JPS61129554A - Measuring device for scattered light - Google Patents

Measuring device for scattered light

Info

Publication number
JPS61129554A
JPS61129554A JP25225484A JP25225484A JPS61129554A JP S61129554 A JPS61129554 A JP S61129554A JP 25225484 A JP25225484 A JP 25225484A JP 25225484 A JP25225484 A JP 25225484A JP S61129554 A JPS61129554 A JP S61129554A
Authority
JP
Japan
Prior art keywords
scattered light
light
scattered
measured
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25225484A
Other languages
Japanese (ja)
Inventor
Shigeo Hayashida
林田 茂男
Misao Morita
森田 操
Koji Nakajima
孝司 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP25225484A priority Critical patent/JPS61129554A/en
Publication of JPS61129554A publication Critical patent/JPS61129554A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the need for a large-output light source and simplify the titled measuring device by irradiating a body to be measured with parallel luminous flux, removing unscattered light on the front surface of the object body, and converging scattered light at its peripheral part efficiently and detecting its intensity. CONSTITUTION:Light from a light source 11 is collimated by a luminous flux adjusting device 12 into parallel luminous flux to irradiate the body 13 to be measured with the light, whose transmitted light is made incident on a scattered light detecting device 15. An unscattered light detecting device 19 is provided on the optical axis of the scattered light detecting device 15. Further, through holes 17a and 17b are bored at its periphery to pass the scattered light through them, and the light is made incident on a scattered light detecting device 21 through a condenser lens 17 to form an image. Thus, the through holes 17a and 17b concentric with an optical mask 17 are formed for the scattered light L4 transmitted through the object body 13 and only the scattered light which is transmitted through it is converged and detected. Therefore, the intensity of the light that the scattered light detecting device 21 receives increases to eliminate the need to use a large-output light source, thereby measuring the dispersion of pigment in a paint.

Description

【発明の詳細な説明】 く技術分野〉 この発明は、光源から平行な光束を照射された被測定体
からの透過光の散孔パターンを検出する散乱光測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a scattered light measuring device that detects a scattered pattern of transmitted light from a measured object irradiated with a parallel light beam from a light source.

く従来の技術〉 一般に、例えば液中の固体粒子の有無や濃度、大きさの
程度を検出する場合、敢6Lパターンによりその検出を
行なっており、そのため散乱光測定装置が用いられる。
BACKGROUND ART Generally, when detecting the presence, concentration, and size of solid particles in a liquid, for example, the detection is performed using a 6L pattern, and a scattered light measuring device is used for this purpose.

従来の散乱光測定装置について、以下第5図により説明
する。光源1により、非数6L粒子を含む被測定t3の
はいった透明容器2に平行光束を照射し、被測定液3に
よる散6Lパターンを光検出器4により検出している。
A conventional scattered light measuring device will be explained below with reference to FIG. A light source 1 irradiates a transparent container 2 containing a sample t3 containing non-several 6L particles with a parallel light beam, and a photodetector 4 detects a scattered 6L pattern caused by the sample liquid 3.

しかしながら多くの場合、故6L光り、は非散乱光L1
に比して非常に微弱であるため、これの安定な検出には
検出範囲の広い検出器が要求され、高い検出感度も要求
される。
However, in many cases, the 6L light is the unscattered light L1
Since it is very weak compared to the rays, a detector with a wide detection range is required for stable detection, and high detection sensitivity is also required.

また光源16大出力のものが必要とされる場合が多い、
さらに充放6Lパターンを検出するためには検出器4を
機械的に走査する必要があり、精度の高い走査機構が要
求される。そのため測定装置が複雑高価になり、かつ測
定に時間がかかろという欠点があった。
In addition, a light source with 16 outputs is often required.
Furthermore, in order to detect the charging/discharging 6L pattern, it is necessary to mechanically scan the detector 4, and a highly accurate scanning mechanism is required. This has the drawback that the measuring device is complicated and expensive, and the measurement takes time.

