JPS6112966B2 - - Google Patents

Info

Publication number
JPS6112966B2
JPS6112966B2 JP9224877A JP9224877A JPS6112966B2 JP S6112966 B2 JPS6112966 B2 JP S6112966B2 JP 9224877 A JP9224877 A JP 9224877A JP 9224877 A JP9224877 A JP 9224877A JP S6112966 B2 JPS6112966 B2 JP S6112966B2
Authority
JP
Japan
Prior art keywords
reducing
gas chamber
liquid
liquid reservoir
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9224877A
Other languages
Japanese (ja)
Other versions
JPS5426951A (en
Inventor
Rutogaa Raason Urufu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUTOGAA RAASON KONSURUTO AB
Original Assignee
RUTOGAA RAASON KONSURUTO AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUTOGAA RAASON KONSURUTO AB filed Critical RUTOGAA RAASON KONSURUTO AB
Priority to JP9224877A priority Critical patent/JPS5426951A/en
Publication of JPS5426951A publication Critical patent/JPS5426951A/en
Publication of JPS6112966B2 publication Critical patent/JPS6112966B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属を還元液体にて噴霧化する
ことによつて金属粉末を製造する装置に関し、更
に詳細には激しく荒々しい反応による金属粉末の
製造を確実安全に遂行可能とする装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for producing metal powder by atomizing molten metal with a reducing liquid, and more particularly to a device for producing metal powder by a violent and violent reaction. The present invention relates to a device that enables the production of metal powder to be carried out reliably and safely.

〔従来の技術〕[Conventional technology]

従来、圧縮された空気、窒素、アルゴン、水蒸
気または加圧された水、炭化水素類のような噴霧
化剤による溶融金属の噴霧化は既知である。溶融
金属は底部に注湯孔を有し1つ又は複数のノズル
の上に配置される鋳込み容器から供給される。鋳
込み流は、注湯孔を通つて流れ高速で噴射される
噴霧化剤に遭遇し、その結果鋳込み流は細かい滴
に粉砕される。この様にして製造される金属粉末
はその製造中に、噴霧化剤から主として表面酸素
として酸素を吸収し、この酸素は容易に酸化する
合金元素と反応することが知られている。
It is known in the art to atomize molten metal with atomizing agents such as compressed air, nitrogen, argon, steam or pressurized water, hydrocarbons. Molten metal is supplied from a casting vessel having a pouring hole in the bottom and placed above one or more nozzles. The pouring stream flows through the pouring hole and encounters the atomizing agent which is injected at high velocity, so that the pouring stream is broken into fine droplets. It is known that metal powders produced in this way absorb oxygen from the atomizing agent during their production, primarily as surface oxygen, and that this oxygen reacts with easily oxidized alloying elements.

酸素含有量を合金鋼における許容水準まで減少
させるために、例えば、水または水蒸気を用いる
普通の噴霧化の代わりにむしろ窒素またはアルゴ
ンを用いる噴霧化が早くから行われていた。この
ことは、可成り高価でしかも粉砕および冷却特性
が著しく劣る噴霧化媒体(気体)が用いられてき
たことを意味する。しかし、ある目的、例えば球
状粒子を有する粉末を製造するためには、気体に
よる噴霧化は粉末粒子が球状に収縮する機会を有
するので好ましい。
In order to reduce the oxygen content to acceptable levels in alloy steels, for example, atomization with nitrogen or argon rather than the usual atomization with water or steam was practiced early on. This means that atomizing media (gases) have been used which are quite expensive and have significantly poorer grinding and cooling properties. However, for certain purposes, for example to produce powders with spherical particles, atomization with gas is preferred since it has the opportunity to shrink the powder particles into a spherical shape.

