JPS61131235A - Information recording method - Google Patents

Information recording method

Info

Publication number
JPS61131235A
JPS61131235A JP59251889A JP25188984A JPS61131235A JP S61131235 A JPS61131235 A JP S61131235A JP 59251889 A JP59251889 A JP 59251889A JP 25188984 A JP25188984 A JP 25188984A JP S61131235 A JPS61131235 A JP S61131235A
Authority
JP
Japan
Prior art keywords
recording
energy
state
recording medium
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59251889A
Other languages
Japanese (ja)
Other versions
JP2910767B2 (en
Inventor
Tetsuo Minemura
哲郎 峯村
Yoshihira Maeda
佳均 前田
Hisashi Ando
寿 安藤
Tetsuo Ito
伊藤 鉄男
Shoichi Nagai
正一 永井
Ryuji Watanabe
隆二 渡辺
Seiki Shimizu
清水 誠喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59251889A priority Critical patent/JP2910767B2/en
Priority to US06/801,950 priority patent/US4651172A/en
Priority to CA000496335A priority patent/CA1238489A/en
Priority to DE8585308665T priority patent/DE3583599D1/en
Priority to EP85308665A priority patent/EP0186329B1/en
Priority to KR1019850008929A priority patent/KR920001263B1/en
Publication of JPS61131235A publication Critical patent/JPS61131235A/en
Application granted granted Critical
Publication of JP2910767B2 publication Critical patent/JP2910767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To improve reproducting sensitivity and facilitate rewriting by setting the spectral reflection factor of a recording part in a state obtained by quenching higher after high-energy application than in low-energy application. CONSTITUTION:When information is recorded on a recording medium which has different crystal structures in a cooling state after specific-intensity high energy is applied and in a cooling state after energy with lower intensity is applied, the spectral reflection factor in the cooling state after the high energy is applied is set higher than that in the cooling state after the low energy is applied. The recording medium has at least two kinds of reflection factors at the same temperature according to energy applied in a solid state and varies in spectral reflection factor reversibly; the spectral reflection factor RW in the cooling state, specially, after the high energy is applied is set higher than the reflection factor RE after the low energy is applied. Further, when RE<RW<gammaRE +(1-gamma), the recording and erasure of the recording medium are possible (gamma : effective energy ratio required to obtain a high and a low reflection factor state).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な情報記録方法に係り、特に高エネルギー
を投入した状態の分光反射率が低エネルギーを投入した
状態の分光反射率よりも高く変化させて、情報を記録す
る消去可能な情報記録方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel information recording method, in particular a method in which the spectral reflectance in a state in which high energy is applied changes higher than the spectral reflectance in a state in which low energy is applied. The present invention relates to an erasable information recording method for recording information.

〔発明の背景〕[Background of the invention]

近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザの光エネルギーを情報の記録消去、再生に利用し
た光ディスクは鉱業レアメタルiso、1983(光デ
ィスクと材料)に記載されているように磁気ディスクに
比べ、高い記録密度が可能であり、今後の情報記録の有
力な方式である。このうち、レーザによる再生装置はコ
ンパクト・ディスク(CD)として実用化されている。
In recent years, as information recording becomes more dense and digital, various information recording and reproducing methods are being developed. In particular, optical discs that use laser light energy to record, erase, and reproduce information are capable of higher recording densities than magnetic discs, as stated in the Mining Rare Metals ISO, 1983 (Optical discs and materials), and future information This is a powerful method of recording. Among these, laser playback devices have been put into practical use as compact discs (CDs).

ニガ、記録可能な方式には追記型と書き換え可能型の大
きく2つに分けられる。前者は1回の曹き込みのみが可
能であり、消去はできない。後者はくり返しの記録、消
去が可能な方式である。
Recordable formats can be broadly divided into two types: write-once type and rewritable type. The former can only be soaked once and cannot be erased. The latter is a method that allows repeated recording and erasing.

追記型の記録方法はレーザ光により記録部分の媒体を破
壊あるいは成形して凹凸をつけ、再生にはこの凹凸部分
でのレーザ光の干渉による光反射量の変化を利用する。
In the write-once type recording method, a laser beam is used to destroy or shape the recording portion of the medium to create unevenness, and for reproduction, a change in the amount of light reflected due to the interference of the laser beam at the uneven portion is used for reproduction.

この記録媒体にけTeやその合金を利用して、その溶解
、昇華による凹凸の成形が一般的に知られている。この
種の媒体では毒性など若干の問題を含んでいる。書き換
え可能型の記録媒体としては光磁気材料が主流である。
For this recording medium, it is generally known to use Te or its alloy to form irregularities by melting and sublimating it. This type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream for rewritable recording media.

