JPS61131814A - Optimum sawing method of shape steel - Google Patents

Optimum sawing method of shape steel

Info

Publication number
JPS61131814A
JPS61131814A JP25329884A JP25329884A JPS61131814A JP S61131814 A JPS61131814 A JP S61131814A JP 25329884 A JP25329884 A JP 25329884A JP 25329884 A JP25329884 A JP 25329884A JP S61131814 A JPS61131814 A JP S61131814A
Authority
JP
Japan
Prior art keywords
length
sawing
order
lengths
ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25329884A
Other languages
Japanese (ja)
Inventor
Haruo Kozono
小園 東雄
Hiroshi Higashinaka
東中 宏
Masahiko Sugimoto
雅彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25329884A priority Critical patent/JPS61131814A/en
Publication of JPS61131814A publication Critical patent/JPS61131814A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D36/00Control arrangements specially adapted for machines for shearing or similar cutting, or for sawing, stock which the latter is travelling otherwise than in the direction of the cut

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To keep a sawing yield rate ever so high throughout a roll chance as a whole, by determining required sawing numbers at every ordering size, while leading in plural parameters such as required sawing residual numbers and the like, and determining an assortment so as to minimize a cutoff quantity. CONSTITUTION:Actual extension length of the product rolled by a finish rolling mill 1 is measured by a length gauge 2 and it is inputted into a calculation system 3. Since there are partially some varieties a rolling mill 14 comes to the final stand, as for these varieties, the actual extension length is inputted into the calculation system 3 from a length gauge 4. On the other hand, a charging order file for blooms is inputted into the calculation system 3 from a heating furnace charging bed 5 while ordering dimensional length at every roll chance and the number are inputted into the calculation system 3 from an input terminal 6. Seven kinds of optimum sawing plans are made out from these information data in advance, from which a kind of the most suitable optimum sawing plan for the actual extension length is selected, and a cutting instruction is fed to hot sawing cutters 7 and 8 and a sizing machine 9. Simultaneously, operation guides and various files are outputted to a terminal machine of a sawing operation chamber 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、形鋼工場における最適鋸断方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optimal sawing method in a section steel factory.

〔従来の技術〕[Conventional technology]

形鋼工場における鋸断作業は60〜120m程度に圧延
されたアズロール材から注文長さに応じて7m〜50m
の注文尺に鋸断する(7m未満の注文尺については、搬
送設備等の制約の為、注文尺の整数倍の長さで、7m以
上の借入として鋸断する)作業であるが、後工程での作
業のしやすさ、冷却床の設備能力鋸断ピッチを考えに入
れて多種の注文尺を組み合わせて、なおかつ切り捨て量
を最小にするように鋼片ごとの鋸断計画を作成すること
は非常に複雑な作業である。しかも鋼片の圧延が終了し
実圧延伸び長さが判明してから、鋸断するまでには時間
的に数秒の余裕しかなく人手で鋸断計画を作成するのは
難かしい。
Saw cutting work at a shape steel factory starts with azurol material that has been rolled to about 60 to 120 m, and then cuts from 7 m to 50 m depending on the ordered length.
(Customized lengths of less than 7m are cut to a length of 7m or more due to restrictions on transportation equipment, etc., and are cut to a length that is an integral multiple of the ordered length.) However, the post-process It is possible to create a sawing plan for each billet by combining various custom lengths, taking into account the ease of work at the steel plate, the equipment capacity of the cooling bed, and the sawing pitch, while also minimizing the amount of cutoff. This is a very complex task. Moreover, after the actual rolling elongation length of the steel billet is completed and the actual rolling elongation length is known, there is only a few seconds to spare before sawing, and it is difficult to create a sawing plan manually.

そこで近年上記作業を自動化し、計算機による制御が考
えられてきた。すなわち計算機内で最適鋸断計画を作る
方法であり、この例としては例えば特開昭53−890
84号「圧延材の最適鋸断方法」等が知られている。こ
の先行技術の基本的な考え方は、予想圧延伸び長さを基
にした注文尺の組み合わせと切り捨て量の見込みの推定
であり、予想圧延伸び長さについては(鋼片単重)÷(
製品の単位重量)を平均とした正規分布が考えられてい
る。しかし実圧延伸び長さのバラツキの中には、正規分
布に従うであろうと考えられる鋼片単重のバラツキ以外
にも、鋼片の在炉時間の長短による焼べり量の大小、表
面キズ除去の為の熱間溶剤装置による溶削代の大小、各
圧延機の圧下量の変更あるいはロールの摩耗による製品
単重の変動等の正規分布にのらないバラツキ要因は数多
く存在する。さらに何種類かの単重を持った鋼片が同じ
ロール・チャンスで用いられることもあり、実鋼片伸び
長さが正規分布に従かうとはいいがたい。
Therefore, in recent years, attempts have been made to automate the above-mentioned work and control it using a computer. In other words, it is a method of creating an optimal sawing plan within a computer.
No. 84, ``Optimal Saw Cutting Method for Rolled Materials,'' etc. are known. The basic idea of this prior art is to estimate the expected cut-off amount and the combination of order lengths based on the expected rolling elongation length.
A normal distribution with the average of the unit weight of the product is considered. However, the variation in the actual rolling elongation length includes not only the variation in the unit weight of the steel billet, which is thought to follow a normal distribution, but also the amount of burning due to the length of time the billet is in the furnace, and the amount of surface scratch removal. There are many factors that cause variations that do not fit into the normal distribution, such as the size of the cutting allowance by the hot solvent equipment used for this purpose, changes in the rolling reduction of each rolling mill, and variations in the product unit weight due to roll wear. Furthermore, steel billets with several types of unit weights may be used in the same roll chance, so it is difficult to say that the actual steel billet elongation length follows a normal distribution.

