JPS6362561B2 - - Google Patents

Info

Publication number
JPS6362561B2
JPS6362561B2 JP60278083A JP27808385A JPS6362561B2 JP S6362561 B2 JPS6362561 B2 JP S6362561B2 JP 60278083 A JP60278083 A JP 60278083A JP 27808385 A JP27808385 A JP 27808385A JP S6362561 B2 JPS6362561 B2 JP S6362561B2
Authority
JP
Japan
Prior art keywords
liquid
granulation chamber
protective gas
closed
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60278083A
Other languages
Japanese (ja)
Other versions
JPS61143503A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27808385A priority Critical patent/JPS61143503A/en
Publication of JPS61143503A publication Critical patent/JPS61143503A/en
Publication of JPS6362561B2 publication Critical patent/JPS6362561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融鉄合金を炭化水素類液体にて噴
霧化することによつて低酸素含有の鉄粉末を製造
する方法に関し、更に詳細には低酸素含有の鉄粉
末の製造を確実安全に遂行可能とする方法に関す
るものである。低酸素含有の鉄粉末は焼結鍛造及
び溶接棒材料として重要である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing low oxygen-containing iron powder by atomizing a molten iron alloy with a hydrocarbon liquid. relates to a method that enables the production of iron powder with low oxygen content to be carried out reliably and safely. Iron powder with low oxygen content is important as sinter forging and welding rod material.

〔従来の技術〕[Conventional technology]

従来、圧縮された空気、窒素、アルゴン、水蒸
気または加圧された水、炭化水素類のような噴霧
化剤による溶融金属の噴霧化は既知である。溶融
金属は底部に注湯孔を有し1つ又は複数のノズル
の上に配置される鋳込み容器から供給される。鋳
込み流は、注湯孔を通つて流れ高速で噴射される
噴霧化剤に遭遇し、その結果鋳込み流は細かい滴
に粉砕される。この様にして製造される金属粉末
はその製造中に、噴霧化剤から主として表面酸素
として酸素を吸収し、この酸素は容易に酸化する
合金元素と反応することが知られている。
It is known in the art to atomize molten metal with atomizing agents such as compressed air, nitrogen, argon, steam or pressurized water, hydrocarbons. Molten metal is supplied from a casting vessel having a pouring hole in the bottom and placed above one or more nozzles. The pouring stream flows through the pouring hole and encounters the atomizing agent which is injected at high velocity, so that the pouring stream is broken into fine droplets. It is known that metal powders produced in this way absorb oxygen from the atomizing agent during their production, primarily as surface oxygen, and that this oxygen reacts with easily oxidized alloying elements.

酸素含有量を合金鋼における許容水準まで減少
させるために、例えば、水または水蒸気を用いる
普通の噴霧化の代わりにむしろ窒素またはアルゴ
ンを用いる噴霧化が早くから行われていた。この
ことは、可成り高価でしかも粉砕および冷却特性
が著しく劣る噴霧化媒体(気体)が用いられてき
たことを意味する。しかし、ある目的、例えば球
状粒子を有する粉末を製造するためには、気体に
よる噴霧化は粉末粒子が球状に収縮する機会を有
するので好ましい。
In order to reduce the oxygen content to acceptable levels in alloy steels, for example, atomization with nitrogen or argon rather than the usual atomization with water or steam was practiced early on. This means that atomizing media (gases) have been used which are quite expensive and have significantly poorer grinding and cooling properties. However, for certain purposes, for example to produce powders with spherical particles, atomization with gas is preferred since it has the opportunity to shrink the powder particles into a spherical shape.