微粒化された製品が望まれる場合には低酸素含
有量の特殊な合金粉末を製造することには問題が
あつた。このためには大量の気体が必要とされ、
それ故不活性ガス中に残存する酸素からの可成り
大きな割合の酸素が溶融金属の鋳込み流と接触す
ることになり、その結果形成された粉末中の酸素
含有量が高くなる。水のような酸化性の噴霧化剤
の使用はこれと反対の効果、即ち水の増量がより
速い冷却過程によつて粉末の酸素含有量を減少さ
せると云う効果を与える。しかしながら、窒素ガ
スまたはアルゴンを用いた噴霧化によるような低
い酸素含有量を得ることは不可能である。
There have been problems in producing special alloy powders with low oxygen content when a finely divided product is desired. This requires a large amount of gas,
A significant proportion of oxygen from the oxygen remaining in the inert gas will therefore come into contact with the pouring stream of molten metal, resulting in a high oxygen content in the powder formed. The use of an oxidizing atomizing agent, such as water, has the opposite effect, ie, the increased amount of water reduces the oxygen content of the powder through a faster cooling process. However, it is not possible to obtain such low oxygen contents by atomization with nitrogen gas or argon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、噴霧化剤として炭化水素類を使用する
ことが実用化されるに至つたが、この方法はアル
ゴン、窒素などの不活性ガス又は水などと異な
り、それ自体高熱に安定性を欠くため別の問題を
提起する、即ち、溶融高熱金属と接触する時に別
の低炭化水素、水素及びそれ自体の気化ガスを生
じ、粒化室内圧を変動させ粒化操作を著しく困難
とする。特に、操作開始時に冷却噴霧化剤の流入
高温溶融金属の流入、分解ガスの発生等で粒化室
内圧は大きく変動する。操作が定常化すれば圧変
動は一定となるが、噴霧化剤、溶融金属の供給量
のバランスが崩れると、粒化室内圧は急激に変動
する。このような荒々しい操作を確実安全に制御
するには複雑な制御システムを要するが、しかし
粒化室内は液滴、粉末で充満していて配管詰まり
を来し易く、複雑な制御システムも故障し勝ちで
あつて確実安全な制御システムが期待されている
実状であつた。
Therefore, the use of hydrocarbons as an atomizing agent has come into practical use, but unlike inert gases such as argon, nitrogen, or water, this method itself lacks stability against high heat, so This poses a problem: when in contact with molten hot metal, it generates other low hydrocarbons, hydrogen and its own vaporized gases, which fluctuates the granulation chamber pressure and makes the granulation operation extremely difficult. Particularly, at the start of operation, the pressure in the granulation chamber fluctuates greatly due to the inflow of the cooling atomizing agent, the inflow of high-temperature molten metal, the generation of cracked gas, etc. If the operation becomes steady, the pressure fluctuations will be constant, but if the balance between the supply amounts of the atomizing agent and molten metal is lost, the pressure inside the granulation chamber will fluctuate rapidly. A complex control system is required to reliably and safely control such rough operations, but the granulation chamber is filled with droplets and powder, easily clogging the pipes, and even complex control systems malfunction. The current situation is that a reliable and safe control system is expected.

本発明の目的は、簡単な設備で、炭化水素類を
噴霧化剤とする噴霧化法で金属粉末を確実安全に
かつ安定して得ることを可能とする装置を提供す
るにある。
An object of the present invention is to provide an apparatus that allows metal powder to be reliably, safely and stably obtained by an atomization method using hydrocarbons as an atomizing agent with simple equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、実質的に密閉された粒化室1
と、粒化室1内で溶融金属流れ13を作るために
粒化室1の上部の還元ガス室4と連通する注湯孔
12を有する鋳込容器11と、粒化室1の下部の
還元液溜め2の底部排出弁5と、溶融金属流れ1
3を粉砕するため溶融金属流れ13に対して噴霧
化剤15の噴射を向けるように配置された少なく
とも一つの噴霧化剤ノズル14とを有する噴霧化
法により金属粉末を製造する装置において、還元
ガス室4内に還元ガス導入管3を備え、かつ還元
ガス室4と外気との間に介在し還元ガス室4と外
気と間の流通を遮断すると共に還元ガス室4中の
金属粉末化操作中における内圧変化に追従しつつ
液柱を変化して還元ガス室4の内圧変化を吸収で
きる還元液溜め9を有する液体ロツクを備えてな
ることを特徴とする。
According to the invention, a substantially closed granulation chamber 1
, a casting vessel 11 having a pouring hole 12 communicating with the reducing gas chamber 4 in the upper part of the granulating chamber 1 to create a molten metal flow 13 in the granulating chamber 1; Bottom drain valve 5 of sump 2 and molten metal flow 1
and at least one atomizing agent nozzle 14 arranged to direct a jet of an atomizing agent 15 onto a molten metal stream 13 for comminution of a reducing gas. A reducing gas introduction pipe 3 is provided in the chamber 4, and is interposed between the reducing gas chamber 4 and the outside air to block the communication between the reducing gas chamber 4 and the outside air, and during the metal powderization operation in the reducing gas chamber 4. It is characterized by comprising a liquid lock having a reducing liquid reservoir 9 that can absorb changes in the internal pressure of the reducing gas chamber 4 by changing the liquid column while following changes in the internal pressure in the reducing gas chamber 4.