このことは切り捨て量の見込みが大幅に乱れる可能性を
示唆している。
This suggests that the estimate of the amount to be cut may be significantly disrupted.

また一本の鋼片の取り合わせを考える際、注文尺の候補
を3種類に集約しているが、これは鋼片伸びのバラツキ
に追従しきれずに切り捨て量を大きくすることを意味す
る。一方、同公報中に述べているように注文尺の候補を
全注文尺に拡大すると、鋼片一本ごとの切り捨て量が大
きくなる可能性はないが、ロール・チャンス(圧延単位
)終了間際に注文量を消化した注文尺の発生の為、注文
尺の種類が少なくなり、取り合わせを決定する組み合わ
せの自由度が減少して全体の歩留を低下させる場合があ
る。
In addition, when considering the combination of a single steel billet, the order length candidates are grouped into three types, but this means that the amount of cut-off is increased because it cannot fully follow the variation in the elongation of the steel billet. On the other hand, as stated in the same bulletin, if the custom length candidates are expanded to include all custom lengths, there is no possibility that the amount of cut-off for each billet will become large, but the Since the order size is generated after the order quantity has been used up, the number of types of order sizes decreases, and the degree of freedom in determining combinations decreases, which may reduce the overall yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はこのような状況に鑑みてなされたものであり、
ロール・チャンス単位に、最終的に注文尺の注文本数を
確保できるように注文−級歩留を考慮して注文尺ごとに
要鋸断本数を決定し、鋼片単位に全注文尺の中からロー
ル・チャンス終了間際の取り合わせの自由度を残すこと
を考慮する為、要鋸断残本数を始めとする複数のパラメ
ータを導入して切り捨て量を最少とするよう取り合わせ
を決定し、なおかつ前工程、後工程の能力を最大限に引
き出しながら、最終的に必要な注文尺の注文量を満足す
る製品を作りだす形鋼の最適鋸断方法を提供することを
目的としたものである。
The present invention was made in view of this situation, and
In order to ensure the final number of ordered lengths for each roll/chance, the number of saws required for each ordered length is determined in consideration of the order-grade yield, and the number of saws required for each ordered length is determined for each billet from among all ordered lengths. In order to leave flexibility in the arrangement just before the end of the roll chance, we introduced multiple parameters including the number of remaining saws to determine the arrangement to minimize the amount of cutting, and in addition, in the previous process, The purpose of this invention is to provide an optimal sawing method for sectioned steel that maximizes the capabilities of post-processing while ultimately producing products that satisfy the required custom size and quantity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の形鋼の最適鋸断方法は、形鋼のロール・チャン
スごとに与えられた単一長さまたは長さの異なる組合せ
を持つ注文尺ごとの注文本数を生産する際にア)注文尺
の長さごとの鋸断歩留を考慮に入れてロール・チャンス
ごとに注文尺ごとの必要鋸断本数を決定しイ)ロール・
チャンス途中のある時点で[今鋸断するのは好ましくな
い注文尺である」というFUZZY集合に属する帰属度
関数を注文尺ごとに決定しつ)同時に各注文尺ごとに作
業のしやすさを示す線形結合パラメータを決定し工)鋸
断される鋸断の予想圧延伸び長さをその前後等間隔に3
種類ずつ計7種類の予想圧延伸び長さそれぞれについて
考えられる注文長さとクロップ長さのあらゆる組合せを
作成しオ)注文尺ごとの線形結合パラメータと帰属度関
数の積の小計と、クロップ長のペナルティを加えた合計
にさらに全体を考慮したペナルティを加味したものを不
適合度としこれを最小とする注文尺の組合せを予想圧延
伸び長さ7種類ごとに決定し力)さらにこの7種類の注
文尺の組み合わせについて注文尺の切断順を考える際に
[切断するのには好ましくない順序である。」というr
FUZZY集合」に属する帰属度関数を各注文尺の並び
ごとに決定しキ)各注文尺の組合せに関してあらゆる注
文尺の並べ方を考慮し力)の帰属度関数の合計を最小と
するような並べ方を求め、これを該当鋼片に関する最適
鋸断計画としり)実際に該当鋼片が圧延された時点で、
実圧延伸び長さを測定し、これを最適鋸断計画の7種類
と比較して最も切り捨て量の少ない鋸断計画に従って鋸
断しケ)すべての注文尺の鋸断本数すべてを消化したと
きはロール・チャンスを終了し、そうでない時は前記イ
)へ戻って当該ケ)までの工程を繰り返すことを特徴と
するものである。
The optimal sawing method for section steel according to the present invention is achieved by: (1) when producing the ordered number of sections having a single length or different combinations of lengths given for each roll chance of the section steel; Determine the required number of saws for each ordered length for each roll and chance, taking into account the sawing yield for each length.
At some point during the opportunity, determine the degree of belonging to the FUZZY set that says, ``It is an undesirable order to cut now'' for each order, and at the same time show the ease of work for each order. Determine the linear combination parameters and calculate the expected rolling elongation length of the saw cut at equal intervals before and after the cut.
Create all possible combinations of order length and crop length for each of the seven expected rolling elongation lengths, e) Subtotal of the product of the linear combination parameter and membership function for each order length, and the crop length penalty. The nonconformity is determined by adding the penalty considering the whole to the total, and the combination of order lengths that minimizes this is determined for each of the seven expected rolling elongation lengths. When considering the order of cutting custom lengths for combinations, it is important to note that this is an unfavorable order for cutting. "r"
FUZZY set" is determined for each arrangement of order scales, and (g) considers all ways of ordering order scales for each combination of order scales, and determines the arrangement that minimizes the sum of the membership function of (This is determined as the optimal sawing plan for the applicable steel slab) When the applicable steel slab is actually rolled,
Measure the actual rolling elongation length, compare it with 7 types of optimal sawing plans, and saw according to the sawing plan with the least amount of cutting.) When all the number of saws of all ordered lengths have been cut This is characterized by ending the roll chance, and if not, returning to step (a) and repeating the steps up to (e).