微粒化された製品が望まれる場合には低酸素含
有量の特殊な合金粉末を製造することには問題が
あつた。このためには大量の気体が必要とされ、
それ故不活性ガス中に残存する酸素からの可成り
大きな割合の酸素が溶融金属の鋳込み流と接触す
ることになり、その結果形成された粉末中の酸素
含有量が高くなる。水のような酸化性の噴霧化剤
の使用はこれと反対の効果、即ち水の増量がより
速い冷却過程によつて粉末の酸素含有量を減少さ
せると云う効果を与える。しかしながら、窒素ガ
スまたはアルゴンを用いた噴霧化によるような低
い酸素含有量を得ることは不可能である。
There have been problems in producing special alloy powders with low oxygen content when a finely divided product is desired. This requires a large amount of gas,
A significant proportion of oxygen from the oxygen remaining in the inert gas will therefore come into contact with the pouring stream of molten metal, resulting in a high oxygen content in the powder formed. The use of an oxidizing atomizing agent, such as water, has the opposite effect, ie, the increased amount of water reduces the oxygen content of the powder through a faster cooling process. However, it is not possible to obtain such low oxygen contents by atomization with nitrogen gas or argon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、噴霧化剤として炭化水素類を使用する
ことが実用化されるに至つたが、この方法はアル
ゴン、窒素などの不活性ガス又は水などと異な
り、それ自体高熱に安定性を欠くため別の問題を
提起する、即ち、溶融高熱金属と接触する時に別
の低炭化水素、水素及びそれ自体の気化ガスを生
じ、粒化室内圧を変動させ粒化操作を著しく困難
とする。特に、操作開始時に冷却噴霧化剤の流入
高温溶融金属の流入、分解ガスの発生等で粒化室
内圧は大きく変動する。操作が定常化すれば圧変
動は一定となるが、噴霧化剤、溶融金属の供給量
のバランスが崩れると、粒化室内圧は急激に変動
する。このような荒々しい操作中に大気の侵入を
確実安全に防止するよう制御するには複雑な制御
システムを要するが、しかし粒化室内は液滴、粉
末で充満していて配管詰まりを来し易く、複雑な
制御システムも故障し勝ちであつて確実安全な制
御システムが期待されている実情であつた。か
つ、かかる制御システムによつても低酸素含有量
の鉄粉末を製造することは困難なことであつた。
Therefore, the use of hydrocarbons as an atomizing agent has come into practical use, but unlike inert gases such as argon, nitrogen, or water, this method itself lacks stability against high heat, so This poses a problem: when in contact with molten hot metal, it generates other low hydrocarbons, hydrogen and its own vaporized gases, which fluctuates the granulation chamber pressure and makes the granulation operation extremely difficult. Particularly, at the start of operation, the pressure in the granulation chamber fluctuates greatly due to the inflow of the cooling atomizing agent, the inflow of high-temperature molten metal, the generation of cracked gas, etc. If the operation becomes steady, the pressure fluctuations will be constant, but if the balance between the supply amounts of the atomizing agent and molten metal is lost, the pressure inside the granulation chamber will fluctuate rapidly. A complex control system is required to reliably and safely prevent air from entering during such rough operations, but the granulation chamber is often filled with droplets and powder, which can clog the pipes. The reality is that even complex control systems are prone to failure, and a reliable and safe control system is expected. Moreover, even with such a control system, it is difficult to produce iron powder with a low oxygen content.