この方法は光エネルギーを利用してキャリ一点あるいは
補償点温度付近で媒体の局部的な磁気異方性を反転させ
記録し、その部分での偏光入射光の磁気ファラデー効果
及び磁気カー効果による偏光面の回転量にて再生する。
This method utilizes optical energy to invert and record the local magnetic anisotropy of the medium near the carry point or compensation point temperature, and the polarization plane of the polarized incident light at that part due to the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation.

この方法は書き換え可能型の量も有望庁ものとして数年
後の実用化を目指し精力的な研究開発が進められている
。しかし、現在のところ偏光面の回転量の大きな材料が
なく多ノ響膜化などの種々の工夫をしてもS/N、C/
Nなどの出力レベルが小さいという大きな問題がある。
This method is also promising in terms of the amount of rewritable data, and active research and development is underway with the aim of putting it into practical use in the next few years. However, there is currently no material that has a large amount of rotation of the plane of polarization, and even with various efforts such as multi-acoustic membranes, the S/N and C/
There is a big problem that the output level of N etc. is small.

その他の書き換え可能型方式として記録媒体の非晶質と
結晶質の可逆的相変化による反射率変化を利用したもの
がある。
Other rewritable systems utilize reflectance changes due to reversible phase changes between amorphous and crystalline recording media.

例えばNational Technical Rep
ort Vol。
For example, National Technical Rep.
ort Vol.

29、A5’(1983)p、82記載のTeOxに少
量のゲルマニウム(Ge)、および(Sn)を添加した
薄膜はパワー密度が高くかつ短パルスのレーザビームを
照射することによって非晶質化しレーザビ度の低いレー
ザビームを照射して結晶化し記録部よりも反射率を高く
する方法で利用されている。
29, A5' (1983) p. 82, a thin film of TeOx doped with a small amount of germanium (Ge) and (Sn) is made amorphous by irradiation with a laser beam of high power density and short pulses, and becomes laser beam-resistant. It is used by irradiating it with a low-strength laser beam to crystallize it and make it have a higher reflectance than the recording part.

反射率の低い状態での記録の場合、例えばディスクにゴ
ミ、ホコリなどが付着すると、これらは反射率を低下さ
せる方向にはたらく。したがって記録された信号はゴミ
、ホコリなどによって、信      1号レベルが低
下することになる。
In the case of recording in a state where the reflectance is low, for example, if dirt or dust adheres to the disk, these will work to lower the reflectance. Therefore, the signal level of the recorded signal will be lowered due to dirt, dust, etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、結晶構造変化を利用した記録媒体を用
い、高エネルギー投入後の状態で高反射率とし、高感度
の再生を可能にした情報記録方法を提供するにある。
An object of the present invention is to provide an information recording method that uses a recording medium that utilizes crystal structure changes, has high reflectance after high energy input, and enables highly sensitive reproduction.

〔発明の概要〕[Summary of the invention]

本発明は、所定の強度の高エネルギーを投入後冷却した
状態と前記強度より低い強度の低エネルギーを投入後冷
却した状態で異った結晶構造を有する記録媒体への記録
方法において、高エネルギーを投入後冷却した状態の分
光反射率が低エネルギーを投入後冷却した状態の分光反
射率よりも高く変化させて情報を記録することを特徴と
する情報記録方法にある。
The present invention provides a method for recording on a recording medium having different crystal structures in a state in which high energy of a predetermined intensity is applied and then cooled, and a state in which low energy with an intensity lower than the intensity is applied and cooled. There is an information recording method characterized in that information is recorded by changing the spectral reflectance in a state where the information is cooled after being inputted to be higher than the spectral reflectance in a state where the spectral reflectance is cooled after being inputted with low energy.

本発明に係る記録媒体は固相状態でエネルギーを投入す
ることにより、同一温度で少なくとも2種の反射率を有
し、可逆的に分光反射率を変えることができるものであ
って、とくに高エネルギーを投入後冷却した状態の分光
反射率が、低エネルギーを投入後冷却した状態の反射率
よりも高く変化できる記録媒体である。
The recording medium according to the present invention has at least two types of reflectance at the same temperature by inputting energy in a solid state, and can reversibly change the spectral reflectance. It is a recording medium whose spectral reflectance in a state where it is cooled after being charged with low energy can change higher than the reflectance in a state where it is cooled down after being charged with low energy.

また本発明において、高エネルギー投入後の反射率RW
が低エネルギー投入後の反射率RΣより大きくなる記録
媒体において、 Rx<RW<γRz+(1−r)、O<7”<1 −”
(1)(1)式を満足する時、記録、消去可能な記録媒
体となる。ただし、γは低反射率状態と高反射率状態と
を得るために必要な実効エネルギーの比である。
In addition, in the present invention, the reflectance RW after high energy input is
In a recording medium in which the reflectance RΣ is larger than the reflectance RΣ after low energy input, Rx<RW<γRz+(1-r), O<7"<1-"
(1) When formula (1) is satisfied, the recording medium becomes recordable and erasable. However, γ is the ratio of effective energy required to obtain a low reflectance state and a high reflectance state.