〔実施例〕〔Example〕

以下図面に示す実施例に基いて本発明を具体的に説明す
る。
The present invention will be specifically described below based on embodiments shown in the drawings.

第1図は、本発明の最適鋸断法が実施される形鋼最適鋸
断システムの構成を示す。
FIG. 1 shows the configuration of a section steel optimal sawing system in which the optimal sawing method of the present invention is implemented.

仕上げ圧延機1で圧延終了した製品の実圧延伸び長さを
長さ計2で測定し計算機システム3に入力する。一部V
 2 E +圧延機14が最終スタンドとなる品種があ
るため、この品種については長さ計4から実圧延伸び長
さを計算機システム3に入力する。一方針算機システム
3には加熱炉チャージング・ベッド5より鋼片の装入順
ファイルと入力端末6からロール・チャンスごとの注文
尺長さとその注文本数が入力されている。これらの情報
から前もって最適鋸断計画を7種類作っておき、実圧延
伸び長さにもっともよ(適合した最適鋸断計画一種を選
択し、熱間鋸断機7.8及び定寸機9に切断指示を送る
。同時に鋸断運転室10にある端末機に鋸断機運転者へ
のオペガイド、各種帳票類を出力し、同時にデータ入力
を受けつける。
The actual rolling elongation length of the product that has been rolled in the finish rolling mill 1 is measured using a length meter 2 and input into the computer system 3. Some V
2 E + Since there is a product type in which the rolling mill 14 is the final stand, for this product type, the actual rolling elongation length from the total length 4 is input into the computer system 3. On the other hand, the billet charging order file from the heating furnace charging bed 5 and the ordered length and number of pieces ordered for each roll chance are input to the needle counter system 3 from the input terminal 6. Create 7 types of optimal sawing plans in advance from this information, select the optimal sawing plan that best matches the actual rolling elongation length, and apply it to the hot sawing machine 7.8 and sizing machine 9. A cutting instruction is sent.At the same time, an operating guide for the saw operator and various forms are output to the terminal in the saw operator's room 10, and data input is accepted at the same time.

なお図中11は加熱炉、12はブレークダウン(BD)
圧延機、13はv1圧延機、15はV:+E2圧延機を
示している。
In the figure, 11 is the heating furnace, and 12 is the breakdown (BD).
13 is a v1 rolling mill, and 15 is a V:+E2 rolling mill.

しかして、最適鋸断システムを大きく3つの段階に分け
ると、 注文尺長さ及び注文本数からロールチャンスで鋸断すべ
き注文尺ごとの要鋸量の計算・・・・・・ステップ(S
TEP)  1、各鋼片ごとの注文尺取り合せ決定・・
・・・・ステップ2、各組み合わせ中の注文尺の鋸断順
の決定・・・・・・ステップ3となる。以下各ステップ
についてその詳細を述べる。
Therefore, the optimal sawing system can be roughly divided into three steps: Calculating the required sawing amount for each ordered length to be sawed with a roll chance from the ordered length and the number of ordered pieces. Step (S)
TEP) 1. Deciding on the order length for each piece of steel...
. . . Step 2: Determination of cutting order of custom lengths in each combination . . . Step 3. The details of each step will be described below.

ステップ1はロールチャンス中での長さ別の注文本数よ
り長さ別の要鋸本数を算出することが目的である。この
要鋸本数の算出の際留意しておく基本的事項が2点ある
。まず第一点は鋸断総量(総延べ長さ、あるいは総重量
)に関する事項である。第2図は鋸断総量と注文品との
関係を表わしているが、鋸断総量と注文充当高量の比を
「注文−級歩留」と呼んでおり、以下本発明ではこれを
「鋸断歩留」という。即ち であり、過去の実積からその計画値が設定されている。
The purpose of step 1 is to calculate the number of required saws for each length from the number of orders for each length during the roll chance. There are two basic points to keep in mind when calculating the required number of saws. The first point is regarding the total cutting amount (total length or total weight). Figure 2 shows the relationship between the total amount of sawed products and the ordered products. It's called danyoru. That is, the planned value is set based on past actual results.

従って注文総量から鋸断総量を算出するには、この注文
−級歩留を使用すれば最適な数値を求めることが可能と
なる。
Therefore, when calculating the total cutting amount from the total order amount, it is possible to obtain the optimal value by using this order-grade yield.