本発明の目的は、簡単な設備で、炭化水素類を
噴霧化剤とする噴霧化法で低酸素含有量の鉄粉末
を確実安全にかつ安定して得ることを可能とする
方法を提供するにある。
An object of the present invention is to provide a method that allows iron powder with low oxygen content to be reliably, safely and stably obtained using simple equipment and an atomization method using hydrocarbons as an atomizing agent. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る鉄粉末を製造する方法は、下部に
炭化水素類液体が収容されている保護ガス雰囲気
を満たした密閉粒化室を設ける段階と、前記保護
ガス雰囲気中に原料鉄金属の溶湯の流れを生成さ
せて、前記流れを連続した流れの形態をなす加圧
された炭化水素類液体の噴霧化剤の調整された量
に当てて前記溶湯の流れを噴霧化する段階と、前
記保護ガス雰囲気中において得られた鉄金属粒子
を冷却する段階と、その結果生成する鉄金属粒子
の粉末を前記炭化水素類液体中で集める段階とか
らなる鉄粉末を製造する方法において、前記溶湯
はCrおよびMnを含有する溶融金属からなり、前
記密閉粒化室は保護ガスの入口を有するが、その
出口を備えずかつ前記噴霧化段階中に前記保護ガ
ス雰囲気は一定圧力に保持されるよう前記保護ガ
ス入口を介して前記保護ガス入口供給し、かつ前
記密閉粒化室と連通するチヤンネルを有する液体
ロツク手段を備えることにより、前記粒化室の内
圧に従つてチヤンネル中の液水準を変化しながら
前記噴霧化段階中に粒化室を大気と遮断すること
を特徴とする。
The method for producing iron powder according to the present invention includes the steps of: providing a closed granulation chamber filled with a protective gas atmosphere containing a hydrocarbon liquid in the lower part; generating a stream and subjecting the stream to a controlled amount of pressurized hydrocarbon liquid atomizing agent in the form of a continuous stream to atomize the molten metal stream; and atomizing the molten metal stream; A method for producing iron powder comprising the steps of cooling the obtained iron metal particles in an atmosphere and collecting the resulting powder of iron metal particles in the hydrocarbon liquid, wherein the molten metal contains Cr and The closed granulation chamber is made of Mn-containing molten metal, and the closed granulation chamber has an inlet for a protective gas, but not an outlet thereof, and the protective gas atmosphere is maintained at a constant pressure during the atomization step. By providing a liquid locking means having a channel for supplying said protective gas inlet through an inlet and communicating with said closed granulation chamber, said liquid locking means is provided with said protective gas inlet via an inlet, said liquid locking means having said channel in communication with said closed granulation chamber, said liquid locking means being provided with said protective gas inlet through said inlet and said liquid locking means having said channel in communication with said closed granulation chamber. It is characterized in that the granulation chamber is isolated from the atmosphere during the atomization stage.

〔作用〕[Effect]

大気混入の機会が可及的に少なく構成され、ア
ルゴン、窒素などの不活性ガスまたは還元性ガス
からなる保護ガスの導入管は備えられるが、排出
管は存在しないため、噴霧化操作中に粒化室は外
部と全く遮断されたまま、煙霧、蒸気の充満した
粒化室の状態で反応は維持され、爆発の如何なる
危険も避けることができる。また、粒化室を可及
的に密閉体として構成したため、操作開始状態
は、粒化室に炭化水素類液を導入して満たし、次
いで還元液を保護ガスと置換することにより簡便
迅速に構成できる。しかるに、このような粒化室
構成で噴霧化操作を実施しても、低酸素含有量の
鉄粉末の製造は困難であり、この困難を克服して
100ppmのレベル迄酸素含有量を下げるため、所
定の可及的少量のCr及びMn含有の鉄合金を使用
するのが効果的であることが見い出された。
The structure is designed to minimize the chance of atmospheric contamination, and is equipped with an inlet pipe for a protective gas consisting of an inert gas such as argon or nitrogen or a reducing gas, but there is no exhaust pipe, so particles are The granulation chamber is completely isolated from the outside, and the reaction is maintained in the granulation chamber filled with smoke and steam, thereby avoiding any danger of explosion. In addition, since the granulation chamber is configured as a closed body as much as possible, the operation start state can be easily and quickly configured by introducing and filling the granulation chamber with a hydrocarbon liquid, and then replacing the reducing liquid with a protective gas. can. However, even if the atomization operation is carried out with such a granulation chamber configuration, it is difficult to produce iron powder with low oxygen content, and it is difficult to overcome this difficulty.
It has been found effective to use certain Cr- and Mn-containing iron alloys to reduce the oxygen content to a level of 100 ppm.