この関係は次のようにして導びかれる。すなわち外部か
らの投入エネルギーPと実際に媒体に投入された実効エ
ネルギーQとの間には(2)式の関係がある。
This relationship can be derived as follows. That is, there is a relationship expressed by equation (2) between the energy P input from the outside and the effective energy Q actually input into the medium.

P(1−几)=Q        ・・・・・・(2)
反射率几の媒体ではP−Rのエネルギーは反射さ′れ、
実際に媒体には投入されない。したがって、高エネルギ
ーを投入して高反射率RWと低エネルギーを投入して低
反射率Rmとの間には(3)式が成り立つ ここでPw>Pzなので(3)式から(1)式が得られ
る。
P(1-几)=Q ・・・・・・(2)
In a medium with a low reflectance, the PR energy is reflected,
It is not actually put into the media. Therefore, equation (3) holds true between the high reflectance RW when high energy is input and the low reflectance Rm when low energy is input.Here, since Pw>Pz, equation (1) is obtained from equation (3). can get.

(1)式から得られる範囲を第1図に示す。第1図の斜
線部が記録消去可能な状態である。
The range obtained from equation (1) is shown in FIG. The shaded area in FIG. 1 is the state in which recording and erasure are possible.

この場合、再生の出力が良好になることを考府するとR
WとREとの反射率差が大きいことが望ましい。!侍に
RW≧1.3 Rvの場合、特に良好な再生出力が得ら
れ、大きなS/Nが得られる。この範囲は第1図中の燈
部で示した。rはQ、とQwとの比であるが、実質的に
は’RW及びR,wの反射率が倒られる記録媒体の加熱
温度と近似することができる。実質的には反射率変化を
起こすことができる温度として近似できる。
In this case, considering that the playback output will be good, R
It is desirable that the difference in reflectance between W and RE is large. ! In the case of RW≧1.3 Rv, particularly good reproduction output can be obtained and a large S/N ratio can be obtained. This range is shown by the light section in Figure 1. Although r is the ratio of Q and Qw, it can be substantially approximated to the heating temperature of the recording medium at which the reflectance of 'RW and R, w collapses. It can be approximated as a temperature that can substantially cause a change in reflectance.

本発明の記録媒体は上記関係な成り立つものに好適であ
るが、この中で結晶−結晶相転移を有する材料において
も好適である。
The recording medium of the present invention is suitable for materials that satisfy the above relationship, but among these materials, materials having a crystal-crystal phase transition are also suitable.

本発明の記録媒体は、周期律表のIb族元素の少なくと
も1種と■b族、11)b族、■b族及びvb族元素か
ら選ばれた少なくとも1種との合金からなるものが好ま
しい。これらの合金のうち、銅を主成分とし、A、!、
 Ga、In、()e及びSnとの合金が好ましく、更
にこれらの合金に第3元素としてNi、Mn、Fe及び
Crを含む合金が好ましい。
The recording medium of the present invention is preferably made of an alloy of at least one element selected from Group Ib elements of the periodic table and at least one element selected from Group 11) Group B, Group IIb, and Group Vb. . Among these alloys, copper is the main component, A,! ,
Alloys with Ga, In, ()e, and Sn are preferred, and alloys containing Ni, Mn, Fe, and Cr as third elements in these alloys are also preferred.

また、銀を主成分とし、At、Cd及びZnを含む合金
が好ましく、更にこれらの合金に第3元素としてCu、
At、Auを含有する合金が好ましい。
Further, alloys containing silver as a main component and containing At, Cd, and Zn are preferable, and Cu, Cu, and Zn are further added to these alloys as a third element.
An alloy containing At and Au is preferred.

金を主成分とし、Atを含む合金が好ましい。An alloy containing gold as a main component and containing At is preferable.

本発明合金は前記Ib族元素とHb族、[[b族。The alloy of the present invention includes the above-mentioned group Ib elements, group Hb, [[group b].

■b族及びVb族元素との金属間化合物を有するものが
好ましい。
(2) Those having intermetallic compounds with group b and group Vb elements are preferred.

すなわち本発明に係る上記合金は固相状態で少−なくと
も2つの温度領域で結晶構造の異なった相を有し、固相
状態での加熱冷却により同一温度で少なくとも2種の異
なる反射率を有し、可逆的に反射率を変えることができ
る。
That is, the alloy according to the present invention has phases with different crystal structures in at least two temperature regions in a solid state, and can exhibit at least two different reflectances at the same temperature by heating and cooling in the solid state. The reflectance can be changed reversibly.

