JPH05301002A - Evaporating concentrator - Google Patents

Evaporating concentrator

Info

Publication number
JPH05301002A
JPH05301002A JP13155192A JP13155192A JPH05301002A JP H05301002 A JPH05301002 A JP H05301002A JP 13155192 A JP13155192 A JP 13155192A JP 13155192 A JP13155192 A JP 13155192A JP H05301002 A JPH05301002 A JP H05301002A
Authority
JP
Japan
Prior art keywords
liquid
concentrated
heat transfer
evaporator
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13155192A
Other languages
Japanese (ja)
Inventor
Kazuo Ogawa
和男 小川
Kensuke Yano
謙介 矢野
Hiroichi Yoshida
博一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP13155192A priority Critical patent/JPH05301002A/en
Publication of JPH05301002A publication Critical patent/JPH05301002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To take out noncondensable gas which is retained in an evaporation vessel (heating chamber) to improve heat transfer efficiency and simultaneously to restrain the lowering of partial pressure of stream to check the lowering of the temp. difference of heat transfer without incurring a loss in heat energy. CONSTITUTION:Degassing pipes 1a, 2a for taking out noncondensable gas generated from an evaporation process together with a part of evaporated steam are connected to evaporation vessels 1, 2. The inert gas and the entrained steam are taken out from the degassing pipes 1a, 2a to guide them to a preheater 8 and exchange heat with liquid to be concentrated to preheat the liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自己蒸気機械圧縮式
の蒸発濃縮装置に関し、特に、蒸発工程で水蒸気ととも
にアンモニアガスや炭酸ガスなどの不凝縮性ガスを発生
する被濃縮液を効率よく蒸発濃縮するための蒸発濃縮装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-vapor mechanical compression type evaporative concentrator, and more particularly to efficiently evaporating a liquid to be concentrated which produces a non-condensable gas such as ammonia gas or carbon dioxide gas together with water vapor in an evaporation process. The present invention relates to an evaporative concentrator for concentrating.

【0002】[0002]

【従来の技術】従来の、自己蒸気機械圧縮式の蒸発濃縮
装置としては、例えば、図2に示すような蒸発濃縮装置
がある。この蒸発濃縮装置は、2重効用式の蒸発濃縮装
置であり、第1効用蒸発缶101、第1効用蒸発缶10
1の蒸発水蒸気を利用する第2効用蒸発缶102及び第
2効用蒸発缶102の蒸発水蒸気を圧縮、昇温して第1
効用蒸発缶101の加熱源として循環するための機械式
圧縮機103を備えている。なお、第2効用蒸発缶10
2には、系内を所定の真空度にするための真空ライン1
08が接続されており、真空ライン108には、凝縮器
109が配設されている。
2. Description of the Related Art As a conventional self-vapor mechanical compression type evaporative concentrator, for example, there is an evaporative concentrator as shown in FIG. This evaporative concentrator is a double-effect evaporative concentrator, and includes a first effect evaporative can 101 and a first effect evaporative can 10.
The first effect evaporation can 102 that utilizes the first effect evaporation steam and the evaporation effect steam of the second effect evaporation can 102 are compressed and heated to
A mechanical compressor 103 for circulation as a heating source of the effect evaporator 101 is provided. The second effect evaporator 10
2 is a vacuum line 1 for maintaining a predetermined degree of vacuum in the system.
08 is connected, and the vacuum line 108 is provided with a condenser 109.

【0003】そして、この従来の蒸発濃縮装置において
は、供給管104から第1効用蒸発缶101に供給され
る被濃縮液(原料液)は、まず第1効用蒸発缶101で
所定の濃度にまで濃縮された後、管105を経て第2効
用蒸発缶102に導入され、ここでさらに所定の濃度に
まで濃縮され、濃縮液は管106から外部に抜き出され
る。一方、第2効用蒸発缶102の蒸発水蒸気は、管1
07を経て機械式圧縮機103に送られ、ここで圧縮、
昇温されて再び第1効用蒸発缶101に加熱源として供
給される。
In this conventional evaporative concentrator, the liquid to be concentrated (raw material liquid) supplied from the supply pipe 104 to the first effect evaporation can 101 first reaches a predetermined concentration in the first effect evaporation can 101. After being concentrated, it is introduced into the second effect evaporator 102 through the pipe 105, further concentrated to a predetermined concentration, and the concentrated liquid is extracted from the pipe 106 to the outside. On the other hand, the vaporized steam in the second effect evaporator 102 is
It is sent to the mechanical compressor 103 via 07, where it is compressed,
The temperature is raised and supplied again to the first effect evaporator 101 as a heating source.

【0004】上述のように、従来の自己蒸気機械圧縮式
の蒸発濃縮装置は、蒸発缶で蒸発した水蒸気を機械式圧
縮機で圧縮、昇温し、これを加熱源として循環使用する
ことにより経済的な運転を行っている。また、自己蒸気
機械圧縮式の蒸発濃縮装置において、経済性を追及する
場合、機械式圧縮機における圧縮度を低くしてエネルギ
ーの消費を抑えるとともに、圧縮度を低くすることによ
り蒸発缶(加熱室)での蒸気と被加熱液(被濃縮液)と
の温度差(伝熱温度差)の減少を、蒸発缶(加熱室)の
伝熱面積を増大することにより補う方が有利な場合が多
いため、通常は、機械式圧縮機における圧縮度を低く
(すなわち、加熱室での伝熱温度差を小さく)設計する
ことが多い。
As described above, the conventional self-vapor mechanical compression type evaporative concentration apparatus is economical by compressing and raising the temperature of the steam evaporated in the evaporator by the mechanical compressor and circulatingly using this as a heat source. Driving. Also, in the case of self-vapor mechanical compression type evaporative concentrator, when economic efficiency is pursued, the compression degree in the mechanical compressor is reduced to save energy consumption, and the compression degree is reduced to reduce the evaporation can (heating chamber It is often advantageous to compensate for the decrease in the temperature difference (heat transfer temperature difference) between the steam and the liquid to be heated (concentrated liquid) in (1) by increasing the heat transfer area of the evaporator (heating chamber). Therefore, usually, the degree of compression in the mechanical compressor is often designed to be low (that is, the heat transfer temperature difference in the heating chamber is small).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の自己蒸
気機械圧縮式の蒸発濃縮装置においては、蒸発工程で被
濃縮液から、例えば、アンモニアガスなどの水蒸気と比
べて凝縮しにくいガス(以下、不凝縮性ガスという)が
発生する場合、不凝縮性ガスが蒸発缶(加熱室)内に滞
留、蓄積して、伝熱抵抗となるばかりでなく、水蒸気分
圧の低下により露点が下がり、蒸気(圧縮された加熱蒸
気)と被加熱液(被濃縮液)との温度差(伝熱温度差)
が低下する。したがって、必要な伝熱量を確保するため
には伝熱面積を増大しなければならないという問題点が
ある。特に、機械圧縮機の圧縮度を低くして伝熱温度差
を小さく設計した場合、伝熱抵抗の増大及び露点の僅か
な低下が、伝熱面積の大幅な増大を招くという問題点が
ある。
However, in the above-described self-vapor mechanical compression type evaporative concentrator, a gas (hereinafter When non-condensable gas) is generated, the non-condensable gas stays and accumulates in the evaporator (heating chamber), which not only serves as heat transfer resistance, but also lowers the dew point due to the decrease in the partial pressure of water vapor. Temperature difference (heat transfer temperature difference) between (compressed heated steam) and heated liquid (concentrated liquid)
Is reduced. Therefore, there is a problem that the heat transfer area must be increased in order to secure the required heat transfer amount. In particular, when the degree of compression of the mechanical compressor is reduced and the heat transfer temperature difference is designed to be small, there is a problem that an increase in heat transfer resistance and a slight decrease in dew point lead to a large increase in heat transfer area.

【0006】一方、上記問題点を解決するために、蒸発
缶(加熱室)から連続的に不凝縮性ガス及び同伴する水
蒸気を引き抜くことにより不凝縮性ガスの滞留を防止す
る方法(特に図示せず)が知られているが、この方法
は、不凝縮性ガスに同伴する水蒸気の量が大きく、熱エ
ネルギーの損失が大きいという問題点がある。
On the other hand, in order to solve the above-mentioned problems, a method of preventing the noncondensable gas from staying by continuously withdrawing the noncondensable gas and the accompanying steam from the evaporator (heating chamber) (particularly not shown) However, this method has a problem that the amount of water vapor entrained in the non-condensable gas is large and the loss of thermal energy is large.

【0007】この発明は、上記問題点を解決するもので
あり、被濃縮液からアンモニアガスなどの不凝縮性ガス
が発生するような場合にも伝熱面積の大幅な増大や、熱
エネルギーの多大な損失を招くことなく、蒸発缶(加熱
室)に滞留、蓄積した不凝縮性ガスを抜き出して、効率
よく蒸発濃縮を行うことが可能な、自己蒸気機械圧縮式
の蒸発濃縮装置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems. Even when non-condensable gas such as ammonia gas is generated from the liquid to be concentrated, the heat transfer area is greatly increased and the heat energy is greatly increased. To provide a self-vapor mechanical compression type evaporative concentrator capable of efficiently evaporating and concentrating by extracting the non-condensable gas accumulated and accumulated in the evaporating can (heating chamber) without causing any significant loss. With the goal.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の蒸発濃縮装置は、蒸発工程で不凝縮性ガ
スが発生する被濃縮液を蒸発濃縮する自己蒸気機械圧縮
式の蒸発濃縮装置において、蒸発工程で発生する不凝縮
性ガスをそれに同伴する蒸発水蒸気とともに抜き出す脱
ガス管を接続した蒸発缶と、前記脱ガス管から抜き出さ
れた不凝縮性ガスを含む水蒸気と被濃縮液とを熱交換さ
せて被濃縮液を予熱する予熱器と、前記蒸発缶で発生し
た蒸発水蒸気を圧縮、昇温し、前記蒸発缶の加熱源とし
て循環する機械式圧縮機とを具備することを特徴とす
る。
To achieve the above object, the evaporative concentration apparatus of the present invention is a self-vapor mechanical compression type evaporative concentration method for evaporating and concentrating a liquid to be concentrated which generates a non-condensable gas in an evaporating process. In the apparatus, an evaporation can connected to a degassing pipe for extracting the noncondensable gas generated in the evaporation process together with the vaporized water vapor accompanying it, a steam containing the noncondensable gas extracted from the degassing pipe, and a liquid to be concentrated. And a mechanical compressor that heats the liquid to be concentrated to preheat the liquid to be concentrated, and a mechanical compressor that compresses and raises the temperature of vaporized steam generated in the evaporator and circulates it as a heating source of the evaporator. Characterize.

【0009】[0009]

【作用】蒸発缶において発生する不凝縮性ガスが、従来
より多い相当量の蒸発水蒸気とともに蒸発缶(加熱室)
から抜き出されるため、蒸発缶(加熱室)内の不凝縮性
ガスの滞留量が減少(すなわち、水蒸気分圧が増大)
し、伝熱抵抗が低下して伝熱効率が向上すると同時に、
露点低下を抑制し、伝熱温度差の低下を抑えることがで
きる。また、蒸発管(加熱室)から抜き出される不凝縮
性ガスを含む水蒸気は、予熱器に導かれて被濃縮液と熱
交換することにより熱回収が行われるため、熱エネルギ
ーの損失を防止して効率の良い運転を行うことが可能に
なる。なお、不凝縮性ガスとともに抜き出された水蒸気
は、予熱器において低温の被濃縮液と熱交換されるた
め、その伝熱温度差が大きく、不凝縮性ガスを含むこと
による露点低下幅の、伝熱温度差に対する割合が小さい
ため、予熱器における伝熱面積の増加は、不凝縮性ガス
を含む蒸気を十分に抜き出さない場合の蒸発缶(加熱
室)の伝熱面積の増加に比べて無視小となり、全体とし
ての効率を大幅に向上させることができるようになる。
[Function] The non-condensable gas generated in the evaporation can, together with a considerable amount of evaporated steam, is larger than in the conventional evaporation can (heating chamber).
Because it is extracted from the evaporator, the amount of non-condensable gas that remains in the evaporator (heating chamber) decreases (that is, the partial pressure of water vapor increases).
However, the heat transfer resistance decreases and the heat transfer efficiency improves,
It is possible to suppress a decrease in dew point and a decrease in heat transfer temperature difference. In addition, steam containing non-condensable gas extracted from the evaporation pipe (heating chamber) is guided to the preheater and exchanges heat with the liquid to be concentrated to recover heat, thus preventing loss of thermal energy. It becomes possible to perform efficient driving. The steam extracted together with the non-condensable gas is heat-exchanged with the liquid to be concentrated at a low temperature in the preheater, so that the heat transfer temperature difference is large, and the dew point reduction width due to the inclusion of the non-condensable gas is Since the ratio to the heat transfer temperature difference is small, the increase in the heat transfer area in the preheater is larger than the increase in the heat transfer area in the evaporator (heating chamber) when the vapor containing the noncondensable gas is not sufficiently extracted. Ignoring becomes small, and the efficiency as a whole can be greatly improved.

【0010】[0010]

【実施例】以下、この発明の実施例を図に基づいて説明
する。図1は、この発明の一実施例にかかる蒸発濃縮装
置を示す図である。この実施例の蒸発濃縮装置は、蒸発
工程でアンモニアガスを発生する液体(被濃縮液)を濃
縮するための2重効用式の蒸発濃縮装置であり、第1効
用蒸発缶(薄膜降下型蒸発缶)1、第1効用蒸発缶1の
蒸発水蒸気を利用する第2効用蒸発缶(薄膜降下型蒸発
缶)2及び第2効用蒸発缶2の蒸発水蒸気を圧縮、昇温
して第1効用蒸発缶1の加熱源として循環する機械式圧
縮機3を備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an evaporative concentration apparatus according to an embodiment of the present invention. The evaporative concentrator of this embodiment is a double-effect evaporative concentrator for concentrating a liquid (concentrated liquid) that generates ammonia gas in the evaporating process, and has a first effect evaporative can (thin film evaporative can). ) 1, a second effect evaporator (thin film evaporating can) 2 that uses evaporated water vapor from the first effect evaporator 1 and a second effect evaporator 2 that compresses and heats the evaporated water vapor in the second effect evaporator 2 A mechanical compressor 3 that circulates as a heat source of No. 1 is provided.

【0011】そして、第1効用蒸発缶1及び第2効用蒸
発缶2の上部には、蒸発工程で発生する不凝縮性ガスを
蒸発水蒸気の一部とともに抜き出す脱ガス管1a,2a
が接続されており、この脱ガス管1a,2aは被濃縮液
を予熱するための予熱器8に接続されている。予熱器8
には、系内を所定の真空度にするための真空ライン11
が接続されており、真空ライン11には、凝縮器12が
配設されている。
Degassing pipes 1a, 2a are provided above the first effect evaporator 1 and the second effect evaporator 2 to extract the non-condensable gas generated in the evaporation process together with part of the evaporated steam.
Are connected, and the degassing pipes 1a and 2a are connected to a preheater 8 for preheating the liquid to be concentrated. Preheater 8
Is a vacuum line 11 for maintaining a predetermined degree of vacuum in the system.
Are connected, and a condenser 12 is arranged in the vacuum line 11.

【0012】この実施例の蒸発濃縮装置を用いて、不凝
縮性ガス(アンモニアガス)が発生する被濃縮液を蒸発
濃縮する場合について以下に説明する。まず、管4aを
経て予熱器8に送られ所定の温度に予熱された被濃縮液
(原料液)は、管4b及び管(循環ライン)9を経て第
1効用蒸発缶1に供給され、循環ライン9を経て循環
し、蒸発濃縮が行われる。そして、第1効用蒸発缶1で
所定の濃度にまで濃縮された被濃縮液は、管5及び管
(循環ライン)10を経て第2効用蒸発缶2に導入さ
れ、循環ライン10を経て循環しながら所定の濃度にま
で蒸発濃縮される。そして、第2効用蒸発缶2で所定の
濃度にまで濃縮された濃縮液は管6から抜き出され、フ
ラッシュ缶14においてフラッシュさせた後、管13を
経て回収される。一方、第2効用蒸発缶2の蒸発水蒸気
は、管7を経て機械式圧縮機3に送られ、ここで圧縮、
昇温されて管15を経て第1効用蒸発缶1に加熱源とし
て供給される。
A case of evaporating and concentrating a liquid to be concentrated which produces a non-condensable gas (ammonia gas) by using the evaporative concentrator of this embodiment will be described below. First, the concentrated liquid (raw material liquid) sent to the preheater 8 via the pipe 4a and preheated to a predetermined temperature is supplied to the first effect evaporator 1 via the pipe 4b and the pipe (circulation line) 9 and circulated. It is circulated through the line 9 and concentrated by evaporation. Then, the liquid to be concentrated concentrated in the first effect evaporator 1 to a predetermined concentration is introduced into the second effect evaporator 2 through the pipe 5 and the pipe (circulation line) 10, and circulates through the circulation line 10. While being evaporated and concentrated to a predetermined concentration. Then, the concentrated liquid concentrated to a predetermined concentration in the second effect evaporation can 2 is extracted from the pipe 6, flashed in the flash can 14, and then recovered via the pipe 13. On the other hand, the vaporized water vapor of the second effect evaporator 2 is sent to the mechanical compressor 3 via the pipe 7, where it is compressed,
It is heated and supplied to the first effect evaporator 1 as a heating source through the pipe 15.

【0013】また、蒸発工程で発生し、第1効用蒸発缶
(加熱室)1及び第2効用蒸発缶(加熱室)2に滞留す
る不凝縮性ガスは、所定の割合で、脱ガス管1a、2a
から、同伴する蒸発水蒸気とともに抜き出される。そし
て、この不凝縮性ガスと同伴水蒸気が予熱器8に導か
れ、被濃縮液と熱交換することにより熱エネルギーの回
収が行われる。
Further, the non-condensable gas generated in the evaporation process and staying in the first effect evaporator (heating chamber) 1 and the second effect evaporator (heating chamber) 2 is degassing pipe 1a at a predetermined ratio. 2a
Is extracted together with the vaporized steam that accompanies it. Then, the non-condensable gas and the entrained water vapor are guided to the preheater 8 and exchange heat with the liquid to be concentrated to recover the thermal energy.

【0014】上記のように構成された蒸発濃縮装置にお
いては、蒸発缶で発生する不凝縮性ガスが蒸発水蒸気の
一部とともに脱ガス管から抜き出されるため、蒸発缶
(加熱室)内への不凝縮性ガスの滞留による伝熱抵抗の
増大が抑制され、伝熱効率が向上するとともに、水蒸気
分圧の低下を抑制して伝熱温度差の低下を抑え、伝熱面
積の大幅な増加を防止することができる。しかも、不凝
縮性ガスとともに抜き出された水蒸気は、予熱器に導か
れて熱回収されるため、熱エネルギーの損失がなく、蒸
発濃縮装置全体として効率的な運転を行うことができ
る。なお、不凝縮性ガスとともに抜き出された水蒸気
は、予熱器において低温の被濃縮液と熱交換されるた
め、その伝熱温度差が大きく、不凝縮性ガスを含むこと
による露点の低下幅の、伝熱温度差に対する割合が小さ
いため、予熱器における伝熱面積の増加は、不凝縮性ガ
スを含む蒸気を十分に抜き出さない場合の蒸発缶(加熱
室)の伝熱面積の増加に比べて無視することができる程
度に小さく、熱効率を向上させ、かつ、コストダウンを
図ることができる。
In the evaporative concentration apparatus constructed as described above, the non-condensable gas generated in the evaporating can is withdrawn from the degassing pipe together with a part of the evaporating water vapor, so that the evaporative can is introduced into the evaporating can (heating chamber). Increase in heat transfer resistance due to retention of non-condensable gas is suppressed, heat transfer efficiency is improved, and decrease in steam partial pressure is suppressed to suppress decrease in heat transfer temperature difference, preventing a large increase in heat transfer area. can do. Moreover, since the steam extracted together with the non-condensable gas is guided to the preheater to recover the heat, there is no loss of heat energy and the evaporative concentrator as a whole can operate efficiently. Since the steam extracted together with the non-condensable gas is heat-exchanged with the liquid to be concentrated at a low temperature in the preheater, the heat transfer temperature difference is large, and the dew point decreases due to the inclusion of the non-condensable gas. Since the ratio to the heat transfer temperature difference is small, the increase in the heat transfer area in the preheater is larger than the increase in the heat transfer area in the evaporator (heating chamber) when the vapor containing the non-condensable gas is not sufficiently extracted. It is small enough to be ignored and can be improved in thermal efficiency and cost can be reduced.

【0015】なお、上記実施例では、不凝縮性ガスであ
るアンモニアガスの比重が水蒸気より小さいことを考慮
して第1効用蒸発缶1及び第2効用蒸発缶2の上部に脱
ガス管1a、2bを接続しているが、脱ガス管の取り付
け位置は、不凝縮性ガスの比重に応じて適切な位置に配
設することが望ましい。すなわち、不凝縮性ガスの比重
が水蒸気の比重より小さい場合には蒸発缶(加熱室)の
上部に、不凝縮性ガスの比重が水蒸気の比重より大きい
場合(例えば、不凝縮性ガスが炭酸ガスの場合など)に
は、蒸発缶(加熱室)の下部に配設することが望まし
い。なお、比重の異なる複数種類の不凝縮性ガスが発生
する場合などにおいては、上部及び下部さらには中間部
などの複数箇所に脱ガス管を接続することが必要になる
場合がある。
In the above embodiment, the degassing pipe 1a is provided above the first effect evaporator 1 and the second effect evaporator 2 in consideration of the fact that the specific gravity of the noncondensable ammonia gas is smaller than that of the water vapor. Although 2b is connected, it is desirable that the degassing pipe is installed at an appropriate position depending on the specific gravity of the non-condensable gas. That is, when the specific gravity of the non-condensable gas is smaller than that of the water vapor, the specific gravity of the non-condensable gas is larger than that of the water vapor in the upper part of the evaporator (heating chamber) (for example, when the non-condensable gas is carbon dioxide gas). In the case of (1) or the like), it is desirable to dispose it under the evaporation can (heating chamber). In addition, when a plurality of types of non-condensable gases having different specific gravities are generated, it may be necessary to connect degassing pipes to a plurality of locations such as an upper portion, a lower portion, and an intermediate portion.

【0016】また、上記実施例においては、2重効用式
の蒸発濃縮装置について説明したが、この発明は、2重
効用式の蒸発濃縮装置に限られるものではなく、単効用
式あるいは3重効用式以上の多重効用式の蒸発濃縮装置
にも適用することが可能である。
Further, although the double effect type evaporative concentrator has been described in the above embodiment, the present invention is not limited to the double effect type evaporative concentrator, but may be a single effect type or a triple effect type. It is also possible to apply to a multi-effect evaporative concentrator of the above formula.

【0017】[0017]

【発明の効果】上述のように、この発明の蒸発濃縮装置
は、蒸発工程で発生する不凝縮性ガスを蒸発水蒸気の一
部とともに抜き出す脱ガス管を接続し、この不凝縮性ガ
スと同伴水蒸気を脱ガス管から抜き出して予熱器に導き
被濃縮液と熱交換させることにより被濃縮液を予熱する
ようにしているので、蒸発缶(加熱室)内に不凝縮性ガ
スが滞留することにより伝熱抵抗が大きくなることを防
止して伝熱効率を向上させるとともに、水蒸気分圧の低
下を抑制して蒸発缶(加熱室)の伝熱温度差の低下を抑
えることができる。
As described above, the evaporative concentration apparatus of the present invention is connected with a degassing pipe for extracting the non-condensable gas generated in the evaporation process together with a part of the vaporized steam, and the non-condensable gas and the accompanying steam. Is extracted from the degassing pipe and introduced to the preheater to exchange heat with the liquid to be concentrated, so that the liquid to be concentrated is preheated. Therefore, the noncondensable gas accumulates in the evaporator (heating chamber) and It is possible to prevent the heat resistance from increasing and improve the heat transfer efficiency, and to suppress the decrease of the partial pressure of water vapor to suppress the decrease of the heat transfer temperature difference of the evaporator (heating chamber).

【0018】さらに、不凝縮性ガスとともに抜き出され
た水蒸気は、予熱器に導かれて被濃縮液と熱交換するこ
とにより熱回収が行われるため、熱エネルギーの損失を
防止して、効率の良い運転を行うことが可能になる。
Further, the water vapor extracted together with the non-condensable gas is guided to the preheater and exchanges heat with the liquid to be concentrated to recover heat, so that loss of heat energy is prevented and efficiency is improved. It becomes possible to drive well.

【0019】すなわち、この発明の蒸発濃縮装置によれ
ば、熱エネルギーの損失を招くことなく、蒸発缶(加熱
室)に滞留する不凝縮性ガスを抜き出して伝熱効率を向
上させるとともに、水蒸気分圧の低下を抑制して伝熱温
度差の低下を抑え、効率的な蒸発濃縮を行うことができ
る。
That is, according to the evaporative concentration apparatus of the present invention, the non-condensable gas staying in the evaporator (heating chamber) is extracted to improve the heat transfer efficiency without causing the loss of thermal energy, and the partial pressure of water vapor is increased. It is possible to suppress the decrease of the heat transfer temperature difference and to efficiently evaporate and concentrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる蒸発濃縮装置の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an evaporative concentration apparatus according to an embodiment of the present invention.

【図2】従来の蒸発濃縮装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a conventional evaporative concentration apparatus.

【符号の説明】[Explanation of symbols]

1 第1効用蒸発缶 1a 第1効用蒸発缶の脱ガス管 2 第2効用蒸発缶 2a 第2効用蒸発缶の脱ガス管 3 機械式圧縮機 8 予熱器 14 フラッシュ缶 1 1st effect evaporation can 1a 1st effect evaporation can degassing pipe 2 2nd effect evaporation can 2a 2nd effect evaporation can degassing pipe 3 Mechanical compressor 8 Preheater 14 Flash can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発工程で不凝縮性ガスが発生する被濃
縮液を蒸発濃縮する自己蒸気機械圧縮式の蒸発濃縮装置
において、蒸発工程で発生する不凝縮性ガスをそれに同
伴する蒸発水蒸気とともに抜き出す脱ガス管を接続した
蒸発缶と、前記脱ガス管から抜き出された不凝縮性ガス
を含む水蒸気と被濃縮液とを熱交換させて被濃縮液を予
熱する予熱器と、前記蒸発缶で発生した蒸発水蒸気を圧
縮、昇温し、前記蒸発缶の加熱源として循環する機械式
圧縮機とを具備することを特徴とする蒸発濃縮装置。
1. A self-vapor mechanical compression type evaporative concentrator for evaporating and concentrating a liquid to be concentrated which generates a non-condensable gas in the evaporating step, and withdraws the non-condensable gas generated in the evaporating step together with evaporative steam accompanying it. In the evaporator, an evaporator connected to a degassing pipe, a preheater for preheating the liquid to be concentrated by exchanging steam containing the non-condensable gas extracted from the degassing pipe with the liquid to be concentrated, and the evaporator. An evaporative concentrator, comprising: a mechanical compressor that compresses and raises the temperature of the generated evaporative steam and circulates the evaporative steam as a heat source for the evaporating can.
JP13155192A 1992-04-25 1992-04-25 Evaporating concentrator Pending JPH05301002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13155192A JPH05301002A (en) 1992-04-25 1992-04-25 Evaporating concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13155192A JPH05301002A (en) 1992-04-25 1992-04-25 Evaporating concentrator

Publications (1)

Publication Number Publication Date
JPH05301002A true JPH05301002A (en) 1993-11-16

Family

ID=15060725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13155192A Pending JPH05301002A (en) 1992-04-25 1992-04-25 Evaporating concentrator

Country Status (1)

Country Link
JP (1) JPH05301002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112673A1 (en) * 2009-03-31 2010-10-07 Hsp Engineering Ab Oy A method for thermal concentration of a fluid
JP2011153043A (en) * 2010-01-27 2011-08-11 Sasakura Engineering Co Ltd Apparatus and method for recovering ammonia
WO2014053373A1 (en) * 2012-10-01 2014-04-10 Gea Wiegand Gmbh Plant for de-alcoholizing a product containing alcohol, particularly ethanol
JP2019141820A (en) * 2018-02-23 2019-08-29 木村化工機株式会社 Mvr type distillation apparatus of ammonia aqueous solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112673A1 (en) * 2009-03-31 2010-10-07 Hsp Engineering Ab Oy A method for thermal concentration of a fluid
JP2011153043A (en) * 2010-01-27 2011-08-11 Sasakura Engineering Co Ltd Apparatus and method for recovering ammonia
WO2014053373A1 (en) * 2012-10-01 2014-04-10 Gea Wiegand Gmbh Plant for de-alcoholizing a product containing alcohol, particularly ethanol
JP2019141820A (en) * 2018-02-23 2019-08-29 木村化工機株式会社 Mvr type distillation apparatus of ammonia aqueous solution

Similar Documents

Publication Publication Date Title
CN110407173A (en) A kind of waste acid treatment system and the method using system processing spent acid
WO1991000759A1 (en) Method and apparatus for evaporation of liquids
CN109095535B (en) Sewage evaporation concentration device and operation method thereof
US4846240A (en) High cop absorption heat pumped evaporation method and apparatus
JPS5926184A (en) Compressed steam-type distillation of salt water
US4719016A (en) Pervaporization method and apparatus
JPH05301002A (en) Evaporating concentrator
JPS6389410A (en) Concentration of sulfuric acid
JPH08261600A (en) Recovering method for exhaust heat
JP3434474B2 (en) Evaporative production method and apparatus for pure water
JPH0263592A (en) Distillation device
JPS61141985A (en) Seawater desalting system
JP2000325941A (en) Device for desalting salt water
JPS5895501A (en) Method and device for deaeration of treating liquid in multiple effect evaporating device
JPH11244843A (en) Steam compression type pure water producing device
JPS5888002A (en) Distillation apparatus
JP4112772B2 (en) Desalination equipment
JPH0673601B2 (en) Evaporative concentrator
JPH0134086B2 (en)
JPH10118402A (en) Method for concentrating liquid
JP2004275938A (en) Batchwise double effect vessel and method for manufacturing salt using the same
JPS6211501A (en) Heat recovering device for evaporator or the like
JPS63270504A (en) Concentrating device for distillation waste liquid
JPH0632812B2 (en) Distillation equipment
JPH0134084B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020122