〔発明の効果〕〔Effect of the invention〕

本発明に係るCrとMnを所定の可及的少量含有
の鉄合金を使用しかつ特定装置を使用して噴霧化
法により鉄粉末を製造すると、激しくかつ荒々し
い操作を確実安全に遂行可能とされ、操作中に粒
化室中の圧変化にかかわらず、粒化室と外気とを
完全に遮断でき、従来困難であつた低酸素含有量
の鉄粉末の製造を可能とすることができる。
By using the iron alloy of the present invention containing as much predetermined amount of Cr and Mn as possible and producing iron powder by the atomization method using specific equipment, violent and rough operations can be carried out reliably and safely. This makes it possible to completely isolate the granulation chamber from the outside air regardless of pressure changes in the granulation chamber during operation, making it possible to produce iron powder with low oxygen content, which was previously difficult. .

〔実施例〕〔Example〕

本発明をより容易に理解できるように添付の図
面を参照して単に例を示すものとして以下の説明
をする。
In order that the invention may be more easily understood, the following description is given, by way of example only, with reference to the accompanying drawings, in which: FIG.

図面において、粒化室1は、例えば油、好まし
くは86.8%の炭素、12.5%の水素、0.58%の硫黄、
残部を灰分0.12%から成る燃料油の炭化水素類液
体をもつて部分的に満たされている。粒化室1に
は溶融金属10を収容している鋳込み容器11の
底部に注湯孔12が設けられている。粒化室1の
上部には保護ガス用の導入管3が設けられている
が、その排出管は設けていない。ノズル14が炭
化水素類液体の噴霧化剤15の供給のために室内
に突出している。第1図及び第2図に示される本
発明方法を実施する装置の実施例においては、チ
ヤンネルの形態をした液体ロツク槽9が設けられ
ている。液体ロツク槽9は可及的に粒化室1に近
接して設けるのが良く、第1図及び第2図のよう
に粒化室1に接続して設けるのが好適である。液
体ロツク槽9は弁7を介して粒化室1と連通して
いる太目の管6と協働し、この管の開口端部は液
体ロツク槽9内の液体8の液面より下にある。液
体ロツク槽9は金属粉末化の操作中に管6の開口
端部が常に液面下にある容量を有する。
In the drawing, the granulation chamber 1 is filled with oil, preferably 86.8% carbon, 12.5% hydrogen, 0.58% sulfur,
The remainder is partially filled with a fuel oil hydrocarbon liquid containing 0.12% ash. In the granulation chamber 1, a pouring hole 12 is provided at the bottom of a casting container 11 containing molten metal 10. An inlet pipe 3 for a protective gas is provided in the upper part of the granulation chamber 1, but no outlet pipe is provided. A nozzle 14 projects into the chamber for supplying an atomizing agent 15 of hydrocarbon liquid. In the embodiment of the apparatus for carrying out the method of the invention shown in FIGS. 1 and 2, a liquid lock reservoir 9 in the form of a channel is provided. The liquid lock tank 9 is preferably provided as close as possible to the granulation chamber 1, and preferably connected to the granulation chamber 1 as shown in FIGS. 1 and 2. The liquid lock tank 9 cooperates with a thick tube 6 which communicates with the granulation chamber 1 via a valve 7, the open end of which is below the level of the liquid 8 in the liquid lock tank 9. . The liquid lock tank 9 has a capacity such that the open end of the tube 6 is always below the liquid level during the metal powdering operation.

噴霧化が始まる前に、弁7と底部弁5は閉じら
れ、その後粒化室1は注湯孔12まで炭化水素類
液体で完全に満たされたとき、液面が噴霧化過程
に対して望まいレベルまで下げられるのと同時に
保護ガスが導入管3を通して供給される。次に、
弁7が開かれ、その結果粒化室1の上部内の還元
性ガス4は、液体ロツク槽9内の液体8内に浸漬
された管6の長さに相当する分だけ大気圧より高
い圧力を維持する。液体8の容量は粒化室1の膨
張縮小による容量変化を充分に吸収できるもので
ある。実際の噴霧化過程がいまや実行される。鋳
込み容器11からの溶融金属10は金属流13の
形態で注湯孔12を通つて流下し、ノズル14か
ら噴射される炭化水素類液体の噴霧化剤15と衝
突せしめられる。
Before the atomization begins, the valve 7 and the bottom valve 5 are closed, after which the granulation chamber 1 is completely filled with hydrocarbon liquid up to the pouring hole 12, when the liquid level is as desired for the atomization process. Protective gas is supplied through the inlet pipe 3 at the same time as the pressure is lowered to a low level. next,
The valve 7 is opened, so that the reducing gas 4 in the upper part of the granulation chamber 1 is brought to a pressure above atmospheric pressure by an amount corresponding to the length of the tube 6 immersed in the liquid 8 in the liquid lock tank 9. maintain. The capacity of the liquid 8 is such that it can sufficiently absorb changes in capacity due to expansion and contraction of the granulation chamber 1. The actual atomization process is now carried out. The molten metal 10 from the casting vessel 11 flows down through the pouring hole 12 in the form of a metal stream 13 and is made to collide with a hydrocarbon liquid atomizing agent 15 injected from a nozzle 14 .