かかる装置を用いれば上述した欠点を除去し、
非常に低い酸素含有量を有する噴霧化された金属
粉末を製造する装置を提供することができる。
Using such a device eliminates the above-mentioned drawbacks,
It is possible to provide an apparatus for producing atomized metal powder with very low oxygen content.

本発明に係る装置においては、鋳込み流は好ま
しくは気体又は液体或いは気体−液体混合物の炭
化水素である還元性の噴霧化剤に当てられる。
尚、前記炭化水素は例えば液化石油、油、ベンゼ
ン等の石油製品である。粉末を酸化に対して保護
するために、粒化室は、還元液体によつて部分的
に満たされていると共に不活性又は還元性のガス
によつて、好適には加圧され、更に室内の圧変化
を液柱変化によつて吸収できる充分な液量を有し
粒化室に連通する液体ロツク下に密閉された粒化
室の中で実際の噴霧化過程が行われる。
In the device according to the invention, the pouring stream is applied to a reducing atomizing agent, which is preferably a hydrocarbon gas or a liquid or a gas-liquid mixture.
Note that the hydrocarbons are, for example, petroleum products such as liquefied petroleum, oil, and benzene. In order to protect the powder against oxidation, the granulation chamber is partially filled with a reducing liquid and preferably pressurized with an inert or reducing gas, and is further The actual atomization process takes place in a granulation chamber sealed under a liquid lock communicating with the granulation chamber and having a sufficient liquid volume to absorb pressure changes by liquid column changes.

〔作 用〕[Effect]

大気混入の機会が可及的に少なく構成され、不
活性ガス又は還元性ガスの導入管は備えられる
が、排出管は存在しないため、噴霧化操作中に粒
化室は外部と全く遮断されたまま、煙霧、蒸気の
充満した粒化室の状態で反応は維持され、爆発の
如何なる危険も避けることができる。また、粒化
室を可及的に密閉体として構成したため、操作開
始状態は、粒化室に還元液を導入して満たし、次
いで還元液を還元ガスと置換することにより簡便
迅速に構成できる。
The granulation chamber is designed to minimize the chance of air contamination, and is equipped with an inert gas or reducing gas inlet pipe, but no exhaust pipe, so the granulation chamber is completely isolated from the outside during the atomization operation. The reaction is maintained in a granulation chamber filled with smoke and steam, avoiding any risk of explosion. Furthermore, since the granulation chamber is configured as a closed body as much as possible, the operation start state can be easily and quickly configured by introducing and filling the granulation chamber with a reducing liquid and then replacing the reducing liquid with a reducing gas.

〔発明の効果〕〔Effect of the invention〕

本発明に係る噴霧化法により金属粉末を製造す
る装置によると、激しくかつ荒々しい操作を確実
完全に遂行可能とし、操作中に粒化室中の圧変化
にかかわらず、粒化室と外気とを完全に遮断で
き、酸素含有量の少ない金属粉末の製造を可能と
することができる。
The apparatus for producing metal powder by the atomization method according to the present invention makes it possible to carry out intense and rough operations reliably and completely, and to maintain the relationship between the granulation chamber and the outside air regardless of pressure changes in the granulation chamber during the operation. can be completely blocked, making it possible to produce metal powder with low oxygen content.