本発明はトラッキング用溝が設けられた基板上に記録媒
体の薄膜が設けられるものに適用できる。
The present invention can be applied to a device in which a thin film of a recording medium is provided on a substrate provided with tracking grooves.

記録媒体は、固体状態で室温より高い第1の温度(高温
)及び第1の温度より低い温度(低温)状態で異なった
結晶構造を有し、前記高温からの急冷によって室温で平
衡相である結晶構造と異なる結晶構造を有する金属又は
合金が好ましい。
The recording medium has different crystal structures in a solid state at a first temperature higher than room temperature (high temperature) and at a temperature lower than the first temperature (low temperature), and is in an equilibrium phase at room temperature by rapid cooling from the high temperature. A metal or an alloy having a crystal structure different from the crystal structure is preferred.

本発明に係る合金は高温の固相状態からの急冷により同
一温度で少なくとも2積の分光反射率を有し、可逆的に
分光反射率を変えることのできるものである。すなわち
、本発明に係る合金は固相状態で少なくとも2つの温度
領域で結晶構造の異なった相を有し、それらの内、高温
相を急冷した温度領域での加熱冷却によ秒分光反射率が
可逆的に変化するものである。
The alloy according to the present invention has a spectral reflectance of at least 2 products at the same temperature by rapid cooling from a high-temperature solid state, and can reversibly change the spectral reflectance. That is, the alloy according to the present invention has phases with different crystal structures in at least two temperature ranges in a solid state, and among these, the second spectral reflectance changes by heating and cooling in the temperature range where the high temperature phase is rapidly cooled. It changes reversibly.

本発明の可逆的反射率の変化についてその原理を第7図
を用いて説明する。図はX−Y二元系合金の状態図であ
りα固溶体とβ、r金属間化合物が存在する。A組成の
合金を例にとると、この合金は同相状態において、β単
相、(β十r)相及び(α+γ)相がある。結晶構造は
α、β、rのそれぞれ単相状態で異なり、これら単独及
び混合相においてそれぞれ光学的性質、たとえば分光反
射率は異なる。このような合金はT1温度、一般的に室
温であるが、(α+γ)相が安定である。
The principle of the reversible change in reflectance according to the present invention will be explained using FIG. 7. The figure is a phase diagram of an X-Y binary alloy, in which an α solid solution and β, r intermetallic compounds exist. Taking an alloy with composition A as an example, this alloy has a β single phase, a (β+r) phase, and an (α+γ) phase in the same phase state. The crystal structure is different in the single phase state of α, β, and r, and the optical properties, such as spectral reflectance, are different in each of these single phases and mixed phases. In such alloys, the (α+γ) phase is stable at T1 temperature, generally room temperature.

これをT4温度まで加熱急冷するとβ相がT、温度まで
急冷する。この状態は(α+γ)相とは異なるため、分
光反射率も異なってくる。この急冷β相合金をT、温度
以下のT、温度まで加熱冷却するとβ相は(α+γ)相
に変態し、分光反射率は最初の状態に戻る。このような
2つの加熱冷却処理を繰返すことにより、分光反射率を
可逆的に変化させることが可能である。
When this is heated and rapidly cooled to T4 temperature, the β phase is rapidly cooled to T4 temperature. Since this state is different from the (α+γ) phase, the spectral reflectance is also different. When this rapidly cooled β-phase alloy is heated and cooled to a temperature below T, the β phase transforms into an (α+γ) phase, and the spectral reflectance returns to its initial state. By repeating such two heating and cooling processes, it is possible to reversibly change the spectral reflectance.

本発明の記録媒体の合金例は次の通りである。Examples of the alloy of the recording medium of the present invention are as follows.

銀を主成分とし、亜鉛30〜46wt%、アルミニウム
6〜lQwt%の1種を含む合金、銅を主成分とし、ア
ルミニウム10〜20wt%、インジウム20〜dQw
tチ、錫16〜35wtチの1種を含む合金、金を主成
分とし、アルミニウム2.5〜5wt%を含む合金、又
はこれらの合金に少量の■、Ib、Ib、II[b、 
■b、vb。
Alloy containing silver as the main component, 30-46 wt% zinc, 6-1Qwt% aluminum, copper as the main component, 10-20wt% aluminum, 20-dQw indium
An alloy containing one of the following: 16 to 35 wt % of tin, an alloy containing gold as a main component and 2.5 to 5 wt % of aluminum, or a small amount of 1, Ib, Ib, II [b,
■b, vb.

■a、■a族の元素の1種以上を含むことができる。そ
の含有量は好ましくは10wtチ以下である。
(1) It can contain one or more of the elements of group (1)a and (2) group a. Its content is preferably 10wt or less.