第3図は本発明方法を実施する装置の別の実施
例を示し、この実施例では液体ロツクの機能が粒
化室1の下方の炭化水素類液溜め2によつて構成
され、即ち、粒化室1を保護ガス室4と炭化水素
類液溜め2の上下に2分割し、保護ガス室4と炭
化水素類液溜め2のいずれか一方を上下変位可能
となし、保護ガス室4の下部開口径は炭化水素類
液溜め2の上部開口径より小となし、炭化水素類
液溜め2を液体ロツクの炭化水素類液溜め9を兼
ねて構成させ、炭化水素類液溜め2と保護ガス室
4のいずれか一方を上下に変位させて保護ガス室
4の下部開口部を炭化水素類液溜め2の炭化水素
類液中に所定長さ浸漬せしめて上部の保護ガス室
4の空間と外気との間を遮断して液体ロツクを形
成してなることを特徴とする。粒化室1がガスで
充満される前に液体で充満されると、炭化水素類
液溜め2が上げられるか又は保護ガス室4が下げ
られ、炭化水素類液溜め2は第1図及び第2図の
実施例による液体ロツクの炭化水素類液溜め9と
して作用する。第3図に示される実施例の利点は
液体ロツクが大寸法であり、粒化室1の圧力変動
による如何なる容量変化も安全確実に吸収して対
応できるので、その機能がより信頼できることで
ある。
FIG. 3 shows another embodiment of an apparatus for carrying out the process of the invention, in which the function of the liquid lock is constituted by a hydrocarbons reservoir 2 below the granulation chamber 1, i.e. The chemical chamber 1 is divided into upper and lower parts of the protective gas chamber 4 and the hydrocarbon liquid reservoir 2, and one of the protective gas chamber 4 and the hydrocarbon liquid reservoir 2 can be moved vertically. The opening diameter is smaller than the upper opening diameter of the hydrocarbon liquid reservoir 2, and the hydrocarbon liquid reservoir 2 is configured to also serve as the hydrocarbon liquid reservoir 9 of the liquid lock, and the hydrocarbon liquid reservoir 2 and the protective gas chamber are configured. 4 is moved up and down to immerse the lower opening of the protective gas chamber 4 into the hydrocarbon liquid in the hydrocarbon liquid reservoir 2 for a predetermined length, thereby connecting the space in the upper protective gas chamber 4 with outside air. It is characterized by forming a liquid lock by blocking the space between the two. If the granulation chamber 1 is filled with liquid before it is filled with gas, the hydrocarbons sump 2 is raised or the protective gas chamber 4 is lowered, and the hydrocarbons sump 2 It serves as the hydrocarbons reservoir 9 of the liquid lock according to the embodiment of FIG. The advantage of the embodiment shown in FIG. 3 is that its function is more reliable, since the liquid lock is of larger size and can safely and reliably absorb and cope with any volume changes due to pressure fluctuations in the granulation chamber 1.