〔実施例〕〔Example〕

本発明をより容易に理解できるように添付の図
面を参照して単に例を示すものとして以下の説明
をする。
In order that the invention may be more easily understood, the following description is given, by way of example only, with reference to the accompanying drawings, in which: FIG.

図面において、粒化室1は、例えば油、好まし
くは86.8%の炭素、12.5%の水素、0.58%の硫
黄、残部を灰分0.12%から成る燃料油の還元性液
体をもつて部分的に満たされている。粒化室1に
は溶融金属10を収容している鋳込み容器11の
底部に注湯孔12が設けられている。粒化室1の
上部には還元性ガス用の導入管3が設けられてい
るが、その排出管は設けていない。ノズル14が
還元性の噴霧化剤15の供給のために室内に突出
している。第1図及び第2図に示される実施例に
おいては、チヤンネルの形態をした液体ロツク槽
9が設けられている。液体ロツク槽9は可及的に
粒化室1に近接して設けるのが良く、第1図及び
第2図のように粒化室1に接続して設けるのが好
適である。液体ロツク槽9は弁7を介して粒化室
1と連通している太目の管6と協働し、この管の
開口端部は液体ロツク槽9内の液体8の液面より
下にある。液体ロツク槽9は金属粉末化の操作中
に管6の開口端部が常に液面下にある容量を有す
る。
In the drawing, the granulation chamber 1 is partially filled with a reducing liquid, for example oil, preferably a fuel oil consisting of 86.8% carbon, 12.5% hydrogen, 0.58% sulfur, the balance 0.12% ash. ing. In the granulation chamber 1, a pouring hole 12 is provided at the bottom of a casting container 11 containing molten metal 10. Although an inlet pipe 3 for reducing gas is provided in the upper part of the granulation chamber 1, a discharge pipe thereof is not provided. A nozzle 14 projects into the chamber for supplying a reducing atomizing agent 15. In the embodiment shown in FIGS. 1 and 2, a liquid lock reservoir 9 in the form of a channel is provided. The liquid lock tank 9 is preferably provided as close as possible to the granulation chamber 1, and preferably connected to the granulation chamber 1 as shown in FIGS. 1 and 2. The liquid lock tank 9 cooperates with a thick tube 6 which communicates with the granulation chamber 1 via a valve 7, the open end of which is below the level of the liquid 8 in the liquid lock tank 9. . The liquid lock tank 9 has a capacity such that the open end of the tube 6 is always below the liquid level during the metal powdering operation.

噴霧化が始まる前に、弁7と底部弁5は閉じら
れ、その後粒化室1は注湯孔12まで還元性液体
で完全に満たされたとき、液面が噴霧化過程に対
して望ましいレベルまで下げられるのと同時に還
元性ガスが導入管3を通して供給される。次に、
弁7が開かれ、その結果粒化室1の上部内の還元
性ガス4は、液体ロツク槽9の液体8内に浸漬さ
れた管6の長さに相当する分だけ大気圧より高い
圧力を維持する。液体8の容量は粒化室1の膨張
縮少による容量変化を充分に吸収できるものであ
る。実際の噴霧化過程がいまや実行される。鋳込
み容器11からの溶融金属10は金属流13の形
態で注湯孔12を通つて流下し、ノズル14から
噴射される還元性の噴霧化剤15と衝突せしめら
れる。
Before atomization begins, valve 7 and bottom valve 5 are closed, after which the granulation chamber 1 is completely filled with reducing liquid up to the pouring hole 12, when the liquid level is at the desired level for the atomization process. At the same time, reducing gas is supplied through the inlet pipe 3. next,
The valve 7 is opened, so that the reducing gas 4 in the upper part of the granulation chamber 1 is brought to a pressure above atmospheric pressure by an amount corresponding to the length of the tube 6 immersed in the liquid 8 of the liquid lock tank 9. maintain. The capacity of the liquid 8 is such that it can sufficiently absorb changes in capacity due to expansion and contraction of the granulation chamber 1. The actual atomization process is now carried out. The molten metal 10 from the casting vessel 11 flows down through the pouring hole 12 in the form of a metal stream 13 and is struck by a reducing atomizing agent 15 injected from a nozzle 14 .

