JPH0722641B2 - Method for concentrating hygroscopic compound aqueous solution - Google Patents

Method for concentrating hygroscopic compound aqueous solution

Info

Publication number
JPH0722641B2
JPH0722641B2 JP61248509A JP24850986A JPH0722641B2 JP H0722641 B2 JPH0722641 B2 JP H0722641B2 JP 61248509 A JP61248509 A JP 61248509A JP 24850986 A JP24850986 A JP 24850986A JP H0722641 B2 JPH0722641 B2 JP H0722641B2
Authority
JP
Japan
Prior art keywords
concentration
aqueous solution
sulfuric acid
steam
highly concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61248509A
Other languages
Japanese (ja)
Other versions
JPS63104603A (en
Inventor
甫 稲垣
義之 今給黎
Original Assignee
日鉄化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄化工機株式会社 filed Critical 日鉄化工機株式会社
Priority to JP61248509A priority Critical patent/JPH0722641B2/en
Publication of JPS63104603A publication Critical patent/JPS63104603A/en
Publication of JPH0722641B2 publication Critical patent/JPH0722641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫酸などの如き吸湿性の強い化合物と水とから
なる溶液の真空濃縮方法に関する。
TECHNICAL FIELD The present invention relates to a vacuum concentration method for a solution consisting of water and a highly hygroscopic compound such as sulfuric acid.

〔従来の技術〕[Conventional technology]

一般に硫酸や燐酸などの強酸、苛性ソーダや苛性カリな
どの強アルカリ、あるいは各種金属の塩化物、硝酸塩な
どのうちで、吸湿性の強い化合物等と水との混合物(以
下水溶液と称する)は脱水濃縮が困難で、多大のエネル
ギーを要する場合が多く、かつ腐食性も強いという問題
がある。
Generally, among strong acids such as sulfuric acid and phosphoric acid, strong alkalis such as caustic soda and potassium hydroxide, or chlorides and nitrates of various metals, a mixture of a highly hygroscopic compound and water (hereinafter referred to as an aqueous solution) cannot be dehydrated and concentrated. It is difficult and often requires a large amount of energy, and has a problem that it is highly corrosive.

これら水溶液の濃縮方法としては、スプレータワーや液
中燃焼等の如く、高温ガスと水溶液が直接接触する方法
と、直接蒸煮によるもの、多重効用缶によるもの、流下
液膜法によるもの、あるいはフラツシユ蒸発によるもの
の如く、主に伝熱面を介して間接加熱を行う方法があ
り、これらは情況に応じて適宜使用される。この際水分
の含有量が減少するに従つて、水溶液の沸点上昇が著し
くなり、濃縮に高温を要するようになる。このため腐食
など材質上や、エネルギーの有効利用の問題などの点か
ら温度を下げるべく、濃縮操作は減圧下に行われること
が多くなる。
These aqueous solutions can be concentrated by direct contact between the hot gas and the aqueous solution, such as spray tower or submerged combustion, by direct cooking, by multiple-effect can, by falling film method, or flash evaporation. There is a method of performing indirect heating mainly through a heat transfer surface, such as those described in (1), and these are appropriately used depending on the situation. At this time, as the water content decreases, the boiling point of the aqueous solution increases remarkably, and the concentration requires a high temperature. For this reason, the concentration operation is often performed under reduced pressure in order to lower the temperature in terms of materials such as corrosion and the problem of effective use of energy.

今、例を硫酸の濃縮に採つて従来法について説明する
と、次のようなものがある。
Now, the conventional method will be described by taking an example of concentration of sulfuric acid as follows.

(1) 直火によるもの、ポーリング(Pauling)式硫
酸濃縮法、カスケード式硫酸濃縮法などがあるが、鋳鉄
あるいは珪素鉄製の煮詰容器に材質的な問題があり、長
期の連続運転に耐えず、また熱効率も低いとされてい
る。
(1) There are direct fire, Pauling type sulfuric acid concentration method, cascade type sulfuric acid concentration method, etc., but there is a material problem with the cast iron or silicon iron boiled container, and it cannot withstand long-term continuous operation. It is also said that the thermal efficiency is low.

(2) 酸液と高温ガスが直接接触するもの、比較的低
濃度までの濃縮に適するものとして液中燃焼によるも
の、高濃度用としてケミコ式ドラム型硫酸濃縮法がよく
知られている。これらはほぼ大気圧近くで操作され熱の
利用効率も高いが、霧状の硫酸ミストが発生しやすく、
その除害に多大の設備と費用を要する。
(2) Well-known methods are those in which an acid solution is in direct contact with a high-temperature gas, those which are suitable for concentration to a relatively low concentration by in-liquid combustion, and those for high concentration which are Chemico drum type sulfuric acid concentration methods. These are operated near atmospheric pressure and have high heat utilization efficiency, but mist-like sulfuric acid mist is easily generated,
A large amount of equipment and cost are required for its removal.