次に第2の事項は注文尺長さ構成によるものである。あ
る一つの注文尺構成(長さ別、注文本数の組合せ)は注
文時付加されている規格、仕様により決定する。即ち同
一材料で同一圧延条件で圧延可能なものをグループ化し
てまとめた結果一つの注文尺構成テーブルが作成され、
以下の計算を実施する際の「り(す」になる。この((
りの中には数種の注文尺と各々の注文本数がそのデータ
として存在する。これらくくりの一つ一つに(L)式の
関係を適用すると、そのくくりが集合した一品種全体に
ついて(1)式の関係が満たされることになるので(1
)式の関係を各々の(くりに適用することにする。とこ
ろで(11式の関係を本数で表わすととなり、注文量の
種類P種についてすべて(2)式をあてはめればくくり
全体として(1)式は満足されることとなる。
Next, the second issue is due to the length structure to be ordered. A particular order size configuration (combination of length and order quantity) is determined by the standards and specifications added at the time of order. In other words, a single order length configuration table is created by grouping together items that are made of the same material and can be rolled under the same rolling conditions.
This is the ``ris'' when performing the following calculations.This ((
The data includes several types of order lengths and the number of each order. If we apply the relationship of formula (L) to each of these combinations, the relationship of formula (1) will be satisfied for the entire variety of the combination, so (1
) equation is applied to each (kuri).By the way, the relationship of equation (11) can be expressed in terms of the number of units, and if equation (2) is applied to all order quantity types P, the entire kuri (1 ) will be satisfied.

ところが長尺、短尺の間の関係は平等ではなく、次の性
質があることを考慮せねばならない。
However, the relationship between long and short lengths is not equal, and the following properties must be taken into account.

(a)注文量長尺:この尺の切下げ及び注文外−級(鋸
断−級成品一注文本数)は更に短い尺への充当が可能で
ある。
(a) Order quantity long length: This length can be rounded down and non-order grade (cutting grade product 1 ordered quantity) can be applied to even shorter length.

ただし不良が多くて切下げ、層化の成品が多発した場合
は注文を満足することが出来ない場合がある。従ってよ
り多く鋸断した方が安全である。
However, if there are many defective products resulting in devalued or stratified products, we may not be able to fulfill orders. Therefore, it is safer to saw more.

山)注文中間尺:長尺からの切下げ、注文外発生による
充当が見込まれ、逆にこの尺自身の切下げ、注文外発生
は短尺への充当が可能となる。
Mountain) Intermediate shaku ordered: It is expected that the shaku itself will be devalued and the out-of-order occurrences will be allocated to the short shaku.

(C1注文最短尺:最長尺、中間尺よりの充当品が相当
見込まれる。従って(1)式で算出される鋸装置よりも
少ない本数で、注文充当が可能な場合が多い。
(C1 Order shortest length: It is expected that a considerable number of items will be filled from the longest length and intermediate length. Therefore, it is often possible to fill orders with fewer saw devices than the number calculated by formula (1).

以上の性質を満足して、各長さ別の注文本数を得る為に
は長さ別に異った注文−級歩留としての鋸断歩留を設定
して、要鋸断本数を算出すればよいことになる。即ち(
2)式のB’  (注文−級歩留)を注文量ごとに変化
させることにより((3)式)前述の3点の性質を考え
た要鋸断本数を設定できる。
In order to satisfy the above properties and obtain the number of pieces ordered for each length, set the saw cutting yield as a different order-grade yield for each length and calculate the number of pieces required to be sawed. It will be a good thing. That is, (
By changing B' (order-grade yield) in equation 2) for each order quantity (formula (3)), it is possible to set the number of pieces to be cut, taking into account the above-mentioned three properties.

以下このBiの設定の方法を述べる。The method for setting Bi will be described below.

各くくりごとに第3図のような図式化モデルを考える。Consider a diagrammatic model like the one shown in Figure 3 for each link.

ここで横軸は長さを表わし、A点はく(り中の注文量の
総延べ長さを示す。縦軸は鋸断歩留の逆数を表示し、B
点は鋸断歩留の逆数を示す。
Here, the horizontal axis represents length, and point A represents the total length of the ordered quantity during cutting.The vertical axis represents the reciprocal of the cutting yield, and
The points indicate the reciprocal of the sawing yield.

ところで最長尺の鋸断歩留は過去の実績より決定された
値をとるものとし、縦軸に0点でその逆数の位置を示す
。ここで第3図中にB−Dの中点Eをとる。又横軸上に
(注文量長さ)×(注文本数)の値つまり注文量ごとの
延べ長さを注文量長い さの短かい順に割りつけて清く。つまりに−Rは最短尺
、R−3は2番目に短い尺でありF−Aは最長尺を示す
ことになる。次にF−Aの中点とCと −Gの交点をHとしてEIHを通る直線lを書き込み、
横軸に表現された各注文量ごとの延べ長さの中点でのe
の値を求めて各該当注文量での鋸断歩留の逆数とする(
例■点、J点)。
By the way, the cutting yield of the longest length is assumed to be a value determined based on past results, and the vertical axis indicates the position of the reciprocal of the 0 point. Here, the midpoint E of B-D in FIG. 3 is taken. Also, on the horizontal axis, the value of (order quantity length) x (order quantity), that is, the total length for each order quantity, is assigned in descending order of order quantity length. In other words, -R is the shortest length, R-3 is the second shortest length, and FA is the longest length. Next, write a straight line l passing through EIH with H being the midpoint of F-A and the intersection of C and -G.
e at the midpoint of the total length for each order quantity expressed on the horizontal axis
Find the value of and use it as the reciprocal of the sawing yield for each applicable order quantity (
Example: point ■, point J).