〈発明の目的〉 そこで、この発明の目的は、大出力の光源や高感度、高
価な光検出器を用いることなく、かつ、精度が高い複雑
、高価な走査8!溝を必要とせずに、散乱光と非数8し
光とを分離して、それらを同時に検出し得る散乱光測定
!!置を提供することにある。
<Object of the Invention> Therefore, the object of the present invention is to perform complicated and expensive scanning with high accuracy without using a high-output light source or a highly sensitive and expensive photodetector. Scattered light measurement that can separate scattered light and non-digital light and detect them simultaneously without the need for grooves! ! The aim is to provide a

〈発明の構成〉 上記目的を達成するため、この発明の散乱光測定装置は
、光源と、その光源からの光を平行光束にして充放6し
性を持つ被測定体に照射する光束調整装置と、上記被測
定体の前方でかつ被測定体を透過した非数fiL光の光
路に垂直な面上の中心部に設けられた非故6L光強度検
出手段と、上記面上の周辺部に設けられた散孔光集光手
段と、その散乱光集光手段の前方に設けられた散乱光強
度検出手段を備えたことを特徴としている。
<Structure of the Invention> In order to achieve the above object, the scattered light measuring device of the present invention includes a light source and a light flux adjustment device that converts the light from the light source into a parallel light flux and irradiates it onto a measured object having charging and discharging properties. and a non-faulty 6L light intensity detection means provided in front of the object to be measured and at the center on a plane perpendicular to the optical path of the non-number fiL light transmitted through the object to be measured; It is characterized by comprising a scattered light condensing means provided and a scattered light intensity detection means provided in front of the scattered light condensing means.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は、この発明の散乱光測定装置であり、レーザー
、タングステンランプ、セキノンアークランプなどより
なる光源11から出た光は、コンデンサーレンズ、ピン
ホール、コリメーターレンズより構成される光束調整装
W112によりある直径を待った平行光束に調整されて
、光散乱性を持つ被測定本13に照射される。上記被測
定体13の前方に散乱光検出装置15を設置する。
FIG. 1 shows a scattered light measuring device of the present invention, in which the light emitted from a light source 11 consisting of a laser, a tungsten lamp, a sequinon arc lamp, etc. is adjusted by a condenser lens, a pinhole, a collimator lens, etc. The parallel light beam is adjusted to a certain diameter by the device W112, and is irradiated onto the book 13 to be measured which has light scattering properties. A scattered light detection device 15 is installed in front of the object 13 to be measured.

上記被測定本13は、被測定体移動装置114によって
、前後方向に移動できるようになっている。
The book 13 to be measured can be moved in the front and back direction by a device 114 for moving the object to be measured.

また上記故6L光検出装置15は筺体16に、故8し光
集光手段としての斂6L光集光レンズ17と所望の散乱
光をし十へいする光学マスク18と非散乱光強度検出手
段としての非散乱光検出器19と散乱光強度検出手段と
しての故、!iL光検出器21とその散乱光検出器21
の位置調整を行なう位置調整装置!22を設けてなる。
The above 6L light detection device 15 is provided in a housing 16 with a 6L light condensing lens 17 as a light condensing means, an optical mask 18 for collecting desired scattered light, and a non-scattered light intensity detection means. Therefore, the non-scattered light detector 19 and the scattered light intensity detection means are used! iL photodetector 21 and its scattered light detector 21
A position adjustment device that adjusts the position of! 22 are provided.