本発明は勿論図面に示された装置に限定されず
多くの方法で変更することができる。例えば、噴
霧化媒体は炭化水素、特殊油、及び液化石油、ま
たはベンゼン、メタン等から成つてもよい。シリ
コン油さえも使用され得る。明らかにシリコン油
は酸素を含有しているが、実地試験ではシリコン
油は広い温度範囲に亘つて安定した粘度を有して
おり、それ故本願発明の状況において用いられ得
ることが示されている。
The invention is, of course, not limited to the device shown in the drawings, but can be modified in many ways. For example, the atomizing medium may consist of hydrocarbons, specialty oils, and liquefied petroleum, or benzene, methane, and the like. Even silicone oil can be used. Although silicone oil obviously contains oxygen, field tests have shown that silicone oil has a stable viscosity over a wide temperature range and therefore can be used in the context of the present invention. .

操作例 約10Kgの溶融鋼を鋳込み場合、溶融鋼はトリベ
から直径6.5mmの注湯孔を有する黒鉛の鋳込み容
器に注ぎ込まれた。溶融鋳込み流れは下方に向け
られた相対向する四つのノズルからの油(燃料
油)によつて粉末に噴霧化された。アルゴンが保
護ガス室として用いられたが、勿論窒素のような
他のガスも用いることができる。この例において
用いられた油の量は約500/分であり、圧力は
5.5Kg/cm2であつた。操作中粒化室1の内圧変動
は液体ロツクによつて安全確実に吸収できた。こ
の例から、本発明に従つて実行される油を用いて
の噴霧化は粉末中の酸素含有量を非常に低くする
効果の外にある程度の増炭効果も生ずることが明
らかである。製造された粉末は葉巻タバコ形、ジ
ヤガイモ形及び球形の種々の形状の粒子から成つ
ており、その結果として細かい粒子は大部分が球
状であり、細長い形の粒子は主にとりわけ粗大粒
子部分であると断定し得ることが判つた。
Operation example: When casting approximately 10 kg of molten steel, the molten steel was poured from a ladle into a graphite casting vessel with a pouring hole of 6.5 mm in diameter. The molten pouring stream was atomized into powder by oil (fuel oil) from four opposing nozzles directed downwards. Argon was used as the protective gas chamber, but of course other gases such as nitrogen can also be used. The amount of oil used in this example was approximately 500/min and the pressure was
It was 5.5Kg/ cm2 . Fluctuations in the internal pressure of the granulation chamber 1 during operation could be safely and reliably absorbed by the liquid lock. It is clear from this example that the atomization with oil carried out according to the invention, in addition to the effect of making the oxygen content in the powder very low, also produces a certain carburization effect. The powder produced consists of particles of various shapes: cigar-shaped, potato-shaped and spherical, with the result that the fine particles are predominantly spherical and the elongated particles are mainly a particularly coarse particle fraction. It was found that it can be concluded that

製造された粉末のメツシユ分析は次の結果とな
つた。
Mesh analysis of the produced powder gave the following results.

メツシユ幅 % 粉末 3360ミクロン 0.37 1680ミクロン 2.03 841ミクロン 18.36 595ミクロン 23.80 420ミクロン 24.85 210ミクロン 24.66 149ミクロン 4.26 105ミクロン 1.30 74ミクロン 0.23 53ミクロン 0.12 53ミクロン以下 0.02 種々の粒度での全酸素含有量は第4図から、
種々の粒度での炭素含有量は第5図から見ること
ができる。酸素含有量に関しては、比較例とし
て、従来通りに製造された1.2%のMnを含有する
粗粒型の鉄粉末は0.76〜1%(即ち7600〜
10000ppm)の酸素含有量を有するということが
できる。
Mesh width % Powder 3360 microns 0.37 1680 microns 2.03 841 microns 18.36 595 microns 23.80 420 microns 24.85 210 microns 24.66 149 microns 4.26 105 microns 1.30 74 microns 0.23 53 microns 0.12 53 microns or less 0.02 Total oxygen content at various particle sizes is 4th From the figure,
The carbon content at various particle sizes can be seen from FIG. As for the oxygen content, as a comparative example, a conventionally produced coarse-grained iron powder containing 1.2% Mn has an oxygen content of 0.76-1% (i.e. 7600-1%).
It can be said that it has an oxygen content of 10,000 ppm).