このようにすると例えば第3図中の斜線を施したA−F
−P−Gの面積Siは Si = xiXMi X−・・聞・・・(4)(xl
:注文量の長さ であるから、長さxl の尺の鋸断総長さである。
If you do this, for example, the shaded area A-F in Figure 3
-The area Si of P-G is Si = xiXMi X-... (4) (xl
: Since it is the length of the ordered quantity, it is the total length of sawing of the length xl.

またHはP−Gの中点であるからA−F−P−Gは台形
A−F−Q−Nに等しい。この関係はすべての注文量に
ついて当てはまり S=ΣSi             ・・・・・・・
・・(5)i=1 で示される総鋸断量Sは第3図中の台形の総合計A−に
−M−Nとして表現されるが、これはEがB−Dの中点
であることによりA−に−B−Dに等しい。
Also, since H is the midpoint of P-G, A-F-P-G is equal to trapezoid A-F-Q-N. This relationship holds true for all order quantities: S=ΣSi ・・・・・・・・・
...(5) The total sawing amount S shown by i=1 is expressed as -M-N in the total sum A- of the trapezoid in Fig. 3, but this is because E is the midpoint of B-D. A- is equal to -B-D because of something.

であるからSは(11式で示した最適な要鋸断総延べ長
さになる。
Therefore, S becomes the optimal total cutting length shown in equation 11.

以上証明したように第3図中の直線lにより決定された
各鋸断歩留(Bi)を採用することにより計算の基本と
して示した2点((1)式と(3)式の関係)の項目が
満足されることになる。実際のシステムでは注文量ごと
の要鋸断本数が必要であるため(3)式を使って要鋸断
本数を求め、ステップ1は終了する。ステップ2は、ス
テップ1で算出された鋸断本数を過不足なくしかも使用
鋼片本数をできるだけでけ少な(、すなわち鋸断歩留を
上げるべく鋼片一本一本に対する注文量の割り付けすな
わち注文尺の取り合わせを行なう。つまりここに 小さいものを探すことにほかならない。しかし注文尺の
種類数Pが多(なると同じαを示すnl。
As proven above, two points (relationship between equations (1) and (3)) are shown as the basis of calculation by adopting each saw cutting yield (Bi) determined by the straight line l in Fig. 3. The following items will be satisfied. In an actual system, the required number of saws to be cut is required for each order quantity, so the required number of saws to be cut is determined using equation (3), and step 1 is completed. Step 2 is to ensure that the number of sawn pieces calculated in Step 1 is not too much or too small, and that the number of steel billets used is as small as possible (i.e., allocating the order amount to each billet in order to increase the sawing yield; that is, ordering Arrange the lengths.In other words, you are looking for a small one.However, if the number of types of ordered lengths P is large (nl indicating the same α).

X、の組み合わせは数多く存在する。この中からロール
チャンスの終了間隙に取り合わせの自由度を残すような
取り合わせを考える必要がある。そこで各注文尺が「現
時点で鋸断するのは好ましくない注文尺である」という
FUZZY (あいまい)集合に属する帰属度関数y1
 を注文尺ごとに決定する。yl は せの不適合度2を と定義する。このZを最小とするnl +  Xl +
  αの組み合わせを予想鋼片伸び長さしの最適取り合
わせとする。
There are many combinations of X. From among these, it is necessary to consider an arrangement that leaves a degree of freedom in arrangement during the end gap of the roll chance. Therefore, each order length belongs to the FUZZY (fuzzy) set such that "it is an undesirable order length to cut at this moment", which is a membership degree function y1.
is determined for each order length. yl The unfitness degree of 2 is defined as . Minimize this Z nl + Xl +
Let the combination of α be the optimal combination of expected billet elongation lengths.

例として注文尺xI、要鋸残本数N i 、帰属度関数
y1.線形結合パラメータq1 をそれぞれ表1に掲げ
る。
For example, the order length xI, the number of remaining saws N i required, the degree of belonging function y1. The linear combination parameters q1 are listed in Table 1.

表   1 (*25Mを移動鋸にセットする為) 今仮にクロップを考えず鋼片伸び長さが60Mで、α=
0の取り合わせだけを考えても表2のように6種類ある
Table 1 (*To set 25M on a moving saw) Now, without considering cropping, if the elongation length of the steel billet is 60M, α=
Even if we consider only the combination of 0s, there are six types as shown in Table 2.

表   2 この例で各取り合わせに対して不適合度Zを計算すると
表2になり、この例では最適取り合わせは25.25.
10となる。しかしこの取り合わせで鋸断が行なわれて
いくと25M尺と10M尺の要鋸残が減少していき、最
適取り合わせは15゜15.15,1°5と変化する。
Table 2 In this example, when calculating the degree of unfitness Z for each combination, Table 2 is obtained, and in this example, the optimal combination is 25.25.
It becomes 10. However, as sawing is carried out with this arrangement, the amount of saw remaining required for the 25M scale and 10M scale decreases, and the optimal combination changes to 15°15.15 and 1°5.