上記散肚光集光しンX”17は上記!測定体13を透過
した非散乱光り、の光路に直交する面上、すなわち筐体
16の一面上に設けており、かつ非散乱光検出器19は
上記面の中心部に上記散乱光集光レンズ17を貫通して
設けている。上記光学マスク18は、散乱光集光レンズ
17に重ね合わせており、上記非散乱光検出器19に対
向する中心部の貫通孔17aと上記貫通孔17aと同心
の輪状の貫通孔17bを備元、この輪状のn通孔17b
に一定角度の故fiL尤L4が入射するようにしている
The diffused light condensing line X" 17 is provided on a surface perpendicular to the optical path of the non-scattered light transmitted through the measurement object 13, that is, on one surface of the housing 16, and is provided with a non-scattered light detector. 19 is provided at the center of the surface to pass through the scattered light condensing lens 17.The optical mask 18 is superimposed on the scattered light condensing lens 17, and faces the non-scattered light detector 19. A central through hole 17a and a ring-shaped through hole 17b concentric with the through hole 17a are provided, and this ring-shaped n through hole 17b is provided.
Since it is at a constant angle, fiL L4 is made to be incident.

一方、上記散乱光検出器21は、上記散乱光集光レンズ
17に一定開隔をあけて対向する筐体16の一面の中心
に設けて、非散乱光検出器19に対向させている。上記
散乱光検出器21の位置は位置調整装置22により調整
して、被測定体13の充放6L面の像が散乱光集光レン
X”17により散乱光検出器21上に結像されるように
している。
On the other hand, the scattered light detector 21 is provided at the center of one surface of the casing 16 facing the scattered light condensing lens 17 at a constant distance, and is opposed to the non-scattered light detector 19. The position of the scattered light detector 21 is adjusted by a position adjustment device 22, and an image of the charge/discharge 6L surface of the object to be measured 13 is formed on the scattered light detector 21 by the scattered light condensing lens X"17. That's what I do.

このように配設することにより、被測定体13の光照射
面よりの散乱光のうち光学マスクすなわち散乱光しゃへ
いマスク18を通過した部分のみが全て飲6L光集光レ
ンズ17により散乱光検出器21に集光されるため、散
乱光検出器21が受ける光強度が大きくなり、大出力の
光源を用いずとも安価な半導体検出器などによる測定が
可能となる。
With this arrangement, only the portion of the scattered light from the light irradiation surface of the object to be measured 13 that has passed through the optical mask, that is, the scattered light shielding mask 18, is detected by the 6L light condensing lens 17 and detected by the scattered light detector. Since the light is focused on the scattered light detector 21, the intensity of the light received by the scattered light detector 21 increases, and measurement can be performed using an inexpensive semiconductor detector or the like without using a high-output light source.

上記被測定体13を通過してくる光のうち、非数ALi
L、は非故6L光検出器19により検出され、散乱光り
、は散乱光集光レンズ17により集光され、散孔光検出
器21により検出される。非散乱光り、の測定面積、故
8L光り、を集光する場合の集光する故6L角範囲は、
光学マスク18を交換することにより、必要な範囲に設
定することが可能である。
Of the light passing through the object to be measured 13, the non-number ALi
The scattered light L is detected by the non-defective 6L photodetector 19, and the scattered light is collected by the scattered light condensing lens 17 and detected by the scattered aperture photodetector 21. The measurement area of non-scattered light, hence the 6L angular range of condensing when condensing 8L light, is:
By replacing the optical mask 18, it is possible to set the desired range.

さらに被測定体13の位置を被測定体移動装置14でa
整し、それと同時に散乱光検出器21の位置を被測定体
13の光散乱面の像が散乱光集丸レンズ17により結像
さ八る位置にくるように調整することにより、さらに広
範囲に散乱角の異なる散乱光を測定することが可能とな
る。
Furthermore, the position of the object to be measured 13 is determined by the object moving device 14.
At the same time, by adjusting the position of the scattered light detector 21 so that the image of the light scattering surface of the object to be measured 13 is focused by the scattered light condensing lens 17, the scattered light can be scattered over a wider range. It becomes possible to measure scattered light from different angles.