その他の点では鋼の化学分析は下記の値を示し
た。
In other respects, chemical analysis of the steel showed the following values:

% Si 0.57 Mn 1.30 P 0.017 S 0.021 Cr 0.16 Ni 0.03 Mo 0.03 Cu 0.05 V 0.01 Ti 0.01 Al 0.007 鋼の酸素含有量は86ppm。 % Si 0.57 Mn 1.30 P 0.017 S 0.021 Cr 0.16 Ni 0.03 Mo 0.03 Cu 0.05 V 0.01 Ti 0.01 Al 0.007 The oxygen content of steel is 86ppm.

このように製造困難であつた低酸素含有量の鉄
粉末が製造可能とされる原因は、特定装置と原料
鉄としてMn1.30±0.5%及びCr0.16±0.1%含有の
合金鉄を使用したことに基づくことが分かつた。
The reason why iron powder with low oxygen content, which has been difficult to manufacture, can be manufactured is that a special equipment and a ferroalloy containing 1.30 ± 0.5% Mn and 0.16 ± 0.1% Cr were used as the raw material iron. I found out that it is based on this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一つの実
施例を示す概略図、第2図は第二の実施例を示す
同様な概略図、第3図は第三の実施例を示す同様
な概略図、第4図および第5図は種々の粒度につ
いて酸素含有量および炭素含有量を夫々示すグラ
フである。 1……粒化室、2……炭化水素類液溜め、3…
…保護ガス導入管、4……保護ガス室、5……底
部排出弁、6……管、7……弁、8……液体、9
……炭化水素類液溜め、10……溶融金属、11
……鋳込み容器、12……底部注湯孔、13……
溶融金属流、14……ノズル、15……噴霧化
剤。
1 is a schematic diagram showing one embodiment of an apparatus for carrying out the method of the invention, FIG. 2 is a similar schematic diagram showing a second embodiment, and FIG. 3 is a similar diagram showing a third embodiment. The schematic diagrams, Figures 4 and 5 are graphs showing the oxygen content and carbon content, respectively, for various particle sizes. 1... Granulation chamber, 2... Hydrocarbon liquid reservoir, 3...
...Protective gas introduction pipe, 4...Protective gas chamber, 5...Bottom discharge valve, 6...Pipe, 7...Valve, 8...Liquid, 9
... Hydrocarbon liquid reservoir, 10 ... Molten metal, 11
...Casting container, 12...Bottom pouring hole, 13...
Molten metal flow, 14... nozzle, 15... atomizing agent.

Claims (1)