記録密度として、20メガピツ) / cm 2以上と
なるような微小面積での情報の製作には0.01〜0.
2μmの膜厚とするのがよい。記録層として気相あるい
は液相から直接急冷固化させて所定の形状にすることが
有効である。これらの方法にはPVD法(蒸着、スパッ
タリング法等)、CVD法、溶湯を高速回転する高熱伝
導性を有する部材からなる。特に金属ロール円周面上に
注湯して急冷凝固させる溶湯急冷法、電気メッキ、化学
メッキ法等がある。粉末状の材料を利用する場合、基□
板、上に塗布して基板上に接着することが効果的である
。塗布する場合、粉末を加熱しても反応などを起こさな
いバインダーがよい。また、加熱による材料の酸化等を
防止するため、材料表面、基板上に形成した膜あるいは
塗布層表面をコーティングすることも有効である。
The recording density is between 0.01 and 0.01 to produce information in a micro area of 20 megapixels/cm2 or more.
The film thickness is preferably 2 μm. It is effective to form the recording layer into a predetermined shape by directly rapidly cooling and solidifying it from the gas or liquid phase. These methods include a PVD method (vapor deposition, sputtering method, etc.), a CVD method, and a member having high thermal conductivity that rotates the molten metal at high speed. In particular, there are a molten metal quenching method in which molten metal is poured onto the circumferential surface of a metal roll and rapidly solidified, electroplating, chemical plating, and the like. When using powdered materials, the base □
It is effective to apply it on a plate and adhere it to the substrate. When applying, a binder that does not cause any reaction even when the powder is heated is preferred. Furthermore, in order to prevent oxidation of the material due to heating, it is also effective to coat the surface of the material, the film formed on the substrate, or the surface of the coating layer.

粉末は、溶湯を気体又は液体の冷媒とともに噴霧させて
水中に投入させて急冷するガイアトマイズ法によって形
成させることが好ましい。その粒径はσ1陥以下が好ま
しく、特に粒径1μm以下の超微粉が好ましい。
The powder is preferably formed by a Gaia atomization method in which molten metal is atomized together with a gaseous or liquid refrigerant and then poured into water to be rapidly cooled. The particle size is preferably σ1 or less, and ultrafine powder with a particle size of 1 μm or less is particularly preferable.

膜は前述の如く蒸着、スパッタリング、CvD電気メッ
キ、化学メッキ等によって形成できる。
The film can be formed by vapor deposition, sputtering, CvD electroplating, chemical plating, etc., as described above.

特に、0.1μm以下の膜厚を形成するにはスパッタリ
ングが好ましい。スバツチリングは目標の合金組成のコ
ントロールが容易にできる。
In particular, sputtering is preferable to form a film with a thickness of 0.1 μm or less. Substitution rings allow for easy control of the target alloy composition.

(用途) 情報等の記録の手段として、電圧及び電流の形での電気
エネルギー、電磁波(可視光、輻射熱、赤外線、紫外線
、写真用閃光ランプの光、電子ビーム、陽子線、アルゴ
ンレーザ、半導体レーザ等のレーザ光線、熱等)を用い
ることができ、特にその照射による分光反射率の変化を
利用した光ディスクに利用するのが好ましい。光ディス
クには、ディジタルオーディオディスク(DAD又はコ
ンパクトディスク)、ビデオディスク、メモリーディス
クなどがあシ、これらに使用可能である。本発明の記録
媒体は再生専用型、追加記録型、書換型ディスク装置に
それぞれ使用でき、特に書換型デイメク装置においてき
わめて有効である。
(Applications) Electrical energy in the form of voltage and current, electromagnetic waves (visible light, radiant heat, infrared rays, ultraviolet rays, photographic flash lamp light, electron beams, proton beams, argon lasers, semiconductor lasers) as a means of recording information, etc. (e.g., laser beams, heat, etc.), and it is particularly preferable to use it for optical discs that take advantage of changes in spectral reflectance caused by irradiation. Optical discs include digital audio discs (DAD or compact discs), video discs, memory discs, etc., and can be used for these. The recording medium of the present invention can be used in read-only type, additional recording type, and rewritable type disk devices, and is particularly effective in rewritable type disk devices.

本発明を光ディスクの記録及び再生の原理の例は次の通
シである。先ず、記録媒体を局部的に加熱し該加熱後の
急冷によって高温度領域での結晶構造を低温度領域で保
持させて所定の情報を記録し、又は高温相をベースとし
て、局部的に加熱して高温和中に局部的に低温相によっ
て記録し、記録部分に光を照射して加熱部分と非加熱部
分の光学的特性の差を検出して情報を再生することがで
きる。更に情報として記録された部分を記録時の加熱温
度より低い温度又は高い温度で加熱し記録された情報を
消去することができる。光はレーザ光線が好ましく、特
に短波長レーザが好捷しい。
An example of the principle of recording and reproducing an optical disc according to the present invention is as follows. First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or the high temperature phase is used as a base to locally heat the recording medium. Information can be reproduced by recording locally using a low-temperature phase during high-temperature curing, and by irradiating the recorded portion with light and detecting the difference in optical properties between the heated portion and the non-heated portion. Furthermore, the recorded information can be erased by heating the portion recorded as information at a temperature lower or higher than the heating temperature at the time of recording. The light is preferably a laser beam, particularly a short wavelength laser.