また散乱光集光レンズ17は通常のガラス製レンズを用
いてもよいが本実施例ではプラスチック製のフレネルレ
ンズで構成されており、通常のガラス製レンズにくらべ
、直径が大きくかつ焦点距離が短いものを安価で入手し
易く、また穴あけ等の加工が容易である。
Further, the scattered light condensing lens 17 may be a normal glass lens, but in this embodiment, it is made of a plastic Fresnel lens, which has a larger diameter and a shorter focal length than a normal glass lens. It is cheap and easy to obtain, and processing such as drilling is easy.

次に本発明による装置の応用例として、塗料液中の顔料
粒子による光散乱パターン検出による顔料粒子の分散状
態の測定について説明する。
Next, as an application example of the apparatus according to the present invention, measurement of the dispersion state of pigment particles by detecting a light scattering pattern of pigment particles in a paint liquid will be described.

塗料製造においては顔料をビヒクル中に均一に分散させ
ることが必要であるが、塗料液中の顔料粒子の粒度測定
はJISK−5400に規定されている「っぷゲージ、
1によっているのが現状である。
In paint production, it is necessary to uniformly disperse pigments in a vehicle, and the particle size of pigment particles in a paint liquid can be measured using the "appu gauge" specified in JISK-5400.
The current situation is based on 1.

しかしながら「つぶデージ」は顔料精子の粒子径分布の
最大値を検出していることになり、さらにその最大値も
5μ−以下になると、測定が困難であるという問題点を
持っている。最近のように高品質の塗料が要求されてく
ると、塗料液中の顔料粒子の分散も高度のものが要求さ
れ、顔料粒子径の測定ら「つぶデージ」では不可能にな
ってさているのが現状である。
However, ``Tsubage'' detects the maximum value of the particle size distribution of pigmented spermatozoa, and furthermore, when the maximum value is less than 5μ, it has the problem that measurement is difficult. With the recent demand for high-quality paints, the dispersion of pigment particles in paint liquids is also required to be highly dispersible, making it impossible to measure pigment particle diameters using ``Tsubage''. is the current situation.

従来、塗料液のような高濃度懸濁液中の粒子の粒度分布
測定は、沈降法、顕微鏡法、光散乱性などによっている
が、いずれの方法も試料をかなり希釈する必要があり、
希釈により粒子の分散状態が変化するという本質的なU
題の他、希釈の為の手間がかかるという問題点を有する
Conventionally, the particle size distribution of particles in highly concentrated suspensions such as paint liquids has been measured using sedimentation methods, microscopy methods, light scattering methods, etc., but all methods require considerable dilution of the sample.
The essential U that the dispersion state of particles changes due to dilution
In addition to this problem, it also has the problem of requiring time and effort for dilution.

かかる問題点を解決するため、本発明による装置を応用
した、塗料液中の顔料粒子状態を簡易にかつ短時間に検
出することのできる装置についで説明する。
In order to solve this problem, a device to which the device according to the present invention is applied, which can easily and quickly detect the state of pigment particles in a paint liquid, will be described.

測定しようとする塗料液を所定の条件に調整し、薄層ま
たは薄膜にした試料を第5図に示すような従来の装置を
用いて、前方数社光強度分布を測定した例を第2図に示
す、第2図の光強度は中心透過光を1として規準化して
あり、また本例で使用した試料は、キナクリドン赤顔料
をアクリル樹脂溶液中にPVC30%にて分散したもの
を、′/g−さ20μ−の薄層にしたらのも用いている
。第3図中のAは樹脂溶液のみの、Bは分散の良い塗料
液の、Cは分散の悪い塗料液の前方散乱光分布を示す。
Figure 2 shows an example of measuring the light intensity distribution of a few samples in front using a conventional device as shown in Figure 5, after adjusting the paint liquid to be measured to specified conditions and using a thin layer or thin film sample. The light intensity shown in Figure 2 is normalized with the center transmitted light as 1, and the sample used in this example is a quinacridone red pigment dispersed in an acrylic resin solution with 30% PVC. A thin layer with a g-thickness of 20μ is also used. In FIG. 3, A shows the forward scattered light distribution of only the resin solution, B shows the forward scattered light distribution of the well-dispersed coating liquid, and C shows the forward scattered light distribution of the poorly dispersed coating liquid.

