cs B
r ), magnesium oxide (MgO), lead fluoride (Pb
Examples include inorganic substances such as F2).

低屈折率層5bの素材となる物質としては、たとえばフ
ッ化リチウム(LiF)、フッ化マグネシウノ\(Mg
F2)、フッ化ナトリウム(NaF)等の無機物をあげ
ることができる。また、前記高屈折率層5aおよび低屈
折率層5bを積層するには、スパッタリング法や真空蒸
着法等を用いることができる。
Examples of materials for the low refractive index layer 5b include lithium fluoride (LiF) and magnesium fluoride (Mg
F2), sodium fluoride (NaF), and other inorganic substances. Moreover, sputtering method, vacuum evaporation method, etc. can be used to laminate the high refractive index layer 5a and the low refractive index layer 5b.

前記光線透過性膜3を単独膜化する方法としては、たと
えば基板上に成長された二酸化珪素薄膜を基板から物理
的な手段で剥離させる方法の41基板を加熱して該基板
部分を分解除去する方法、さらには溶剤等を用いて基板
をエツチング除去する方法等がある。特に、エツチング
除去を行う場合には、基板を枠状に残してその中央部分
のみをエツチング除去することにより、基板の残部を保
持枠2として、光線透過性膜3と保持枠2とを一体的に
成形することも可能である。
As a method for forming the light-transmitting film 3 into a single film, for example, the silicon dioxide thin film grown on the substrate is peeled off from the substrate by physical means.41 The substrate is heated to decompose and remove the substrate portion. There is also a method of removing the substrate by etching using a solvent or the like. In particular, when performing etching removal, the substrate is left in the form of a frame and only the central portion thereof is etched away, so that the light-transmissive film 3 and the holding frame 2 are integrated with the remaining part of the substrate as the holding frame 2. It is also possible to mold it into

以、]二のようにして得られた高光線透過性防塵体1は
、第1図に示すように、両面粘着テープ等によりマスク
4に取付けられる。このような高光線透過性防塵体1で
表面が保護されたマスク4を用いることにより、露光時
における、塵埃等の異物の陰影のウェハ十、への転写が
防止される。
The highly light-transmissive dustproof body 1 obtained as described in [2] above is attached to a mask 4 with double-sided adhesive tape or the like, as shown in FIG. By using the mask 4 whose surface is protected by such a high light transmittance dustproof body 1, transfer of shadows of foreign matter such as dust to the wafer 10 is prevented during exposure.

すなわち、マスク4の表面と、保持枠2の内側面と、光
線透過性膜3の内面とで構成される保護空間Sにより、
マスク4の表面に直接塵埃が付着することが防止される
構造となっている。このような構造により、たとえ塵埃
が光線透過性膜3の外面側に付着したとしても、この塵
埃の陰影は、焦点ず担 すなわちデッドフォーカスとな
り、塵埃の陰影がウェハ上に転写されることはない。
That is, the protected space S constituted by the surface of the mask 4, the inner surface of the holding frame 2, and the inner surface of the light-transmitting film 3,
The structure is such that dust is prevented from directly adhering to the surface of the mask 4. Due to this structure, even if dust adheres to the outer surface of the light-transmitting film 3, the shadow of this dust becomes a dead focus, and the shadow of the dust is not transferred onto the wafer. .

なお、前記高光線透過性防塵体1は、マスク4に対して
その片面のみならず両面に装着してもよい。
Note that the high light transmittance dustproof body 1 may be attached to the mask 4 not only on one side but also on both sides.

〔作用〕[Effect]

前記した手段によれtf、無機物質である二酸化珪素を
析出させて薄膜を形成し、この薄膜を単独膜化して光線
透過性膜を得ることによって、短波長光を長期間にわた
って照射しても光分解による膜の不透明化および膜の機
械的強度の劣化を生じることのない高光線透過性防塵体
を提供することができる。
By depositing silicon dioxide, which is an inorganic substance, to form a thin film using the above-mentioned method, and by forming this thin film into a single film to obtain a light-transmitting film, it is possible to obtain a light-transmitting film even when irradiated with short-wavelength light for a long period of time. It is possible to provide a dustproof body with high light transmittance that does not cause the film to become opaque or deteriorate in mechanical strength due to decomposition.