本発明の加熱部分と非加熱部分との反射率が500nm
又は800nm付近の波長において最も大きいので、こ
のような波長を有するレーザ光を再生に用いるのが好ま
しい。記録、再生には同じレーザ源が用いられ、消去に
記録のものよりエネルギー密度を小さくした他のレーザ
光を照射するのが好ましい。
The reflectance of the heated part and non-heated part of the present invention is 500 nm
It is largest at a wavelength around 800 nm, so it is preferable to use a laser beam having such a wavelength for reproduction. It is preferable that the same laser source be used for recording and reproducing, and for erasing, a different laser beam having a lower energy density than that for recording is irradiated.

表示として、特に可視光での分光反射率を部分的に変え
ることができるので塗料を使用せずに文字、図形、記号
等を記録することができ、それらの表示は目視によって
識別することができる。これらの情報は消去することが
でき、記録と消去のくり返しのほか、永久保存も可能で
おる。
As a display, it is possible to partially change the spectral reflectance of visible light, so it is possible to record characters, figures, symbols, etc. without using paint, and these displays can be visually identified. . This information can be erased, and in addition to being recorded and erased repeatedly, it is also possible to store it permanently.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 1、2 rrm tの5totガラス基板に約10岨而
厚さの記録媒体をスパッタリング法で作製した。この2
層膜について、記録媒体膜側からレーザ光を用いて記録
し、ついで消去を行なった。記録及び消去後、200〜
1500nmの波長での分光反射率の一例を第2図に示
し、各種合金薄膜について光源波長830nmにおける
記録及び消去時の反射率(チ)の測定した結果を第1表
に示す。記録温度が高いのは高エネルギーの投入に相当
し、消去温度が低い場合は低エネルギーの投入に相当す
るが、第1表に示す合金薄膜はすべて記録及び消去条件
を満足した。表中の合金組成は重量%である。記録温度
は350cになるようにレーザ光のパワーを調節し、消
去温度は1’50tZ’になるようにレーザ光をディフ
ォーカスして調節した。本実施例によれば、S/N比が
高いものが得られる。
(Example 1) A recording medium having a thickness of about 10 mm was fabricated on a 5 tot glass substrate having a thickness of 1 or 2 rrm t by sputtering. This 2
The layer film was recorded using a laser beam from the recording medium film side, and then erased. After recording and erasing, 200~
An example of the spectral reflectance at a wavelength of 1500 nm is shown in FIG. 2, and Table 1 shows the results of measuring the reflectance (h) of various alloy thin films during recording and erasing at a light source wavelength of 830 nm. A high recording temperature corresponds to inputting high energy, and a low erasing temperature corresponds to inputting low energy, but all the alloy thin films shown in Table 1 satisfied the recording and erasing conditions. Alloy compositions in the table are in weight percent. The power of the laser beam was adjusted so that the recording temperature was 350c, and the erasing temperature was adjusted by defocusing the laser beam so that it was 1'50tZ'. According to this embodiment, a high S/N ratio can be obtained.

(実施例2) 記録媒体としてA、g−40Wt’%Zn合金薄膜を用
い、第2表に示す膜構成でディスクを作製した。記録及
び消去を830nmの波長の半導体レーザによって行い
記録後及び消去後の反射率を光源波長83 Qnmの所
で測定した。その結果を第3図に示すが、篇l〜12ま
では記録及び消去条件を満足した。この内でもとくにJ
f6.8〜A12までは最適な特性を示した。なお、j
f613は記録条件を満足したが、消去条件を満足しな
かった。しかしこのような場合でもレーザ光の干渉膜と
してTa20116!:I膜厚を工夫して、A5のよう
な状況にすると消去条件を満たすことができる。この場
合は’ra、o、の膜厚を最適化することで、第4図の
ような干渉をおこさせ、記録後及び消去後の反射率を低
下できたためである。なお第2表のA10〜第  1 
表 12に示した熱吸収膜としてCr OX膜を用いたもの
は第5図に示すように反射率を低下させる効果と熱吸収
の効果により、記録及び消去条件を満足したものである
(Example 2) A disk was produced with the film configuration shown in Table 2 using an A, g-40Wt'% Zn alloy thin film as a recording medium. Recording and erasing were performed using a semiconductor laser with a wavelength of 830 nm, and the reflectance after recording and erasing was measured at a light source wavelength of 83 Q nm. The results are shown in FIG. 3, and the recording and erasing conditions were satisfied for volumes 1 to 12. Among these, especially J
Optimal characteristics were shown from f6.8 to A12. In addition, j
f613 satisfied the recording conditions but did not satisfy the erasing conditions. However, even in this case, Ta20116! can be used as a laser beam interference film! :I If the thickness of the film is modified to create a situation like A5, the erasing condition can be satisfied. In this case, by optimizing the film thicknesses of 'ra and o, it was possible to cause interference as shown in FIG. 4 and reduce the reflectance after recording and erasing. In addition, A10 to 1 of Table 2
The Cr OX film shown in Table 12 as the heat absorption film satisfies the recording and erasing conditions due to the effect of lowering the reflectance and the effect of heat absorption, as shown in FIG.