この例でわかるように製鋸残本数の逆数というylの性
質上αの大きさが同じならば製鋸残本数の多い注文尺か
ら優先的に切断していき、注釈種類の数を減少させない
ようにしている。
As can be seen in this example, due to the nature of yl, which is the reciprocal of the number of remaining saws, if the size of α is the same, priority will be given to cutting from the ordered length with the largest number of remaining saws, so as not to reduce the number of annotation types. I have to.

また切り捨て量αとqαの関係から、qαを1程度にし
ておくと切り捨て量αの多い取り合わせはほとんど選択
されなくなり、鋸断歩留を上げることができる。逆にq
αを小さくすると歩留を多少犠牲にしても製鋸残本数の
多い注文尺を優先的 ゛に鋸断する。
Furthermore, from the relationship between the truncation amount α and qα, if qα is set to about 1, combinations with a large truncation amount α will hardly be selected, and the sawing yield can be increased. On the contrary, q
If α is made smaller, ordered lengths with a large number of remaining saws will be cut preferentially even if the yield is sacrificed to some extent.

このようにFUZZY集合の考え方を取り入れることに
より、鋼片ごとの鋸断歩留を高くしたまま、同時にロー
ルチャンス終了間際の取り合わせの自由度を残すことが
できる。しかし各パラメータの選定の方法により自由に
取り合わせの方法を変更することも可能となっている。
By adopting the concept of FUZZY sets in this way, it is possible to increase the sawing yield for each billet while at the same time leaving a degree of freedom in making arrangements just before the end of the roll chance. However, it is also possible to freely change the arrangement method depending on the method of selecting each parameter.

このようにして予想鋼片伸び長さしに対して最適取り合
せを決定するが、実鋼片伸び長さのバラツキに対応する
ため、一本の鋼片についてL−3d、L−2d、L−d
、L、L+d、  L+2cl。
In this way, the optimal combination is determined for the predicted elongation length of the steel billet, but in order to deal with variations in the actual elongation length of the steel billet, L-3d, L-2d, L- d
, L, L+d, L+2cl.

L+3dとdピッチで7種類の取り合わせを一鋼片につ
いて作成する。通常注文尺の長さと圧延伸びのバラツキ
を考慮してdは1mにとっである。
Seven types of combinations with L+3d and d pitches are created for one steel piece. Normally, d is set to 1 m, taking into consideration the variation in length and rolling elongation to be ordered.

また予想鋼片伸び長さLはロールチャンス開始時に(鋼
片重量)÷(製品のm当り単重)で計算するが、圧延開
始後は実鋼片伸び長さの動向によってLを修正して、バ
ラツキに追従している。
In addition, the expected elongation length L of the billet is calculated by (billite weight) ÷ (unit weight per meter of product) at the start of rolling, but after the start of rolling, L is corrected according to the trend of the actual billet elongation length. , follows the variation.

ステップ3はステップ2で作成した7種類の取り合わせ
の最適切断順を決定する。
Step 3 determines the optimal cutting order for the seven types of combinations created in step 2.

切断順の決定には第1図にある2台の鋸断機、定寸機の
特性及び後工程である冷却床での作業性を考えて決定す
る必要性がある。このような注文尺の切断順に関する要
因をAjとする。Ajには「切断順は各注文尺の長さの
差が一定の長さeの整数倍すなわちO,e、2e、3e
、・・・・・・であれば切断しやすい」というような切
断する注文尺の相互関係によるものや、「最終切断尺は
長い尺の方がよい」というような絶対的な位置によるも
のがある。
In determining the cutting order, it is necessary to consider the characteristics of the two saws and sizing machines shown in FIG. 1 and the workability in the cooling bed, which is a subsequent process. Let Aj be a factor related to the cutting order of the custom length. Aj says, ``The cutting order is such that the difference in the length of each ordered length is an integer multiple of the constant length e, that is, O, e, 2e, 3e.
, . be.

これらのAjごとに「切断するのには好ましくない順序
である」というFUZZY集合に属する帰属度関数fK
を決定する。例えば前述の「切断順は各注文尺の長さの
差が一定の長さeの整数倍すなわちQ、e、  2e、
3e、・・・・・・であれば切断しやすい」という要因
AKに対してのfKは第4図のように定義する。ここで
ステップ2で求めた各予想鋼片伸び長さに対する取り合
せの注文尺のあらゆる切断順を考えその各々に対して切
断順に関する不適合度Gを考える。
For each of these Aj, the degree of membership function fK belonging to the FUZZY set "is an unfavorable order for cutting"
Determine. For example, the above-mentioned "cutting order is such that the difference in the length of each ordered length is an integer multiple of the constant length e, that is, Q, e, 2e,
fK is defined as shown in FIG. 4 for the factor AK, ``If it is 3e, . . ., it is easy to cut.'' Here, consider all the cutting orders of the ordered lengths for each predicted steel billet elongation length determined in step 2, and consider the degree of unsuitability G regarding the cutting order for each order.

G = Σ  hjXF(Aj) j=1 このGを最小とする切断順を最適切断順序とじてステッ
プ2で求めた7種類の予想鋼片伸び長さすべてについて
最適切断順序を求め、その順に並べ直したものを最i1
!鋸断計画とする。
G = Σ hj The most i1
! A cutting plan will be used.