〈実施例〉 〔実施例1〕 シリカゲル粉末を飽和するまで溶解した2モル/1の濃
度の珪弗化水素酸水溶液中に、200mmX 200m
mX 5mmの大きさのアクリル基板を浸漬した後、0
.5モル/1のほう酸水溶液を連続的に滴下しながら、
45時間放置した。
<Example> [Example 1] 200 mm x 200 m in an aqueous solution of hydrosilicofluoric acid at a concentration of 2 mol/1 in which silica gel powder was dissolved until saturated.
After immersing an acrylic substrate with a size of mX 5 mm,
.. While continuously dropping a 5 mol/1 boric acid aqueous solution,
It was left for 45 hours.

そして、前記珪弗化水素酸水溶液中より前記アクリル基
板を引き上げたところ、膜厚が2.2μmの二酸化珪素
薄膜が得られた。
Then, when the acrylic substrate was pulled out of the aqueous solution of hydrosilicic acid, a silicon dioxide thin film having a thickness of 2.2 μm was obtained.

次に、前記二酸化珪素薄膜を前記アクリル基板より剥離
して、光線透過性膜とし、この光線透過性膜を直径15
0mm、高さ5mmの金属製の保持枠の側面に張設して
防塵体を得た。
Next, the silicon dioxide thin film is peeled off from the acrylic substrate to form a light-transparent film, and this light-transparent film has a diameter of 15 mm.
A dustproof body was obtained by attaching it to the side surface of a metal holding frame with a diameter of 0 mm and a height of 5 mm.

このようにして得られた防塵体の光透過率は、248n
mにおける透過率が99.0%であり、240〜500
nmにおける平均光線透過率は92.0%であった。
The light transmittance of the dustproof body thus obtained was 248n
Transmittance at m is 99.0%, 240-500
The average light transmittance in nm was 92.0%.

〔実施例2〕 実施例1で得られた二酸化珪素薄膜の両面に、真空蒸着
法により反射防止層5としてCaF2を50nmの厚さ
にコーティングしれ このようにして得られた反射コーティングを施した光線
透過性膜3は、230〜260nmの範囲にわたって9
9.8%以上の高い光透過率を示した。
[Example 2] Both sides of the silicon dioxide thin film obtained in Example 1 were coated with CaF2 to a thickness of 50 nm as an antireflection layer 5 by vacuum evaporation. The permeable membrane 3 has a wavelength of 9 over a range of 230-260 nm
It showed a high light transmittance of 9.8% or more.

〔発明の効果〕〔Effect of the invention〕

本発明によれに 基板上に二酸化珪素を析出させて薄膜
を形成し、これを単独膜化して光線透過性膜を得ること
によって、短波長光を長期間にわたって照射しても光分
解による膜の不透明化および膜の機械的強度の劣化を生
じることのない高光線透過性防塵体を得ることができる
According to the present invention, silicon dioxide is deposited on a substrate to form a thin film, and this is made into a single film to obtain a light-transmitting film. It is possible to obtain a dustproof body with high light transmittance without causing opacity or deterioration of the mechanical strength of the film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の実施例を示しており、第1図
は本発明によって得られる高光線透過性防塵体をマスク
に装着した断面図、第2図および第3図は光線透過性膜
の構造を示す断面図である。 1 高光線透過性防塵体 2・・保持枠    3 光線透過性膜4・マスク  
  5・反射防止層 5a 高屈折率層 5b 低屈折率層 S 保護空間
1 to 3 show examples of the present invention, in which FIG. 1 is a sectional view of a highly light transmitting dustproof body obtained by the present invention attached to a mask, and FIGS. 2 and 3 are rays of light. FIG. 2 is a cross-sectional view showing the structure of a permeable membrane. 1 High light transmittance dustproof body 2...holding frame 3 Light transmittance film 4/mask
5. Antireflection layer 5a High refractive index layer 5b Low refractive index layer S Protected space

Claims (3)