第2図より明らかなごとく、敗8L角3° 〜20゜の
範囲の散乱光強度が、顔料粒子の分散状態により変化し
ていることがわかる。
As is clear from FIG. 2, it can be seen that the intensity of scattered light in the range of 3° to 20° L angle changes depending on the dispersion state of the pigment particles.

第3図に顔料粒子の分散の程度と「っ書ゲーノ」の読み
及び前方散乱光強度の変化を示す、第3図において、た
て軸は「つぶゲージ」による測定値、及び受光散乱角範
囲1° 〜18°になるよう調整した第1図に示す本発
明の装置におけろ散8し光検出器21により検出さhた
光強度信号(第3図中にIsと記す)を非数乱光検出器
19により検出された光強度信号(第3図中にDaと記
す)により除したものをあられしており、また、横軸は
〃ラスビーズを媒体として用いる媒体型分散磯を用いて
、キナクリドン赤顔料をアクリル樹脂中に分散した場合
の分散時間を示す。
Figure 3 shows the degree of dispersion of pigment particles and changes in the reading of the ``Tsho Geno'' and the forward scattered light intensity. The light intensity signal (denoted as Is in FIG. 3) detected by the photodetector 21 after scattering in the apparatus of the present invention shown in FIG. The light intensity signal divided by the light intensity signal (denoted as Da in Figure 3) detected by the scattered light detector 19 is shown, and the horizontal axis shows the intensity of light obtained by using a medium-type dispersion beam using russian beads as a medium. , shows the dispersion time when a quinacridone red pigment is dispersed in an acrylic resin.

第3図より、「つぷゲージ」では測定不可能な領域にお
いて、顔料分散程度が検出可能であることがわかる。
From FIG. 3, it can be seen that the degree of pigment dispersion can be detected in a region that cannot be measured with a "tup gauge".

なお、第1図に示す実施例においては、散乱光集光レン
ズ17は単一のフレネルレンズを用いていたが、複数の
フレネルレンズを用いてもよい。
In the embodiment shown in FIG. 1, a single Fresnel lens is used as the scattered light condensing lens 17, but a plurality of Fresnel lenses may be used.

第4図に示す実施例は、同一光軸上に焦点を持つ2種の
フレネルレンズ91.92を用いで、異なろ散乱角範囲
の散乱光L111L4□を別々に集光し、数社光検出器
121,221により、同時に検出することが可能な構
成となっているものであり、測定目的に応じて必要な散
6L角範囲を選択することが可能なものである。
The embodiment shown in Fig. 4 uses two types of Fresnel lenses 91 and 92 that have focal points on the same optical axis, and separately collects scattered light L111L4□ with different filter scattering angle ranges. The sensor 121 and 221 are configured to allow simultaneous detection, and it is possible to select a necessary 6L angle range depending on the purpose of measurement.