第3図は本発明に係る装置の別の実施例を示
し、この実施例では液体ロツクの機能が粒化室1
の下方の還元液溜め2によつて構成され、即ち、
粒化室1を還元ガス室4と還元液溜め2の上下に
2分割し、還元ガス室4と還元液溜め2のいずれ
か一方を上下変位可能となし、還元ガス室4の下
部開口径は還元液溜め2の上部開口径より小とな
し、還元液溜め2を液体ロツクの還元液溜め9を
兼ねて構成させ、還元液溜め2と還元ガス室4の
いずれか一方を上下に変位させて還元ガス室4の
下部開口部を還元液溜め2の還元液中に所定長さ
浸漬せしめて上部の還元ガス室4の空間と外気と
間を遮断して液体ロツクを形成してなることを特
徴とする。粒化室1がガスで充満される前に液体
で充満されると、還元液溜め2が上げられるか又
は還元ガス室4が下げられ、還元液溜め2は第1
図及び第2図の実施例による液体ロツクの還元液
溜め9として作用する。第3図に示される実施例
の利点は液体ロツクが大寸法であり、粒化室1の
圧力変動による如何なる容量変化も安全確実に吸
収して対応できるので、その機能がより信頼でき
ることである。
FIG. 3 shows another embodiment of the device according to the invention, in which the liquid lock function is carried out in the granulation chamber 1.
It is composed of a reducing liquid reservoir 2 below the
The granulation chamber 1 is divided into upper and lower parts of the reducing gas chamber 4 and the reducing liquid reservoir 2, and either the reducing gas chamber 4 or the reducing liquid reservoir 2 can be moved vertically, and the opening diameter of the lower part of the reducing gas chamber 4 is The diameter of the upper opening of the reducing liquid reservoir 2 is made smaller than that of the reducing liquid reservoir 2, the reducing liquid reservoir 2 is configured to also serve as the reducing liquid reservoir 9 of the liquid lock, and either the reducing liquid reservoir 2 or the reducing gas chamber 4 is vertically displaced. The lower opening of the reducing gas chamber 4 is immersed in the reducing liquid in the reducing liquid reservoir 2 for a predetermined length to isolate the space in the upper reducing gas chamber 4 from the outside air to form a liquid lock. shall be. If the granulation chamber 1 is filled with liquid before it is filled with gas, the reducing liquid reservoir 2 is raised or the reducing gas chamber 4 is lowered, and the reducing liquid reservoir 2 is
It serves as the reducing liquid reservoir 9 of the liquid lock according to the embodiment of FIGS. The advantage of the embodiment shown in FIG. 3 is that its function is more reliable, since the liquid lock is of larger size and can safely and reliably absorb and cope with any volume changes due to pressure fluctuations in the granulation chamber 1.