例として取り合わせを10.12.15の3尺として、
簡単にするために要因は前述のAK (e=3)しかな
いとして各切断順についてのGを求めると表3となる。
As an example, let's set the arrangement as 3 shaku: 10.12.15.
For the sake of simplicity, assuming that the only factor is the aforementioned AK (e=3), G for each cutting order is determined as shown in Table 3.

表   3 すなわち順位lのものはどれでも切lfr順に関しては
同じ条件となる。通常この要因AKは6〜7N用いられ
ている。
Table 3 In other words, the conditions for the cut lfr order are the same regardless of the order l. Usually this factor AK is 6 to 7N.

以上のステップ1、ステップ2、ステップ3を通して得
られた7種の最適鋸断計画に対して、実際に圧延された
鋼片の実鋼片伸び長さを測定し、冷間長さに変換した後
試験在や形寸サンプル採取指示のある時はその必要長さ
を差し引き、さらにクロップ化をも差引いた有効鋸断長
さを比較して、もっとも切り捨て量の少ない取り合わせ
を選択して鋸断する。この鋸断実績を要鋸残本数に反映
させて次回以後の最適鋸断計画に利用する。
For the seven optimal cutting plans obtained through Steps 1, 2, and 3 above, the actual elongation length of the actually rolled steel billet was measured and converted to cold length. When there is an instruction to take post-test or size samples, subtract the required length, and compare the effective sawing lengths by subtracting cropping, and select the combination with the least amount of cutting and sawing. . This sawing performance is reflected in the number of remaining saws required and used for the next optimal sawing plan.

〔発明の効果〕〔Effect of the invention〕

以上の如き方法で最適鋸断計画を行なうことを原則とす
るが、切り捨て量αが前もって設定されりまぜて切り捨
て長さαを小さくすることもできる。
In principle, the optimal sawing plan is performed in the manner described above, but the cutoff length α can also be set in advance and mixed to reduce the cutoff length α.

また当方法はすべて計算機システムによる自動化がなさ
れているが、取り合せの線形結合パラメータqi 、切
り捨て量αのペナルティqα、取り合わせ全体のペナル
ティqa□1等を鋸断現場にいる作業者が自由に変更で
き、いつでも取り合わせの内容を変更できるようになっ
ている。また予想鋼片伸び長さの一部または全部を切断
順も含めて鋸断現場の作業者が指定し、残りの長さに対
してシステムが取り合わせをつくることも可能となって
いる。
In addition, although this method is entirely automated by a computer system, the operator at the sawing site can freely change the linear combination parameter qi of the set, the penalty qα for the cut-off amount α, the penalty qa□1 for the entire set, etc. , the contents of the arrangement can be changed at any time. It is also possible for the operator at the cutting site to specify part or all of the expected elongation length of the steel billet, including the cutting order, and the system to make arrangements for the remaining length.

本発明は鋸断歩留をロールチャンス全体を通じて高いレ
ベルに保つことが可能となり、産業利用価値の極めて高
い発明である。
The present invention makes it possible to maintain the sawing yield at a high level throughout the entire roll process, and is an invention with extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の最適鋸断法が適用された鋸断システム
の構成を示す説明図、第2図は鋸断総量と注文品との関
係を示す説明図、第3図は本発明を説明するための延べ
長さと鋸断歩留の逆数との関係を示す図表、第4図は同
様にFUZZY集合に属する帰属度函数と注文尺の長さ
の差との関係を示す説明図である。
Fig. 1 is an explanatory diagram showing the configuration of a sawing system to which the optimal sawing method of the present invention is applied, Fig. 2 is an explanatory diagram showing the relationship between the total amount of sawing and ordered products, and Fig. 3 A diagram showing the relationship between the total length and the reciprocal of the sawing yield for explanation, and FIG. 4 is an explanatory diagram showing the relationship between the membership degree function belonging to the FUZZY set and the difference in length of the ordered length. .

Claims (1)