【特許請求の範囲】[Claims] (1)マスクに装着される保持枠と、この保持枠に取付
けられる透明な光線透過性膜とを備えた防塵体において
、珪弗化水素酸からなるシリカ飽和水溶液中に浸漬した
基板上に二酸化珪素を析出させて薄膜を形成し、この薄
膜を光線透過性膜として基板から単独膜化し保持枠を設
けたことを特徴とする高光線透過性防塵体の製造方法。
(1) In a dust-proof body equipped with a holding frame attached to a mask and a transparent light-transmitting film attached to this holding frame, a substrate immersed in a silica-saturated aqueous solution made of hydrosilicic acid 1. A method for manufacturing a highly light-transparent dust-proof body, which comprises depositing silicon to form a thin film, using the thin film as a light-transparent film to form a single film from a substrate, and providing a holding frame.
(2)前記二酸化珪素の析出の際に、珪弗化水素酸のシ
リカを飽和させて得た水溶液中に、ほう酸を添加するこ
とを特徴とする請求項1記載の高光線透過性防塵体の製
造方法。
(2) The high light transmittance dustproof body according to claim 1, wherein boric acid is added to an aqueous solution obtained by saturating silica of hydrosilicofluoric acid during precipitation of the silicon dioxide. Production method.
(3)前記二酸化珪素を析出して薄膜を得た後、この薄
膜の両面あるいは片面に反射防止層を形成して光透過性
膜としたことを特徴とする請求項1記載の高光線透過性
防塵体の製造方法。
(3) High light transmittance according to claim 1, characterized in that after the silicon dioxide is precipitated to obtain a thin film, an antireflection layer is formed on both or one side of the thin film to obtain a light transmitting film. A method of manufacturing a dustproof body.
JP2110966A 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance Pending JPH049061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110966A JPH049061A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110966A JPH049061A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Publications (1)

Publication Number Publication Date
JPH049061A true JPH049061A (en) 1992-01-13

Family

ID=14549024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110966A Pending JPH049061A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Country Status (1)