(3) 真空法、これは上記(2)と異なり、間接加熱
であり、シモンソン、マンチウス(Simonson−Mantiu
s)真空法あるいは頭文字をとつてSM式硫酸濃縮法とし
て知られている方法である。本法は予備的な濃縮缶を除
けばメインは前後2部の濃縮缶からなり、前部で大凡50
〜70mmHgの圧力下、80数%程度の硫酸となし、後部で5
〜10mmHgの圧力下85〜93%の濃硫酸を得るものである。
これらの場合、温度はいずれも170℃以下の低温に保持
される。従つて熱硫酸による有機物の分解、硫酸自身の
分解、装置の腐食等は大いに軽減される。しかして各缶
の真空度はいずれもスチームエジエクターと大気脚凝縮
器によつて保持され、高真空側にはスチームブースター
が付加される。
(3) The vacuum method, which is different from the above (2), is indirect heating, and Simonson-Mantiu (Simonson-Mantiu)
s) It is a method known as the SM type sulfuric acid concentration method by the vacuum method or the initials. In this method, the main consists of the front and rear two-part condensing cans, except for the preliminary concentrating cans.
Under pressure of ~ 70mmHg, make 80% or more of sulfuric acid, 5 at the rear
85 ~ 93% concentrated sulfuric acid is obtained under the pressure of ~ 10mmHg.
In these cases, the temperature is maintained at a low temperature of 170 ° C. or lower. Therefore, decomposition of organic substances by hot sulfuric acid, decomposition of sulfuric acid itself, corrosion of equipment, etc. are greatly reduced. Then, the vacuum degree of each can is maintained by the steam ejector and the atmospheric leg condenser, and the steam booster is added to the high vacuum side.

このうち上記のSM法を多少変形した従来法による硫酸濃
縮法を図によつて説明する。
Of these, the conventional sulfuric acid concentration method, which is a modification of the SM method, will be described with reference to the drawings.

第2図において原料の稀硫酸は管路11を通つて前濃縮缶
F11に送られる。缶液はポンプP11によつて循環され、熱
交換器H11により加熱される。缶内はスチームエジエク
ターE12、E13及び凝縮器C11、C12、C13並びに大気脚
(図示せず)によつて真空に保たれる。その圧力は蒸発
のみの観点からは低い方が好ましいが、大気脚を用いる
関係上水の蒸気圧と一般の冷却水水温とにより制限され
るので、通常60Torr(水温41.5℃の蒸気圧)前後に抑え
られることが多い。蒸発した水分は濃縮缶F11の上部か
ら管部14により排出され、前記の各スチームエジエクタ
ー及び凝縮器の作用で吸引凝縮され、大気脚下端から排
出される。一方前段の濃縮を受けた硫酸水溶液は管路12
を経て次の高度濃縮缶F12でさらに高真空下において蒸
発濃縮される。ここでも缶液はポンプP12によりスチー
ム加熱の熱交換器H12を通つて加熱循環される。高度濃
縮缶F12の真空はスチームエジエクターE11と、大量のス
チームを使用するスチームブースターE14によつて常温
において水の凝縮し難い高真空、例えば1〜10Torrに保
たれる。スチームブースターE14は大量の水蒸気を吸引
し、かつ大気脚の使用できる圧力まで圧縮するので多量
の駆動用水蒸気を必要とする。ここでの温度は最終製品
の濃度、蒸気分圧、高温度での腐食性のほか、物によつ
ては融点とか結晶析出の有無等によつて決定されるが、
溶質が硫酸の場合、特に高級な材質を用いないときは最
高170℃程度、通常130〜150℃である。
In Fig. 2, dilute sulfuric acid as a raw material is passed through line 11 to a preconcentrator can.
Sent to F11. The can solution is circulated by the pump P11 and heated by the heat exchanger H11. The inside of the can is maintained in vacuum by steam radiators E12 and E13, condensers C11, C12 and C13, and atmospheric legs (not shown). The pressure is preferably low from the viewpoint of only evaporation, but it is usually around 60 Torr (vapor temperature of 41.5 ° C) because it is limited by the vapor pressure of water and the temperature of the cooling water due to the use of the atmospheric leg. Often suppressed. The evaporated water is discharged from the upper portion of the concentrating can F11 through the pipe portion 14, is suction-condensed by the action of each steam radiator and the condenser, and is discharged from the lower end of the atmosphere leg. On the other hand, the sulfuric acid aqueous solution that had been concentrated in the previous stage
Then, it is further concentrated by evaporation in a high-concentration canister F12 under high vacuum. Here too, the cans are heated and circulated by the pump P12 through the steam-heated heat exchanger H12. The vacuum of the highly concentrated can F12 is maintained at a high vacuum by which steam is hard to condense at normal temperature, for example, 1 to 10 Torr by the steam ejector E11 and the steam booster E14 using a large amount of steam. The steam booster E14 draws in a large amount of water vapor and compresses it to a pressure at which the atmospheric legs can be used, and thus requires a large amount of driving water vapor. The temperature here is determined by the concentration of the final product, the vapor partial pressure, the corrosiveness at high temperature, the melting point of some products, the presence or absence of crystal precipitation, etc.
When the solute is sulfuric acid, the temperature is about 170 ° C at maximum, usually 130 to 150 ° C, unless a high-grade material is used.

蒸発した水蒸気は管路15を経てスチームエジエクターE1
1によつて全量が吸引され、さらにスチームブースターE
14により全量が吸引圧縮され凝縮器C11で凝縮し、前濃
縮缶F11からの水分と一緒に混合して大気脚端から排出
される。各濃縮缶では水蒸気に同伴して多少のミストが
発生し、溶質の損失が起きるが、これは凝縮器C11で大
量の凝縮水によつて希釈されてしまうので回収されるこ
とは少ない。特に硫酸の場合、濃度85%以上では硫酸の
蒸気圧も無視し難くなり、損失は濃度の上昇と共に急激
に増大する。例えば93%硫酸の場合蒸発蒸気中の23重量
%にも達する。
The vaporized water vapor is passed through line 15 and the steam radiator E1
The whole volume is sucked by 1, and steam booster E
The whole amount is sucked and compressed by 14, condensed in the condenser C11, mixed with the water from the pre-concentrator F11, and discharged from the atmospheric leg end. In each concentrator, some mist is generated along with water vapor and a loss of solute occurs, but this is rarely recovered because it is diluted with a large amount of condensed water in the condenser C11. Especially in the case of sulfuric acid, when the concentration is 85% or more, the vapor pressure of sulfuric acid becomes difficult to ignore, and the loss rapidly increases with increasing concentration. For example, 93% sulfuric acid reaches 23% by weight in the vaporized vapor.

従つて濃縮を微分的に行わせるため、濃縮缶内を仕切つ
て多段とすることもよく行われる手段であるが、いずれ
にしても従来の方式では蒸気に同伴する溶質は損失とな
る場合が多く、凝縮液に溶け込んで希薄化した酸液等は
公害防止上中和等の除害処理を要することになる。
Therefore, in order to perform the concentration differentially, it is also a common practice to partition the interior of the concentrator to multiple stages, but in any case, the solute that accompanies the vapor is often lost in the conventional method. The acid solution or the like diluted with the condensate to be diluted requires a detoxification treatment such as neutralization to prevent pollution.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の真空法による濃縮法においては大気脚凝縮器の利
用ができない高真空発生の必要上、スチームエジエクタ
ーならびにブースターによつて使用される水蒸気原単位
が極めて大きいこと、蒸発缶の高濃度部で発生するミス
ト、あるいは蒸発によつて水蒸気に同伴する溶質部分の
有効な回収手段を欠き、かつ何等かの後処理を要するこ
となどの問題点があつた。
In the above-mentioned concentration method by the vacuum method, since it is necessary to generate a high vacuum in which the atmospheric leg condenser cannot be used, the steam unit used by the steam radiator and booster is extremely large, and in the high concentration part of the evaporator. There is a problem in that effective mist recovery means for the generated mist or a solute portion entrained in water vapor due to evaporation is lacked and some post-treatment is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記のような問題点を解決しようとするもので
あつて、吸湿性の化合物の水溶液を、少なくとも1個の
前濃縮缶と高度濃縮缶とを用いて濃縮して高濃度とする
際に、高度濃縮缶から真空濃縮によって発生する水蒸気
を、その水蒸気分圧よりも低い水蒸気分圧を有する同じ
化合物の水溶液と接触させて吸収するとともに、前記の
水蒸気を吸収して希釈された水溶液を前濃縮缶に送って
濃縮し、この濃縮液を高度濃縮缶に送って高濃度とする
ことを特徴とする吸湿性化合物水溶液の濃縮方法であ
る。
The present invention is intended to solve the above-mentioned problems, in which an aqueous solution of a hygroscopic compound is concentrated to a high concentration by using at least one preconcentrator and highly concentrated can. In addition, the water vapor generated by vacuum concentration from the highly concentrated can is contacted with an aqueous solution of the same compound having a water vapor partial pressure lower than the water vapor partial pressure to be absorbed, and an aqueous solution diluted by absorbing the water vapor is obtained. It is a method for concentrating an aqueous solution of a hygroscopic compound, which is characterized in that it is sent to a pre-concentrator and concentrated, and this concentrated solution is sent to a highly concentrated can to increase the concentration.