記録及び消去温度は実施例1と同様の温度に力るように
レーザ光を調節することによって行った。
The recording and erasing temperatures were controlled by adjusting the laser beam so as to maintain the same temperature as in Example 1.

(実施例3) 基板として1.2覗tのガラスを用い、記録膜として7
0nm厚さのAg−40wt%Zn膜を用い、熱吸収層
としてlQnm厚さのCrOxを透明層としてs i 
o、を200 nm厚さにした第6図に示すようなディ
スクを作製し、半導体レーザ5でガラス基板1に形成さ
れた記録媒体について本発明の記録方法としてその記録
と消去とについ゛てく如返し実施した結果、伺回でも問
題なく、初期の特性が維持されることが確認された。図
中1はガラス基板、2は記録媒体、3は熱吸収層、4は
保ご膜として透明層である。
(Example 3) Glass with a diameter of 1.2 mm was used as the substrate, and glass with a diameter of 7 mm was used as the recording film.
An Ag-40 wt% Zn film with a thickness of 0 nm was used as a heat absorption layer, and a transparent layer of CrOx with a thickness of 1 Q nm was used as a heat absorption layer.
A disk as shown in FIG. 6 with a thickness of 200 nm was prepared, and a recording medium formed on a glass substrate 1 using a semiconductor laser 5 was recorded and erased as described in the recording method of the present invention. As a result of repeated testing, it was confirmed that the initial characteristics were maintained without any problems even after repeated testing. In the figure, 1 is a glass substrate, 2 is a recording medium, 3 is a heat absorption layer, and 4 is a transparent layer as a protective film.

〔発明の効果〕〔Effect of the invention〕

本゛発明によれば、再生における感度が高く、容易に書
き換えできる情報の記録方法が得られる。
According to the present invention, it is possible to obtain an information recording method that has high sensitivity in reproduction and can be easily rewritten.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は記録消去時の分光反射率の関係を示す線図、第
2図は本発明の記録方法による分光反射率特性を示す線
図、第3図は本発明に係る合金膜の記録・消去時の分光
反射率の関係を示す線図、第4図は干渉膜を有した本発
明の記録方法による分光反射率特性を示す線図、第5図
は熱吸収膜を有する本発明の記録方法による分光反射率
特性を示す線図、第6図は本発明の記録方法に用いたデ
ィスクの一例を示す断面図、第7図は本発明の記録方法
に用いた記録媒体の合金の一例を示す二元状態図である
。 1・・・基板、2・・・記録媒体、3・・・熱吸収層、
4・・・透明層、5・・・レーザ光。
FIG. 1 is a diagram showing the relationship between spectral reflectance during recording and erasing, FIG. 2 is a diagram showing spectral reflectance characteristics according to the recording method of the present invention, and FIG. 3 is a diagram showing the relationship between recording and erasing of the alloy film according to the present invention. A diagram showing the relationship between spectral reflectance during erasing, FIG. 4 is a diagram showing spectral reflectance characteristics according to the recording method of the present invention with an interference film, and FIG. 5 is a diagram showing the recording of the present invention with a heat absorption film. 6 is a cross-sectional view showing an example of a disk used in the recording method of the present invention, and FIG. 7 is a diagram showing an example of the alloy of the recording medium used in the recording method of the present invention. FIG. 1... Substrate, 2... Recording medium, 3... Heat absorption layer,
4...Transparent layer, 5...Laser light.