Country Link
JP (1) JPH049061A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351503B2 (en) 2001-01-22 2008-04-01 Photronics, Inc. Fused silica pellicle in intimate contact with the surface of a photomask
US9465317B2 (en) 2013-02-25 2016-10-11 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US9482987B2 (en) 2010-12-03 2016-11-01 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
US9482988B2 (en) 2011-11-25 2016-11-01 Ricoh Company, Limited Powder container and image forming apparatus
US9513576B2 (en) 2013-03-15 2016-12-06 Ricoh Company, Ltd. Powder container
US9740139B2 (en) 2012-06-03 2017-08-22 Ricoh Company, Ltd. Powder container including a container portion to be engaged with a powder replenishing device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351503B2 (en) 2001-01-22 2008-04-01 Photronics, Inc. Fused silica pellicle in intimate contact with the surface of a photomask
US9547258B2 (en) 2010-12-03 2017-01-17 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
US9482987B2 (en) 2010-12-03 2016-11-01 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
US10281843B2 (en) 2010-12-03 2019-05-07 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
US9983509B2 (en) 2010-12-03 2018-05-29 Ricoh Company, Ltd. Powder container, powder supply device and image forming apparatus
US11231661B2 (en) 2011-11-25 2022-01-25 Ricoh Company, Ltd. Powder container including a container body, nozzle receiver, and seal
US9482988B2 (en) 2011-11-25 2016-11-01 Ricoh Company, Limited Powder container and image forming apparatus
US11209748B2 (en) 2011-11-25 2021-12-28 Ricoh Company, Ltd. Powder container including a nozzle receiving opening and scoop
US11874613B2 (en) 2011-11-25 2024-01-16 Ricoh Company, Ltd. Powder container with a nozzle receiver
US11662672B2 (en) 2011-11-25 2023-05-30 Ricoh Company, Ltd. Nozzle receiver for use with a toner container
US9581937B2 (en) 2011-11-25 2017-02-28 Ricoh Company, Ltd. Powder container and image forming apparatus
US10156810B2 (en) 2011-11-25 2018-12-18 Ricoh Company, Ltd. Powder container and image forming apparatus
US10915039B2 (en) 2011-11-25 2021-02-09 Ricoh Company, Ltd. Powder container and image forming apparatus
US11397391B2 (en) 2011-11-25 2022-07-26 Ricoh Company, Ltd. Powder container including a container body, nozzle receiver, and seal
US10564573B2 (en) 2011-11-25 2020-02-18 Ricoh Company, Ltd. Powder container and image forming apparatus
US11347163B2 (en) 2011-11-25 2022-05-31 Ricoh Company, Ltd. Powder container including a nozzle receiving opening and scoop
US10474062B2 (en) 2012-06-03 2019-11-12 Ricoh Company, Ltd. Powder container and image forming apparatus
US11467516B2 (en) 2012-06-03 2022-10-11 Ricoh Company, Ltd. Powder container and image forming apparatus
US9740139B2 (en) 2012-06-03 2017-08-22 Ricoh Company, Ltd. Powder container including a container portion to be engaged with a powder replenishing device
US10948850B2 (en) 2012-06-03 2021-03-16 Ricoh Company, Ltd. Powder container and image forming apparatus
US9465317B2 (en) 2013-02-25 2016-10-11 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US10908532B2 (en) 2013-02-25 2021-02-02 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US10670990B2 (en) 2013-02-25 2020-06-02 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US10401760B2 (en) 2013-02-25 2019-09-03 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US10048621B2 (en) 2013-02-25 2018-08-14 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US11543761B2 (en) 2013-02-25 2023-01-03 Ricoh Company, Ltd. Powder container including an opening and a shutter with a front end including a surface with lower friction
US9857729B2 (en) 2013-02-25 2018-01-02 Ricoh Company, Ltd. Nozzle insertion member, powder container, and image forming apparatus
US10935905B2 (en) 2013-03-15 2021-03-02 Ricoh Company, Ltd. Powder container
US10809648B2 (en) 2013-03-15 2020-10-20 Ricoh Company, Ltd. Powder container
US10534290B2 (en) 2013-03-15 2020-01-14 Ricoh Company, Ltd. Powder container
US9513576B2 (en) 2013-03-15 2016-12-06 Ricoh Company, Ltd. Powder container
US11803134B2 (en) 2013-03-15 2023-10-31 Ricoh Company, Ltd. Powder container

Similar Documents

Publication Publication Date Title
US7492510B2 (en) Optical element having antireflection film, and exposure apparatus
US7604906B1 (en) Films for prevention of crystal growth on fused silica substrates for semiconductor lithography
TWI431415B (en) A photomask unit comprising a photomask and a pellicle attached to the photomask and a method for fabricating a photomask unit
US5661596A (en) Antireflection film and exposure apparatus using the same
JP2002182373A (en) Pellicle, method for producing the same and photomask
KR910005878B1 (en) Process for preparing thin film having high light transmittance
US7553551B2 (en) Pellicle frame
JPH049061A (en) Manufacture of dustproof body high in light transmittance
US20090042107A1 (en) Pellicle for high numerical aperture exposure device
US7419760B2 (en) Top anti-reflective coating composition, method for forming the pattern of a semiconductor device using the same, and semiconductor device comprising the pattern
US3824100A (en) Transparent iron oxide microcircuit mask
JPS6322576B2 (en)
JPS63262651A (en) Photomask protective film
KR20070105236A (en) Pellicle for lithography
JP4371458B2 (en) Pellicle manufacturing method
JPH06242596A (en) Substrate with light shielding film and its production
JP2003151881A (en) Pattern transfer method and photomask thereof
JPH02158735A (en) High ray transmittable dustproof body
JPH03276154A (en) Production of dustproof body having high light transmittance
JP3323673B2 (en) Antireflection film, optical system provided with the antireflection film, and exposure apparatus and device manufacturing method using the optical system
JP3943740B2 (en) Antireflection film and optical system provided with the same
JPH02269343A (en) Production of semiconductor integrated circuit device
JPH0470749A (en) Production of high ray transmittable dustproof body
JPS6231855A (en) Mask blank with pellicle
JPS6063537A (en) Photoworking negative