以上述べたごとく、この発明によれば、被測定体から数
社された散、!iL光を効率よく集光することが可能で
大きな光強度をもった光信号として検出することが可能
になり、光源の光を強くする必要がなく、半導体などの
安価な光検出器を用いることができる。また高感度の光
検出器を用いれば光源を弱くすることら可能である。し
かも非散乱光と故8L光を同時に検出することが可能で
あり、検出器を走査するなどの必要がないため、!fI
造を簡易にかつ安価に製作することが可能となる6また
、被測定体と非散乱光検出手段および散乱光集光手段が
設けられている面との距離を調節可能にし、かつ、上記
面と散乱光検出手段との距離を調節可能にすれば、測定
目的に応じて必要な敵6L角範囲を設定することができ
る。
As described above, according to the present invention, several companies have been able to use the device to be measured. It is possible to efficiently collect iL light and detect it as an optical signal with high optical intensity, there is no need to increase the intensity of the light source, and it is possible to use an inexpensive photodetector such as a semiconductor. Can be done. It is also possible to weaken the light source by using a highly sensitive photodetector. Moreover, it is possible to detect the non-scattered light and the 8L light at the same time, and there is no need to scan the detector! fI
In addition, the distance between the object to be measured and the surface on which the non-scattered light detection means and the scattered light condensing means are provided can be adjusted, and By making the distance between the object and the scattered light detection means adjustable, it is possible to set the necessary angle range of the enemy 6L depending on the purpose of measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の欽8L光測定装置、第2
図は塗料液薄層による前方散乱光強度分布を示す図、第
3図は顔料分散時間に対するっぷY−ノによる測定値お
よび散乱光強度と非散乱光強度との比を示す図、第4図
は他の実施例の断面図、#15図は従来の散乱光測定装
置の断面図である。 11・・・光源、12・・・光束iI]整装置、13・
・・被測定体、14・・・被測定体移動装置、17,9
1.92・・・フレネルレンズ、18・・・光学マスク
、19・・・非散乱光強度検出器、21,121,22
1・・・散乱光強度検出器、22・・・位atiiiq
。 特 許 出 願 人 日本ペイント株式会社代 理 人
 弁理士 前出 葆  はか2名第1図 1ら 第2図 相 敷台り角(廣)
FIG. 1 shows a Kin 8L optical measuring device according to an embodiment of the present invention.
Figure 3 shows the forward scattered light intensity distribution due to a thin layer of paint liquid, Figure 3 shows the measured values by Y-No and the ratio of the scattered light intensity to the non-scattered light intensity with respect to the pigment dispersion time, and Figure 4 shows the ratio of the scattered light intensity to the non-scattered light intensity. The figure is a cross-sectional view of another embodiment, and Figure #15 is a cross-sectional view of a conventional scattered light measuring device. 11... Light source, 12... Luminous flux iI] adjustment device, 13.
...Measurement object, 14...Measurement object moving device, 17, 9
1.92... Fresnel lens, 18... Optical mask, 19... Non-scattered light intensity detector, 21, 121, 22
1... Scattered light intensity detector, 22... position atiiiq
. Patent applicant: Nippon Paint Co., Ltd. Agent: Patent attorney: Two people: Figure 1, 1 and 2, phase angle (Hiro)

Claims (5)

【特許請求の範囲】[Claims] (1)光源と、その光源からの光を平行光束にして光散
乱性を持つ被測定体に照射する光束調整装置と、上記被
測定体の前方でかつ被測定体を透過した非散乱光の光路
に垂直な面上の中心部に設けられた非散乱光強度検出手
段と、上記面上の周辺部に設けられた散乱光集光手段と
、その散乱光集光手段の前方に設けられた散乱光強度検
出手段を備えたことを特徴とする散乱光測定装置。
(1) A light source, a light flux adjustment device that converts the light from the light source into a parallel light beam and irradiates it to the object to be measured that has light scattering properties, and a light flux adjustment device that converts the light from the light source into a parallel beam and irradiates it to the object to be measured that has light scattering properties, and a A non-scattered light intensity detection means provided at the center on a plane perpendicular to the optical path, a scattered light condensing means provided at the periphery on the surface, and a non-scattered light condensing means provided in front of the scattered light condensing means. A scattered light measuring device comprising a scattered light intensity detection means.
(2)上記被測定体と、上記非散乱光強度検出手段およ
び散乱光集光手段が設けられている面との距離が調節可
能になっており、かつ、上記面と散乱光強度検出手段と
の距離が調節可能になっていることを特徴とする特許請
求の範囲第1項に記載の散乱光測定装置。
(2) The distance between the object to be measured and the surface on which the non-scattered light intensity detection means and the scattered light condensing means are provided is adjustable, and the distance between the surface and the scattered light intensity detection means is adjustable. 2. The scattered light measuring device according to claim 1, wherein the distance is adjustable.
(3)上記散乱光集光手段の前面に、ある散乱角範囲内
の散乱光のみを通過させるための光学マスクを設けたこ
とを特徴とする特許請求の範囲第1項に記載の装置。
(3) The device according to claim 1, further comprising an optical mask provided in front of the scattered light condensing means to allow only scattered light within a certain scattering angle range to pass through.
(4)上記散乱光集光手段が、同一光軸上に複数の焦点
を持つことを特徴とする特許請求の範囲第1項に記載の
装置。
(4) The apparatus according to claim 1, wherein the scattered light condensing means has a plurality of focal points on the same optical axis.
(5)上記散乱光集光手段が、フレネルレンズにより構
成されていることを特徴とする特許請求の範囲第1項に
記載の装置。
(5) The device according to claim 1, wherein the scattered light condensing means is constituted by a Fresnel lens.
JP25225484A 1984-11-28 1984-11-28 Measuring device for scattered light Pending JPS61129554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25225484A JPS61129554A (en) 1984-11-28 1984-11-28 Measuring device for scattered light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25225484A JPS61129554A (en) 1984-11-28 1984-11-28 Measuring device for scattered light

Publications (1)

Publication Number Publication Date
JPS61129554A true JPS61129554A (en) 1986-06-17

Family

ID=17234666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25225484A Pending JPS61129554A (en) 1984-11-28 1984-11-28 Measuring device for scattered light

Country Status (1)

Country Link
JP (1) JPS61129554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535645A (en) * 1999-01-25 2002-10-22 ニユートン・ラボラトリーズ・インコーポレーテツド Imaging of tissue using polarized light
US11613192B2 (en) 2018-06-11 2023-03-28 Adient Us Llc Height-adjustable and longitudinally adjustable headrest

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121584A (en) * 1973-03-01 1974-11-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121584A (en) * 1973-03-01 1974-11-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535645A (en) * 1999-01-25 2002-10-22 ニユートン・ラボラトリーズ・インコーポレーテツド Imaging of tissue using polarized light
US11613192B2 (en) 2018-06-11 2023-03-28 Adient Us Llc Height-adjustable and longitudinally adjustable headrest

Similar Documents

Publication Publication Date Title
US8576396B2 (en) Cell construction for light scatter detectors having self-focusing properties
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
JP2825644B2 (en) Particle size analysis method and apparatus
US4053229A (en) 2°/90° Laboratory scattering photometer
US20090323061A1 (en) Multi-color hetereodyne interferometric apparatus and method for sizing nanoparticles
JPH07503796A (en) Method and apparatus for molecular characterization
JPS63500334A (en) Scattered light measurement device by biological cells for flow cytometer
JPH0237536B2 (en)
EP0624787B1 (en) Method and device for non-distructive testing of surfaces
US6522405B2 (en) Method and apparatus for monitoring sub-micron particles
JPS61129554A (en) Measuring device for scattered light
JPH05215664A (en) Method and device for detecting submicron particle
JPH0418618B2 (en)
JPH02193041A (en) Particle size distribution apparatus
JP7078115B2 (en) Light scattering detector
JPH0277636A (en) Particle measuring device
JP2003130784A (en) Apparatus for detecting particulate in fluid
JPS63292039A (en) Apparatus for detecting fine grain in liquid
JPS6117940A (en) Method and instrument for measuring dispersion condition of particles in high-density suspension or the like
Beyer Particle counter for rapid determination of size distributions
JP2522880B2 (en) Particle size distribution measuring device
JPH0665979B2 (en) Particle detector by light
Wei et al. Qualification of superpolished substrates for laser-gyro by surface integrated scatter measurement
Mccluney et al. 2/90 Laboratory scattering photometer
JPS6244649A (en) Particle analyzing device