【特許請求の範囲】 形鋼のロール・チャンスごとに与えられた単一長さまた
は長さの異なる組合せを持つ注文尺ごとの注文本数を生
産する際に ア)注文尺の長さごとの鋸断歩留を考慮に入れてロール
・チャンスごとに注文尺ごとの必要鋸断本数を決定し イ)ロール・チャンス途中のある時点で「今鋸断するの
は好ましくない注文尺である」というFUZZY集合に
属する帰属度関数を注文尺ごとに決定し ウ)同時に各注文尺ごとに作業のしやすさを示す線形結
合パラメータを決定し エ)鋸断される鋸断の予想圧延伸び長さをその前後等間
隔に3種類ずつ計7種類の予想圧延伸び長さそれぞれに
ついて考えられる注文長さとクロップ長さのあらゆる組
合せを作成し オ)注文尺ごとの線形結合パラメータと帰属度関数の積
の小計と、クロップ長のペナルティを加えた合計にさら
に全体を考慮したペナルティを加味したものを不適合度
としこれを最小とする注文尺の組合せを予想圧延伸び長
さ7種類ごとに決定し カ)さらにこの7種類の注文尺の組み合わせについて注
文尺の切断順を考える際に「切断するのには好ましくな
い順序である。」という「FUZZY集合」に属する帰
属度関数を各注文尺の並びごとに決定し キ)各注文尺の組合せに関してあらゆる注文尺の並べ方
を考慮しカ)の帰属度関数の合計を最小とするような並
べ方を求め、これを該当鋼片に関する最適鋸断計画とし ク)実際に該当鋼片が圧延された時点で、実圧延伸び長
さを測定し、これを最適鋸断計画の7種類と比較して最
も切り捨て量の少ない鋸断計画に従って鋸断し ケ)すべての注文尺の鋸断本数すべてを消化したときは
ロール・チャンスを終了し、そうでない時は前記イ)へ
戻って当該ケ)までの工程を繰り返すことを特徴とする
形鋼の最適鋸断方法。 但し鋸断歩留=注文充当品量/鋸断総量
[Claims] When producing the ordered number of pieces for each custom length having a single length or different combinations of lengths given for each roll chance of section steel, a) a saw for each length of the custom length; Determine the required number of saws for each order length for each roll chance by taking into account the cutoff yield; a) At a certain point during the roll chance, there is a FUZZY that says ``It is not desirable to cut the order length now.'' Determine the degree of membership function belonging to the set for each ordered length, c) At the same time, determine the linear combination parameter that indicates the ease of work for each ordered length, and d) calculate the expected rolling elongation length of the saw cut. Create all possible combinations of order lengths and crop lengths for each of the seven expected rolling elongation lengths, three at equal intervals before and after e) Subtotal of the product of the linear combination parameter and the degree of membership function for each order length , the sum of the crop length penalty and the overall penalty are considered as nonconformity, and the combination of order lengths that minimizes this is determined for each of the seven expected rolling elongation lengths. When considering the cutting order of custom lengths for combinations of different types of custom lengths, the degree of membership function that belongs to the "FUZZY set", which says "This is an unfavorable order for cutting," is determined for each order of custom lengths, and the key is determined. ) For each combination of ordered lengths, consider all ways of arranging the ordered lengths, find the arrangement that minimizes the sum of the membership functions of (f), and define this as the optimal sawing plan for the applicable steel billet. When the piece is rolled, measure the actual rolling elongation length, compare it with seven optimal sawing plans, and saw it according to the sawing plan with the least amount of cutting. An optimal sawing method for shaped steel, characterized in that the roll chance is terminated when all the number of cuts have been completed, and when not, the process returns to step (a) and repeats the steps up to step (e). However, sawing yield = order filled quantity / total sawing quantity
JP25329884A 1984-11-30 1984-11-30 Optimum sawing method of shape steel Pending JPS61131814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25329884A JPS61131814A (en) 1984-11-30 1984-11-30 Optimum sawing method of shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25329884A JPS61131814A (en) 1984-11-30 1984-11-30 Optimum sawing method of shape steel

Publications (1)

Publication Number Publication Date
JPS61131814A true JPS61131814A (en) 1986-06-19

Family

ID=17249338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25329884A Pending JPS61131814A (en) 1984-11-30 1984-11-30 Optimum sawing method of shape steel

Country Status (1)

Country Link
JP (1) JPS61131814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232502A (en) * 1990-05-31 1992-08-20 American Teleph & Telegr Co <Att> Method and apparatus for allocating restricted common resource
JP2007004304A (en) * 2005-06-21 2007-01-11 Nippon Steel Corp Shipping method for thick steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232502A (en) * 1990-05-31 1992-08-20 American Teleph & Telegr Co <Att> Method and apparatus for allocating restricted common resource
JP2007004304A (en) * 2005-06-21 2007-01-11 Nippon Steel Corp Shipping method for thick steel plate
JP4648772B2 (en) * 2005-06-21 2011-03-09 新日本製鐵株式会社 Manufacturing management device

Similar Documents

Publication Publication Date Title
US3841180A (en) Dividing rolled lengths of stock into merchant lengths
CN102455679B (en) Machining time predicting apparatus of numerically controlled machine tool
US3995478A (en) Plural interrelated set point controller
US6665572B2 (en) Method and device for operating an installation of a primary industry
JPS61131814A (en) Optimum sawing method of shape steel
JP3391261B2 (en) Production planning method and device
GB2089691A (en) Apparatus for conditioning processing of steel pipes or round bars
JP4492332B2 (en) Cast knitting apparatus and cast knitting method
JP2007257050A (en) Lot planning method, lot planning device, and computer program
CN112387780A (en) Novel steel rolling production process
CN106707994A (en) Steel rolling dynamic adjustment system and method
Tokuyama et al. The cutting stock problem for large sections in the iron and steel industries
JP5821463B2 (en) Billet cutting method
JP5862596B2 (en) Billet cutting plan creation device and billet cutting plan creation method
JP6477309B2 (en) Steelmaking production schedule creation device, steelmaking production schedule creation method, operation method, and steelmaking product manufacturing method
JP7011381B2 (en) How to determine the slab width
RU2112611C1 (en) Method for cutting rolled metallic pieces
Hnatushenko et al. MATHEMATICAL MODEL OF STEEL CONSUMPTION MINIMIZATION CONSIDERING THE TWO-STAGE BILLETS CUTTING.
JP3589199B2 (en) Slab cutting control device and continuous cast slab manufacturing method
JP2781860B2 (en) How to cut steel bars
JPS5830095B2 (en) Katakouno Saitekisetsudanhouhou
JPS61182716A (en) Method of redistributing bar steel
JP2023006476A (en) Information display system, information display method, and information display program
JP2008171169A (en) Product combination calculation method and apparatus
CN117715715A (en) Method for determining the defect probability of a cast product section