【特許請求の範囲】 1 下部に炭化水素類液体が収容されている保護
ガス雰囲気を満たした密閉粒化室を設ける段階
と、前記保護ガス雰囲気中に原料鉄金属の溶湯の
流れを生成させて、前記流れを連続した流れの形
態をなす加圧された炭化水素類液体の噴霧化剤の
調整された量に当てて前記溶湯の流れを噴霧化す
る段階と、前記保護ガス雰囲気中において得られ
た鉄金属粒子を冷却する段階と、その結果生成す
る鉄金属粒子の粉末を前記炭化水素類液体中で集
める段階とからなる鉄粉末を製造する方法におい
て、前記溶湯はCrおよびMnを含有する溶融金属
からなり、前記密閉粒化室は保護ガスの入口を有
するが、その出口を備えずかつ前記噴霧化段階中
に前記保護ガス雰囲気は一定圧力に保持されるよ
う前記保護ガス入口を介して前記保護ガスを供給
し、かつ前記密閉粒化室と連通するチヤンネルを
有する液体ロツク手段を備えることにより、前記
粒化室の内圧に従つてチヤンネル中の液水準を変
化しながら前記噴霧化段階中に粒化室を大気と遮
断することを特徴とする鉄粉末を製造する方法。 2 前記液体ロツク手段の液体は前記密閉粒化室
の下部の液体と共通であり、かつ前記密閉粒化室
の開放下部壁により隔離されて、前記粒化室の内
圧に従つて前記ロツク手段の液水準を直ちに変化
する特許請求の範囲第1項記載の鉄粉末を製造す
る方法。
[Claims] 1. Providing a closed granulation chamber filled with a protective gas atmosphere in which a hydrocarbon liquid is contained in the lower part, and generating a flow of molten raw material ferrous metal in the protective gas atmosphere. atomizing the molten metal stream by subjecting the stream to a controlled amount of a pressurized hydrocarbon liquid atomizing agent in the form of a continuous stream; A method for producing iron powder comprising the steps of cooling ferrous metal particles and collecting the resulting powder of ferrous metal particles in the hydrocarbon liquid, wherein the molten metal is a molten metal containing Cr and Mn. made of metal, said closed granulation chamber has an inlet for a protective gas, but not an outlet thereof, and said protective gas atmosphere is maintained at a constant pressure during said atomization step through said protective gas inlet. By providing a liquid locking means for supplying a protective gas and having a channel communicating with the closed granulation chamber, during the atomization step the liquid level in the channel is varied according to the internal pressure of the granulation chamber. A method for producing iron powder, characterized in that a granulation chamber is isolated from the atmosphere. 2. The liquid in the liquid locking means is common to the liquid in the lower part of the closed granulation chamber and is separated by the open lower wall of the closed granulation chamber, and the liquid in the locking means is controlled according to the internal pressure of the granulation chamber. A method for producing iron powder according to claim 1, wherein the liquid level is changed immediately.
JP27808385A 1985-12-12 1985-12-12 Production of iron powder Granted JPS61143503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27808385A JPS61143503A (en) 1985-12-12 1985-12-12 Production of iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27808385A JPS61143503A (en) 1985-12-12 1985-12-12 Production of iron powder

Publications (2)

Publication Number Publication Date
JPS61143503A JPS61143503A (en) 1986-07-01
JPS6362561B2 true JPS6362561B2 (en) 1988-12-02

Family

ID=17592400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27808385A Granted JPS61143503A (en) 1985-12-12 1985-12-12 Production of iron powder

Country Status (1)

Country Link
JP (1) JPS61143503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080178A1 (en) * 2019-10-25 2021-04-29 성일하이메탈(주) Apparatus and method for manufacturing granules from molten metal by using high-pressure water injection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080178A1 (en) * 2019-10-25 2021-04-29 성일하이메탈(주) Apparatus and method for manufacturing granules from molten metal by using high-pressure water injection

Also Published As

Publication number Publication date
JPS61143503A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US4124377A (en) Method and apparatus for producing atomized metal powder
US5310165A (en) Atomization of electroslag refined metal
CN110181069B (en) Method for preparing high-nitrogen steel powder by adopting gas atomization method
US4080126A (en) Water atomizer for low oxygen metal powders
CA2107421A1 (en) Atomization with low atomizing gas pressure
Gummeson Modern atomizing techniques
EP0175078B1 (en) Device and method for production of ultra-fine, rapidly solidified, metal powders
Schade et al. Atomization
US5402992A (en) Apparatus for production of metal granules
JPS6224481B2 (en)
JPS6112966B2 (en)
JPS6362561B2 (en)
US4339401A (en) Process for producing metal powders having low oxygen content
DE4019563C2 (en)
GB1563438A (en) Method and apparatus for producing atomized metal powder
Watkinson Atomization of metal and alloy powders
US20230356296A1 (en) Device and method for producing metal powders
EP4019167A1 (en) Atomisation of metallic melts using liquid co2
CA1094272A (en) Method and apparatus for producing atomized metal powder
CA1315055C (en) Atomization process
JPS6244508A (en) Apparatus for producing powder
IE45168B1 (en) Method for producing atomized metal powder
KR100594761B1 (en) Apparatus and Method for Manufacturing Inflammable metal powder
EP0016273B1 (en) Process and apparatus for the production of metallic compositions comprising at least two constituents, one constituent having a melting temperature exceeding the boiling temperature of the other
JPS63266001A (en) Production of composite spherical powder