本発明は勿論図面に示された実施例に限定され
ず多くの方法で変更することができる。例えば、
噴霧化媒体は炭化水素、特殊油、及び液化石油、
またはベンゼン、メタン等から成つてもよい。シ
リコン油さえも使用され得る。明らかにシリコン
油は酸素を含有しているが、実施試験ではシリコ
ン油は広い温度範囲に亘つて安定した粘度を有し
ており、それ故本発明の状況において用いられ得
ることが示されている。操作例 約10Kgの溶融鋼を鋳込む場合、溶融鋼はトリベ
から直径6.5mmの注湯孔を有する黒鉛の鋳込み容
器に注ぎ込まれた。溶融鋳込み流れは下方に向け
られた相対向する四つのノズルから油(燃料油)
によつて粉末に噴霧化された。アルゴンが保護ガ
スとして用いられたが、勿論窒素のような他のガ
スも用いることができる。この例において用いら
れた油の量は約500/分であり、圧力は5.5Kg/
cm2であつた。操作中粒化室1の内圧変動は液体ロ
ツクによつて安全確実に吸収できた。この例か
ら、本発明に従つて実行される油を用いての噴霧
化は粉末中の酸素含有量を非常に低くする効果の
外にある増炭効果も生ずることが明らかである。
製造された粉末は葉巻タバコ形、ジヤガイモ形及
び球形の種々の形状の粒子から成つており、その
結果として細かい粒子は大部分が球状であり、細
長い形の粒子は主にとりわけ粗大粒子部分である
と断定し得ることが判つた。
The invention is, of course, not limited to the embodiments shown in the drawings, but can be modified in many ways. for example,
Atomization media include hydrocarbons, specialty oils, and liquefied petroleum,
Alternatively, it may consist of benzene, methane, etc. Even silicone oil can be used. Although silicone oil obviously contains oxygen, practical tests have shown that silicone oil has a stable viscosity over a wide temperature range and therefore can be used in the context of the present invention. . Operation Example: When casting approximately 10 kg of molten steel, the molten steel was poured from a ladle into a graphite casting vessel having a pouring hole with a diameter of 6.5 mm. The molten casting flow is carried out through four opposing nozzles directed downward.
was atomized into a powder by Although argon was used as the protective gas, other gases such as nitrogen can of course also be used. The amount of oil used in this example was approximately 500/min and the pressure was 5.5Kg/min.
It was warm in cm2 . Fluctuations in the internal pressure of the granulation chamber 1 during operation could be safely and reliably absorbed by the liquid lock. It is clear from this example that the atomization with oil carried out according to the invention, in addition to the effect of making the oxygen content in the powder very low, also produces a coal-enhancing effect.
The powder produced consists of particles of various shapes: cigar-shaped, potato-shaped and spherical, with the result that the fine particles are predominantly spherical and the elongated particles are mainly a particularly coarse particle fraction. It was found that it can be concluded that

製造された粉末メツシユ分析は次の結果となつ
た。
Analysis of the produced powder mesh gave the following results.

メツシユ幅 %粉末 3360ミクロン 0.37 1680ミクロン 2.03 841ミクロン 18.36 595ミクロン 23.80 420ミクロン 24.85 210ミクロン 24.66 149ミクロン 4.26 105ミクロン 1.30 74ミクロン 0.23 53ミクロン 0.12 53ミクロン以下 0.02 種々の粒度での全酸素含有量は第4図から、
種々の粒度での炭素含有量は第5図から見ること
ができる。酸素含有量に関しては、比較例とし
て、従来通りに製造された1.2%のMnを含有する
粗粒型の鉄粉末は0.76〜1%(即ち7600〜
10000ppm)の酸素含有量を有するということが
できる。
Mesh width % powder 3360 microns 0.37 1680 microns 2.03 841 microns 18.36 595 microns 23.80 420 microns 24.85 210 microns 24.66 149 microns 4.26 105 microns 1.30 74 microns 0.23 53 microns 0.12 5 3 microns or less 0.02 Total oxygen content at various particle sizes is 4th From the figure,
The carbon content at various particle sizes can be seen from FIG. As for the oxygen content, as a comparative example, a conventionally produced coarse-grained iron powder containing 1.2% Mn has an oxygen content of 0.76-1% (i.e. 7600-1%).
It can be said that it has an oxygen content of 10,000 ppm).

その他の点では鋼の化学分析は下記に値を示し
た。
Otherwise chemical analysis of the steel showed the following values.

% Si 0.57 Mn 1.30 P 0.017 S 0.021 Cr 0.16 Ni 0.03 Mo 0.03 Cu 0.05 V 0.01 Ti 0.01 Al 0.007 鋼の酸素含有量は86ppm % Si 0.57 Mn 1.30 P 0.017 S 0.021 Cr 0.16 Ni 0.03 Mo 0.03 Cu 0.05 V 0.01 Ti 0.01 Al 0.007 The oxygen content of steel is 86ppm