Claims (1)

【特許請求の範囲】 1、所定の強度の高エネルギー投入後冷却した状態と前
記強度より低い強度の低エネルギー投入後冷却した状態
とで異なつた結晶構造を有する記録媒体に情報を記録す
る方法において、前記高エネルギー投入後冷却して得ら
れた状態の前記記録部分の分光反射率を前記低エネルギ
ー投入後冷却して得られた状態の分光反射率より高くす
ることを特徴とする情報記録方法。 2、前記記録部の分光反射率(R_W)と未記録部の分
光反射率(R_E)との間に次式の関係を満足する特許
請求の範囲第1項に記載の情報記録方法。 R_W<γR_E+(1−γ) (但しには記録時の投入エネルギーと未記録における投
入エネルギーとの比である) 3、前記R_W≧1.3R_Eの関係を満足する特許請
求の範囲第2項に記載の情報記録方法。 4、前記記録媒体は高温の固体状態から急冷によつて室
温の平衡相と異なる結晶構造を形成する金属又は合金か
らなる特許請求の範囲第1項〜第3項のいずれかに記載
の情報記録方法。
[Claims] 1. A method for recording information on a recording medium that has different crystal structures in a state in which it is cooled after inputting high energy with a predetermined intensity and in a state in which it is cooled after inputting low energy with an intensity lower than the intensity. . An information recording method, characterized in that the spectral reflectance of the recording portion in a state obtained by cooling after inputting high energy is made higher than the spectral reflectance in a state obtained by cooling after inputting low energy. 2. The information recording method according to claim 1, wherein the following relationship is satisfied between the spectral reflectance (R_W) of the recorded portion and the spectral reflectance (R_E) of the unrecorded portion. R_W<γR_E+(1-γ) (However, this is the ratio of input energy during recording to input energy during non-recording.) 3. Claim 2 that satisfies the relationship R_W≧1.3R_E Information recording method described. 4. The information recording medium according to any one of claims 1 to 3, wherein the recording medium is made of a metal or an alloy that forms a crystal structure different from an equilibrium phase at room temperature by rapid cooling from a high-temperature solid state. Method.
JP59251889A 1984-11-29 1984-11-30 Optical disc and information recording method Expired - Fee Related JP2910767B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59251889A JP2910767B2 (en) 1984-11-30 1984-11-30 Optical disc and information recording method
US06/801,950 US4651172A (en) 1984-11-29 1985-11-26 Information recording medium
CA000496335A CA1238489A (en) 1984-11-29 1985-11-27 Information recording medium
DE8585308665T DE3583599D1 (en) 1984-11-29 1985-11-28 INFORMATION RECORDING MEDIUM.
EP85308665A EP0186329B1 (en) 1984-11-29 1985-11-28 Information recording medium
KR1019850008929A KR920001263B1 (en) 1984-11-29 1985-11-29 Recording and removing method of information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251889A JP2910767B2 (en) 1984-11-30 1984-11-30 Optical disc and information recording method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10143337A Division JP3034497B2 (en) 1998-05-25 1998-05-25 Information recording / reproducing / erasing device

Publications (2)

Publication Number Publication Date
JPS61131235A true JPS61131235A (en) 1986-06-18
JP2910767B2 JP2910767B2 (en) 1999-06-23

Family

ID=17229451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251889A Expired - Fee Related JP2910767B2 (en) 1984-11-29 1984-11-30 Optical disc and information recording method

Country Status (1)

Country Link
JP (1) JP2910767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123007A (en) * 1986-05-02 1992-06-16 Hitachi, Ltd. Method for recording, reproducing and erasing information and thin film for recording information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144049A (en) * 1983-02-07 1984-08-17 Matsushita Electric Ind Co Ltd Optical recording and reproducing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144049A (en) * 1983-02-07 1984-08-17 Matsushita Electric Ind Co Ltd Optical recording and reproducing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123007A (en) * 1986-05-02 1992-06-16 Hitachi, Ltd. Method for recording, reproducing and erasing information and thin film for recording information

Also Published As

Publication number Publication date
JP2910767B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JPS61133349A (en) Alloy capable of varying spectral reflectance and recording material
JPS6169935A (en) Spectral reflectance variable alloy and recording material
JPS6119747A (en) Spectral reflectance variable alloy and recording material
JPS6119749A (en) Spectral reflectance variable alloy and recording material
JPS61131235A (en) Information recording method
US5015548A (en) Erasable phase change optical recording elements and methods
JP3034497B2 (en) Information recording / reproducing / erasing device
JPS6119745A (en) Spectral reflectance variable alloy and recording material
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS6169934A (en) Variable alloy having spectral reflectance and recording material
JPS61194658A (en) Information recording medium
JPS61115245A (en) Optical disk device
JPS6134153A (en) Alloy having variable spectral reflectance and recording material
JPS6176638A (en) Variable spectral reflectivity alloy and recording material
JPS6119746A (en) Spectral reflectance variable alloy and recording material
JPS6137936A (en) Alloy and recording material capable of varying spectroreflectance
JPS6137939A (en) Alloy and recording material capable of varying spectroreflectance
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPS61134294A (en) Information recording medium
JPS6176635A (en) Variable spectral reflectivity alloy and recording material
JPS6137938A (en) Alloy and recording material capable of varying spectroreflectance
JPS62112742A (en) Spectral reflectivity variable alloy
JPS6119751A (en) Spectral reflectance variable alloy and recording material
JPS6119748A (en) Spectral reflectance variable alloy and recording material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees