JPS61129001A - Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein - Google Patents

Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein

Info

Publication number
JPS61129001A
JPS61129001A JP59250788A JP25078884A JPS61129001A JP S61129001 A JPS61129001 A JP S61129001A JP 59250788 A JP59250788 A JP 59250788A JP 25078884 A JP25078884 A JP 25078884A JP S61129001 A JPS61129001 A JP S61129001A
Authority
JP
Japan
Prior art keywords
gas
heat
line
liquid
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250788A
Other languages
Japanese (ja)
Inventor
Mitsuo Tateishi
立石 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59250788A priority Critical patent/JPS61129001A/en
Publication of JPS61129001A publication Critical patent/JPS61129001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To effectively recover heat from vented gas, by introducing the vented gas into a preheater or a high concn. evaporation boiler. CONSTITUTION:A raw solution is supplied to a preheater from a line 1 while the vent gas exhausted from an evaporation boiler 11 is also supplied to the preheater 7 through a line 8. The raw solution is raised in its temp. through the heat exchange with steam accompanied by the vent gas in the preheater 7 to be guided to the evaporation boiler 11 through a line 3. As a result, the vented gas can be utilized as the heat source for preheating the raw solution. By supplying the raw solution and the vented gas to the high concn. evaporation boiler, the vented gas can be utilized as the heat source for highly concentrating the raw solution concentrate.

Description

【発明の詳細な説明】 [技術分野] 本発明はベントガスの熱回収方法に関し、詳しくは、多
量のガスを溶存する。液を蒸発蒸気再圧縮方式の濃縮工
程で処理した際、そこから系外に排出されるベントガス
の効果的熱回収方法に関、する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for recovering heat from vent gas, and more specifically, a method for recovering heat from vent gas, in particular, dissolving a large amount of gas. This article relates to an effective heat recovery method for vent gas discharged outside the system when a liquid is processed in a concentration process using an evaporative vapor recompression method.

[従来技術] コークス炉ガスの湿式脱硫工程から排出される脱硫廃液
などで代表される多量のガスを溶存する液は、燃焼処理
されるのに先立って、スチーム加熱方式又は蒸発蒸気再
圧縮方式を用いて濃縮されるが、後者の場合発生した蒸
気は圧縮昇温され加熱源として利用されてから冷却水で
冷却、凝縮されている。これを第3図に基づいて説明す
れば次のとおりである。
[Prior art] Liquid containing a large amount of dissolved gas, such as desulfurization waste liquid discharged from the wet desulfurization process of coke oven gas, is subjected to a steam heating method or an evaporative vapor recompression method before being combusted. In the latter case, the generated vapor is compressed and heated, used as a heating source, and then cooled and condensed with cooling water. This will be explained based on FIG. 3 as follows.

多量のガスを溶存する液(便宜上「原液」と称すること
がある)はライン1から蒸発缶11に導入される。また
、ライン17からは蒸発補助用蒸気が供給される。原液
は蒸発蒸気と熱交換され一部が蒸発する。この時、原液
中の溶存ガスは脱気して発生する水蒸気とともに圧縮M
&12に吸収され圧縮昇温された後、加熱源として再度
蒸発缶11に供給される。
A liquid in which a large amount of gas is dissolved (sometimes referred to as "undiluted solution" for convenience) is introduced from line 1 into evaporator 11 . Also, from the line 17, vapor for auxiliary evaporation is supplied. The raw solution exchanges heat with the evaporated steam, and a portion of it evaporates. At this time, the dissolved gas in the stock solution is compressed together with the water vapor generated by degassing.
After being absorbed by &12 and compressed and heated, it is supplied again to the evaporator 11 as a heat source.

こうした蒸発蒸気再圧縮方式を採用する1農縮工程では
、水蒸気に同伴する溶存ガスを伝熱素子加熱側に滞留さ
せないで、連続的かつ確実に、蒸発缶11からバイブロ
を通して系外に排出することが伝熱性能を維持する上で
重要である。
In the first agricultural contraction process that employs such an evaporative vapor recompression method, the dissolved gas accompanying the water vapor is continuously and reliably discharged from the evaporator 11 through the vibro to the outside of the system without allowing it to remain on the heating side of the heat transfer element. is important in maintaining heat transfer performance.

このため、従来においては、ライン6から排出されるベ
ントガスをそのガス中にイナートガスが5〜40重量%
と比較的多く含まれている場合には直接コンデンサー1
3に導びくようにして、同伴する多量の水蒸気を大容量
のコンデンサー13で凝縮した後、系外に放出している
For this reason, conventionally, the vent gas discharged from line 6 contains 5 to 40% by weight of inert gas.
If it contains a relatively large amount of
3, a large amount of entrained water vapor is condensed in a large-capacity condenser 13 and then discharged to the outside of the system.

しかしながら、従来の蒸発蒸気再圧縮方式の実施には多
量のコンデンサー用冷却水を必要とし、しかも、ベント
ガスに同伴する水蒸気のもつ熱量を無駄に系外に放出し
ているという欠点がある。
However, the implementation of the conventional evaporative vapor recompression method requires a large amount of cooling water for the condenser, and has the disadvantage that the amount of heat contained in the steam accompanying the vent gas is wasted out of the system.

[目  的コ 本発明は、主として、前記のごとき多量のガス(例えば
NH,、Co、など)を溶存する液の蒸発蒸気再圧縮方
式の濃縮工程において系外に排出されるベントガスの効
果的熱回収方法を提供するものである。
[Purpose] The present invention mainly aims to reduce the effective heat of the vent gas discharged outside the system in the concentration process of the evaporative vapor recompression method of a liquid in which a large amount of gas (e.g. NH, Co, etc.) is dissolved as described above. It provides a collection method.

[構  成] 本発明は、蒸発蒸気再圧縮方式の濃縮工程から系外に排
出されるベントガスを、原液の予熱用又は原液の濃縮液
(濃縮処理により得られた液)を更に高濃縮とするため
の熱源として、プレート型あるいは多管式伝熱面を有す
る予熱器又は高濃縮蒸発缶に導入せしめることを特徴と
する前記ベントガスの熱回収方法である。
[Configuration] The present invention uses the vent gas discharged outside the system from the concentration process of the evaporative vapor recompression method to preheat the stock solution or to further highly concentrate the concentrated solution of the stock solution (liquid obtained by concentration processing). The vent gas heat recovery method is characterized in that the heat source for the vent gas is introduced into a preheater or a highly concentrated evaporator having a plate type or multi-tubular heat transfer surface.

以下に本発明を従来法と対比しながら添付の図面に基づ
きながら更に詳細に説明する。
Hereinafter, the present invention will be explained in more detail in comparison with a conventional method based on the accompanying drawings.

第1図はベントガスの熱源を原液の予熱用として利用す
る装置の系統図であって、原液はラインlから予熱器1
7に供給される。一方、蒸発缶11より排出したベント
ガスも、ライン8を通して、予熱器17に供給される。
FIG. 1 is a system diagram of an apparatus that uses a heat source of vent gas to preheat the stock solution, and the stock solution is passed from line l to preheater 1
7. On the other hand, vent gas discharged from the evaporator 11 is also supplied to the preheater 17 through the line 8.

予熱器17はプレート型若しくは多管式伝熱面を有する
構造を呈している。従って、予熱器17において、原液
はベントガス中の同伴水蒸気と熱交・換し昇温された後
、ライン3を通して蒸発缶11へと導びかれる。
The preheater 17 has a structure having a plate type or multi-tube type heat transfer surface. Therefore, in the preheater 17, the stock solution is heated by exchanging heat with the steam entrained in the vent gas and heated, and then is led to the evaporator 11 through the line 3.

蒸発缶(11)は、パイプ(14)で導かれた蒸発ペー
パーをリサイクルして圧縮機(I2)で圧縮昇温しで加
熱蒸気として利用する形式で、二枚のとつおう面をもっ
たヒーティングエレメント(15)rnが配設されてお
り、ヒーティングエレメント(15)の内部には上記加
熱蒸気が注入され、循環管路(2)により上部ディスト
リビュータ(19)から落下する原液がヒーティングエ
レメント(15)の外面を流下することにより熱交換が
行なわれ、水分が蒸発して濃縮される。蒸発缶(11)
内で蒸発したペーパーはパイプ(14)で導出され、圧
縮機(12)で圧縮昇温して加熱蒸気としてヒーティン
グエレメント(I5)の内部に注入される。ヒーティン
グエレメント(15)の外面を流下して濃縮液はパイプ
(5)により底部から抜出され、図示しない燃焼炉へパ
イプ(7)により送出し燃焼処理される。なお、上記パ
イプ(14)の圧縮機(12)より下流側にはライン(
17)を接続して補助用蒸気を送入する。
The evaporator (11) is of the type that recycles the evaporation paper led through the pipe (14), compresses it in the compressor (I2) and uses it as heated steam, and has two evaporating surfaces. A heating element (15) rn is provided, and the heated steam is injected into the interior of the heating element (15), and the undiluted solution falling from the upper distributor (19) is heated through the circulation pipe (2). Heat exchange occurs by flowing down the outer surface of the element (15), and water is evaporated and concentrated. Evaporator (11)
The paper evaporated inside is led out through a pipe (14), compressed and heated by a compressor (12), and then injected into the heating element (I5) as heated vapor. The concentrated liquid flows down the outer surface of the heating element (15) and is extracted from the bottom through a pipe (5), and sent through a pipe (7) to a combustion furnace (not shown) for combustion treatment. Note that there is a line (
17) to supply auxiliary steam.

ライン8から排出されたベントガスはイナートガスを5
〜40重量%の範囲で含むものである。
The vent gas discharged from line 8 contains inert gas 5
It is included in the range of 40% by weight.

また、予熱器17からは主としてイナートガスがライン
9を通してコンデンサー19に4びかれる。
Further, mainly inert gas is supplied from the preheater 17 to the condenser 19 through the line 9.

いま、第1図に示した装置を用いて原液中の溶存ガス量
が150kg/hrであって、蒸発缶【1からライン8
を通して排出されるベントガスの温度及び圧力がそれぞ
れ95°C1740Torr  の条件のものでは、ラ
イン8を通して予熱器17に供給される同伴水蒸気量は
769kg/hrである。一方、予熱器17からパイプ
9を通して80℃、720 Torr、の条件下でイナ
ートガスを系外に排出した時には、そのイナートガス中
には125kg/hrの水蒸気が同伴する。
Now, using the apparatus shown in Fig. 1, the amount of dissolved gas in the stock solution is 150 kg/hr,
When the temperature and pressure of the vent gas discharged through the line 8 are 95° C. and 1740 Torr, the amount of entrained steam supplied to the preheater 17 through the line 8 is 769 kg/hr. On the other hand, when the inert gas is discharged from the preheater 17 through the pipe 9 under conditions of 80° C. and 720 Torr, 125 kg/hr of water vapor is entrained in the inert gas.

従って、ここでは644kg/hr分の同伴水蒸気が原
液予熱用として予熱器17で利用されたことになる。
Therefore, in this case, 644 kg/hr of entrained steam was used in the preheater 17 for preheating the stock solution.

第2図はベントガスの熱源を原液濃縮液の高濃縮用とし
て利用する装置の系統図である。原液はパイプ1より蒸
発缶11に供給された後、ライン4を通して高濃縮缶1
8に供給される。一方。
FIG. 2 is a system diagram of an apparatus that uses a heat source of vent gas for highly concentrating a concentrated liquid. The stock solution is supplied from pipe 1 to evaporator 11, and then passes through line 4 to high concentration can 1.
8. on the other hand.

蒸発缶l[より排出した、(ナートガス5〜40重量%
含有するベントガスも、ライン8を通して高濃縮缶18
に供給される。高濃縮缶[8は第1図に示した予熱器1
7と同様に、プレート型もしくは多管式伝熱面を有する
構造を呈している。
Evaporator l
The contained vent gas is also passed through line 8 to highly concentrated canister 18.
supplied to High concentration can [8 is preheater 1 shown in Figure 1]
7, it has a structure having a plate type or multi-tubular heat transfer surface.

高濃縮液はライン20から系外へ抜出され燃焼処理され
る。また、イナートガスを主としたガスがライン9から
、及び水蒸気がライン10からともにコンデンサー19
を通して系外へ導びかれる。ここに高濃縮缶18の熱源
してベントガスが有効に使用され、原液の一層の濃縮が
図られる。
The highly concentrated liquid is extracted from the system through line 20 and is burned. In addition, gas mainly consisting of inert gas is sent from line 9, and water vapor is sent from line 10 to condenser 19.
is led out of the system through Here, the vent gas is effectively used as a heat source for the highly concentrated can 18, and the stock solution is further concentrated.

いま、第2図において原液中の溶存ガス量がL50kg
/hrであって、蒸発缶11からライン8を通して高濃
縮缶I8に供給されるベントガスの温度。
Now, in Figure 2, the amount of dissolved gas in the stock solution is L50kg.
/hr, and the temperature of the vent gas supplied from the evaporator 11 through the line 8 to the high concentration can I8.

圧力が95℃、740 Torr条件のもとでは、ライ
ン8を通して高濃縮缶18に供給される同伴水蒸気量は
769kg/hrである。一方、高濃縮缶18からライ
ン9を通して80℃、720 Torrの条件下でイナ
ートガスを系外に排出した時には、そのイナートガス中
には125kg/hrの水蒸気が同伴する。
Under pressure conditions of 95° C. and 740 Torr, the amount of entrained water vapor supplied to the high concentration can 18 through line 8 is 769 kg/hr. On the other hand, when the inert gas is discharged from the highly concentrated can 18 through the line 9 under conditions of 80° C. and 720 Torr, 125 kg/hr of water vapor is entrained in the inert gas.

従って、ここでも644kg/hr分の同伴水蒸気が原
液処理液の濃縮用として高濃縮缶18で利用されたこと
になり、そして、高濃縮缶[8においては約700kg
/hの蒸発がなされる。
Therefore, in this case as well, 644 kg/hr of entrained steam was used in the high concentration can 18 for concentrating the raw treatment liquid, and about 700 kg in the high concentration can [8]
/h is evaporated.

これに対して、第3図に示した従来においては、ライン
1より供給される原液に溶存ガスが150kg/h (
平均分子量21)存在したとすると、ライン6を通して
95℃、740Torr、の条件下で蒸発缶11からイ
ナートガスを系外に排出する時、このイナートガス中に
769kg/hrもの多量の水蒸気が同伴してしまう。
On the other hand, in the conventional system shown in Fig. 3, the dissolved gas in the stock solution supplied from line 1 is 150 kg/h (
Average molecular weight 21) If it existed, when the inert gas was discharged from the evaporator 11 to the outside of the system through the line 6 under conditions of 95°C and 740 Torr, a large amount of water vapor of 769 kg/hr would be entrained in the inert gas. .

この水蒸気は大容量のコンデンサー13により凝縮され
る。
This water vapor is condensed by a large capacity condenser 13.

濃縮液又は高濃縮液は、燃焼処理して硫酸を回収するか
、石膏を回収する等公知の手段で処理される。
The concentrated liquid or highly concentrated liquid is treated by known means such as combustion treatment to recover sulfuric acid or gypsum.

これまでは脱硫廃液を処理対象として説明しているが、
処理対象物がこれに限られるものでないことは勿論であ
る。濃縮食品を希望する場合には前記、濃縮液及び高濃
縮液それ自体が製品となる。
Until now, the explanation has been based on desulfurization waste liquid as the target of treatment, but
Of course, the object to be processed is not limited to this. When a concentrated food is desired, the concentrated liquid and highly concentrated liquid themselves become the product.

[効  果コ 本発明によれば、蒸発缶IIから排出されるベントガス
に同伴する水蒸気が原液予熱用として。
[Effects] According to the present invention, the steam accompanying the vent gas discharged from the evaporator II is used for preheating the stock solution.

また、原液処理液の高濃縮用として有効に利用される。In addition, it is effectively used for highly concentrating the stock treatment solution.

加えて、本発明の副次的効果として、従来法ではコンデ
ンサー13において大量の水蒸気を凝縮する必要があっ
たが、本発明によれば、少量の水蒸気を凝縮するだけで
すみ、コンデンサー19の容量を従来の1/6程度と小
型化でき、更に、圧縮11!1112の軸動力を大幅に
節減できる。
In addition, as a side effect of the present invention, in the conventional method, it was necessary to condense a large amount of water vapor in the condenser 13, but according to the present invention, only a small amount of water vapor needs to be condensed, and the capacity of the condenser 19 can be reduced. It is possible to reduce the size to about 1/6 of the conventional size, and furthermore, the shaft power of compression 11!1112 can be significantly reduced.

これは、ある一定蒸発量及び仕上濃度を得るのに、従来
法に比へて圧縮機[2の扱う蒸気量が少なくてすむこと
や、沸点上昇の高い高濃度濃縮を高濃縮缶18で負けも
つため圧縮機12で扱う中間、濃縮法化(11)は沸点
上昇の低い低濃度濃縮の運転ですむので圧縮機[2の圧
縮比が少なくてすむこと、等によるものである。
In order to obtain a certain amount of evaporation and final concentration, the amount of steam handled by the compressor [2] is smaller than in the conventional method, and the high-concentration canister 18 is used for high-concentration concentration with a high increase in boiling point. This is due to the fact that the intermediate concentration method (11) handled by the compressor 12 requires a low concentration concentration operation with a low increase in boiling point, so the compression ratio of the compressor [2] can be reduced.

本発明は、比較的沸点」二昇の大きな処理液(原液)で
もランニングコストの低い経済的な蒸発蒸気再圧縮方式
による濃縮装置を計画しうる。
The present invention makes it possible to design an economical concentrator using an evaporative vapor recompression method with low running costs even for treated liquids (undiluted liquids) with relatively high boiling points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法の実施に有用な装置の二
側を示す系統図、第3図は従来法を説明するための系統
図である。 11・・・蒸発缶       12・・・圧縮機械1
3.19・・・コンデンサー   17・・・予熱器1
8・・・高濃縮缶 21.22,23,24,25,26,27,28,2
9,30.31・・・ポンプ32.33,34,35,
36,37,38,39.40.41.42・・・コン
デンセートライン特許出願人 住友重機械工業株式会社 竿3区
1 and 2 are system diagrams showing two sides of an apparatus useful for carrying out the method of the present invention, and FIG. 3 is a system diagram for explaining the conventional method. 11... Evaporator 12... Compressor 1
3.19...Condenser 17...Preheater 1
8... Highly concentrated can 21.22, 23, 24, 25, 26, 27, 28, 2
9, 30.31... pump 32.33, 34, 35,
36, 37, 38, 39. 40, 41, 42...Condensate line patent applicant Sumitomo Heavy Industries, Ltd. Kan 3 Ward

Claims (1)

【特許請求の範囲】 1、蒸発蒸気再圧縮方式の濃縮工程から系外に排出され
るベントガスを、多量のガスを溶存する液の予熱用又は
該液の濃縮液の更に高濃縮用熱源として、プレート型若
しくは多管式伝熱面を有する予熱器又は高濃縮蒸発缶に
導入せしめることを特徴とするベントガスの熱回収方法
。 2、ベントガス中にメナートガスが5〜40重量%含有
されている特許請求の範囲第1項記載の方法。
[Claims] 1. The vent gas discharged outside the system from the concentration step of the evaporative vapor recompression method is used as a heat source for preheating a liquid in which a large amount of gas is dissolved or for further concentrating a concentrated liquid of the liquid, A method for recovering heat from vent gas, characterized by introducing the heat into a preheater or highly concentrated evaporator having a plate-type or multi-tubular heat transfer surface. 2. The method according to claim 1, wherein the vent gas contains 5 to 40% by weight of Menato gas.
JP59250788A 1984-11-27 1984-11-27 Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein Pending JPS61129001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250788A JPS61129001A (en) 1984-11-27 1984-11-27 Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250788A JPS61129001A (en) 1984-11-27 1984-11-27 Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein

Publications (1)

Publication Number Publication Date
JPS61129001A true JPS61129001A (en) 1986-06-17

Family

ID=17213052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250788A Pending JPS61129001A (en) 1984-11-27 1984-11-27 Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein

Country Status (1)

Country Link
JP (1) JPS61129001A (en)

Similar Documents

Publication Publication Date Title
US3638708A (en) Methods of multiple stage evaporation from heat sources other than steam
US3288686A (en) Method for multi-flash evaporation to obtain fresh water from aqueous solution
EP0029536A1 (en) Process for removing and recovering ammonia from aqueous liquors
AU631753B2 (en) Process of concentrating dilute sulfuric acid in a three-stage forced-circulation vacuum evaporation plant using forced circulation
US3425477A (en) Method for heat recovery in evaporating and burning spent liquor
US3583895A (en) Evaporation using vapor-reheat and multieffects
EP0042605A1 (en) Method of operating a vapour-heated process system
JPS6389410A (en) Concentration of sulfuric acid
CN104803538B (en) A kind of low cost, low energy consumption process the process of sea water
JPS61129001A (en) Recover of heat from vented gas in concentration process of liquid having large amount of gas dissolved therein
JP3889326B2 (en) Evaporative production method and apparatus for high purity pure water
JPS60257801A (en) Evaporative concentration of dilute solution
CN109231174B (en) Method for recovering sulfuric acid and hydrofluoric acid from roasting spraying wastewater
JPS61129002A (en) Recover of heat by double compressor in process for concentrating high boiling solution to be treated
JPS61234982A (en) Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
SU1367853A3 (en) Method of producing ammonium nitrate
CN207276236U (en) A kind of low-temperature evaporation crystallization apparatus
JPH05301002A (en) Evaporating concentrator
JP2001054785A (en) Evaporation type production of pure water nd device thereof
CN211025176U (en) Toluene diamine solution concentration device
JPS6142390A (en) Method for making pure water for boiler
CN220012217U (en) Copper sulfate waste liquid treatment device
JPH0722641B2 (en) Method for concentrating hygroscopic compound aqueous solution
JPH0134086B2 (en)
JPS5895501A (en) Method and device for deaeration of treating liquid in multiple effect evaporating device