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一つの実施例を示
す概略図、第2図は第二の実施例を示す同様な概
略図、第3図は第三の実施例を示す同様な概略
図、第4図および第5図は種々の粒度について酸
素含有量および炭素含有量を夫々示すグラフであ
る。 1……粒化室、2……還元液溜め、3……還元
ガス導入管、4……還元ガス室、5……底部排出
弁、6……管、7……弁、8……液体、9……還
元液溜め、10……溶融金属、11……鋳込み容
器、12……底部注湯孔、13……溶融金属流、
14……ノズル、15……噴霧化剤、16……上
方吊下部。
1 is a schematic diagram showing one embodiment of the device according to the invention, FIG. 2 is a similar schematic diagram showing a second embodiment, and FIG. 3 is a similar schematic diagram showing a third embodiment. , 4 and 5 are graphs showing oxygen content and carbon content, respectively, for various particle sizes. DESCRIPTION OF SYMBOLS 1... Granulation chamber, 2... Reducing liquid reservoir, 3... Reducing gas introduction pipe, 4... Reducing gas chamber, 5... Bottom discharge valve, 6... Pipe, 7... Valve, 8... Liquid , 9... Reducing liquid reservoir, 10... Molten metal, 11... Casting container, 12... Bottom pouring hole, 13... Molten metal flow,
14... Nozzle, 15... Atomizing agent, 16... Upper hanging portion.

Claims (1)

【特許請求の範囲】 1 実質的に密閉された粒化室1と、粒化室1内
で溶融金属流れ13を作るために粒化室1の上部
の還元ガス室4と連通する注湯孔12を有する鋳
込容器11と、粒化室1の下部の還元液溜め2の
底部排出弁5と、溶融金属流れ13を粉砕するた
め溶融金属流れ13に対して噴霧化剤15の噴射
を向けるように配置された少なくとも一つの噴霧
化剤ノズル14とを有する噴霧化法により金属粉
末を製造する装置において、還元ガス室4内に還
元ガス導入管3を備え、かつ還元ガス室4と外気
との間に介在し還元ガス室4と外気との間の流通
を遮断すると共に還元ガス室4中の金属粉末化操
作中における内圧変化に追従しつつ液柱を変化し
て還元ガス室4の内圧変化を吸収できる還元液溜
め9を有する液体ロツクを備えてなることを特徴
とする噴霧化法により金属粉末を製造する装置。 2 液体ロツクは粒化室1の外部にあつて還元液
を収容する還元液溜め9と、還元ガス室4と連通
すると共に還元液溜め9内に延在しかつ開口する
管6と、管6内にあつて還元液溜め9の液面より
上方にある弁7とを有することを特徴とする特許
請求の範囲第1項記載の噴霧化法により金属粉末
を製造する装置。 3 粒化室1を還元ガス室4と還元液溜め2の上
下に2分割し、還元ガス室4と還元液溜め2のい
ずれか一方を上下変位可能となし、還元ガス室4
の下部開口径は還元液溜め2の上部開口径より小
となし、は還元液溜め2を液体ロツクの還元液溜
め9を兼ねて構成させ、還元液溜め2と還元ガス
室4のいずれか一方を上下に変位させて還元ガス
室4の下部開口端部を還元液溜め2の還元液中に
所定長さ浸漬せしめて上部の還元ガス室4の空間
と外気との間を遮断して液体ロツクを形成してな
ることを特徴とする特許請求の範囲第1項記載の
噴霧化法により金属粉末を製造する装置。
Claims: 1. A substantially sealed granulation chamber 1 and a pouring hole communicating with a reducing gas chamber 4 in the upper part of the granulation chamber 1 to create a molten metal flow 13 within the granulation chamber 1. 12 and a bottom discharge valve 5 of the reducing liquid sump 2 in the lower part of the granulation chamber 1 and directing a jet of atomizing agent 15 onto the molten metal stream 13 to crush the molten metal stream 13. In an apparatus for producing metal powder by an atomization method, the apparatus has at least one atomizing agent nozzle 14 arranged as shown in FIG. The liquid column is interposed between the reducing gas chamber 4 and the outside air to block the flow between the reducing gas chamber 4 and the outside air, and the internal pressure of the reducing gas chamber 4 is changed by changing the liquid column while following the internal pressure change in the reducing gas chamber 4 during the metal powderization operation. An apparatus for producing metal powder by an atomization method, characterized in that it is equipped with a liquid lock having a reducing liquid reservoir 9 capable of absorbing changes. 2. The liquid lock includes a reducing liquid reservoir 9 located outside the granulation chamber 1 and containing a reducing liquid, a pipe 6 that communicates with the reducing gas chamber 4 and extends and opens into the reducing liquid reservoir 9, and a pipe 6. An apparatus for producing metal powder by the atomization method according to claim 1, further comprising a valve 7 located inside the reducing liquid reservoir 9 and above the liquid level of the reducing liquid reservoir 9. 3 The granulation chamber 1 is divided into upper and lower parts of the reducing gas chamber 4 and the reducing liquid reservoir 2, and one of the reducing gas chamber 4 and the reducing liquid reservoir 2 is made vertically movable, and the reducing gas chamber 4
The lower opening diameter of the reducing liquid reservoir 2 is smaller than the upper opening diameter of the reducing liquid reservoir 2, and the reducing liquid reservoir 2 is configured to also serve as the reducing liquid reservoir 9 of the liquid lock, and either the reducing liquid reservoir 2 or the reducing gas chamber 4 is The lower open end of the reducing gas chamber 4 is immersed in the reducing liquid in the reducing liquid reservoir 2 for a predetermined length by vertically displacing the reducing gas chamber 4 to block the space in the upper reducing gas chamber 4 from the outside air and locking the liquid. An apparatus for producing metal powder by the atomization method according to claim 1, characterized in that it forms a metal powder.
JP9224877A 1977-08-02 1977-08-02 Method and apparatus for making metal powder by spraying Granted JPS5426951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9224877A JPS5426951A (en) 1977-08-02 1977-08-02 Method and apparatus for making metal powder by spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9224877A JPS5426951A (en) 1977-08-02 1977-08-02 Method and apparatus for making metal powder by spraying

Publications (2)

Publication Number Publication Date
JPS5426951A JPS5426951A (en) 1979-02-28
JPS6112966B2 true JPS6112966B2 (en) 1986-04-11

Family

ID=14049115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9224877A Granted JPS5426951A (en) 1977-08-02 1977-08-02 Method and apparatus for making metal powder by spraying

Country Status (1)

Country Link
JP (1) JPS5426951A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152111A (en) * 1979-05-14 1980-11-27 Sumitomo Metal Ind Ltd Manufacture of metallic powder
JPS56135019A (en) * 1980-03-25 1981-10-22 Toshiba Corp Heat bonding device
JPS56135018A (en) * 1980-03-25 1981-10-22 Toshiba Corp Heat bonding device
JPS56135017A (en) * 1980-03-25 1981-10-22 Toshiba Corp Heat bonding device

Also Published As

Publication number Publication date
JPS5426951A (en) 1979-02-28

Similar Documents

Publication Publication Date Title
US4124377A (en) Method and apparatus for producing atomized metal powder
US5310165A (en) Atomization of electroslag refined metal
CN110181069B (en) Method for preparing high-nitrogen steel powder by adopting gas atomization method
US4080126A (en) Water atomizer for low oxygen metal powders
EP0175078B1 (en) Device and method for production of ultra-fine, rapidly solidified, metal powders
Gummeson Modern atomizing techniques
JPS6112966B2 (en)
US4657587A (en) Molten metal casting
US4460409A (en) Process and installation for protecting a jet of molten metal for casting
US4666511A (en) Process for producing killed steel having a low nitrogen content
AU677823B2 (en) Method and apparatus for production of metal granules
JPS6224481B2 (en)
JPS6362561B2 (en)
GB1563438A (en) Method and apparatus for producing atomized metal powder
DE4019563C2 (en)
US4339401A (en) Process for producing metal powders having low oxygen content
GB1588725A (en) Atomiser for making powder
US3251680A (en) Method and apparatus for treating steels
CA1094272A (en) Method and apparatus for producing atomized metal powder
JPS6244508A (en) Apparatus for producing powder
IE45168B1 (en) Method for producing atomized metal powder
CA1315055C (en) Atomization process
FI62237B (en) FOER FARING FOR METAL POWDER GENOM FOERSTOFTNING
KR102083535B1 (en) Operating method and apparatus for blast furnace
EP0904172B1 (en) A process and plant for producing atomized metal powder, metal powder and the use of the metal powder