本発明を図によつて詳細に説明する。第1図は本発明の
一実施態様である。吸湿性化合物の水溶液として原料希
硫酸は管路1を通つて吸収冷却器C4において高度濃縮缶
F2で発生する蒸気を吸収し、所定の濃度と温度まで希釈
冷却されて管路1′を経て必要に応じて貯槽T1に貯蔵さ
れる。この水溶液はポンプP3によつて管路1″を経て前
濃縮缶F1に送られる。缶液はポンプP1によつて循環さ
れ、熱交換器H1により、所定の温度にスチーム加熱され
る。缶F2内はスチームエジエクターE2、E3と、凝縮器C
1、C2、C3ならびに大気脚(図示せず)によつて真空に
保たれる。蒸発した水分は前濃縮缶F1の上部から管路4
により排出され、前記の各スチームエジエクターおよび
凝縮器の作用で吸引凝縮され、大気脚下端から排出され
る。一方前濃縮を受けた硫酸水溶液は管路2を経て、次
の高度濃縮缶F2でさらに高真空下において蒸発濃縮され
る。ここでも缶液はポンプP2により熱交換器H2を通つて
循環、スチーム加熱される。高度濃縮缶F2の真空はスチ
ームエジエクターE1とスチームブースターE4によつて高
真空に保たれるが、従来法と全く異なり、高度濃縮缶F2
から発生する水蒸気は管路5を経て吸収冷却器C4に送ら
れ、同時に同所に送られる原料希硫酸中に吸収混合冷却
されて殆ど全部が管路1′、1″を経て低真空の前濃縮
缶F1に送られ、そこで水蒸気が発生し管路4より排出さ
れる。この際管路1′をいわゆるバロメトリツクレツグ
とすることは理にかなつている。従つて吸収冷却器C4に
送られる原料希硫酸の濃度は、濃縮缶F2で発生する水蒸
気の大部分の吸収後の硫酸水溶液の水蒸気分圧が高度濃
縮缶F2の圧力と少なくとも同じか、低くなる程度を要す
る。この混合後の許容濃度は吸収冷却器に用いられる冷
却水の水温によつても支配されるが、常温付近で40〜70
%の濃度であれば充分といえる。もし原料希硫酸の濃度
が、この濃度を確保するためには足りない場合は、別途
低濃度用の濃縮器を用いて濃縮した後に吸収冷却液とす
るか、あるいは必要に応じて前濃縮缶F1で濃縮した硫酸
の一部、あるいは高度濃縮缶F2からの製品の一部を原料
希硫酸に混合して濃度を上げることも可能である。なお
ここで使用する吸収冷却器は吸収と冷却とを同時に行う
型式のものでも、吸収と冷却とを別の場所で行う方式の
吸収塔と、その吸収液を別途熱交換器で冷却循環する組
合せの型式としてもよい。
The present invention will be described in detail with reference to the drawings. FIG. 1 is an embodiment of the present invention. The raw material dilute sulfuric acid as an aqueous solution of the hygroscopic compound is passed through the conduit 1 to a highly concentrated can in the absorption cooler C4.
It absorbs the vapor generated in F2, dilutes and cools it to a predetermined concentration and temperature, and stores it in a storage tank T1 as necessary through a pipe line 1 '. This aqueous solution is sent by the pump P3 to the preconcentration canister F1 via the conduit 1 ″. The canister liquid is circulated by the pump P1 and steam-heated to a predetermined temperature by the heat exchanger H1. Inside are steam radiator E2 and E3, and condenser C
A vacuum is maintained by 1, C2, C3 and the atmospheric legs (not shown). Evaporated water is pipe 4 from the top of the preconcentration can F1.
Is discharged by the action of the steam radiator and the condenser described above, and is discharged from the lower end of the atmospheric leg. On the other hand, the sulfuric acid aqueous solution which has been subjected to the preconcentration passes through the pipe line 2 and is further evaporated and concentrated under a high vacuum in the next highly concentrated can F2. Here too, the cans are circulated and steam heated by the pump P2 through the heat exchanger H2. The vacuum of the highly concentrated can F2 is maintained at a high vacuum by the steam ejector E1 and the steam booster E4, but unlike the conventional method, the highly concentrated can F2
The steam generated from the water is sent to the absorption cooler C4 via the pipe 5, and at the same time is mixed and cooled by the raw material dilute sulfuric acid sent to the same place, and almost all of the steam passes through the pipes 1'and 1 "before the low vacuum. It is sent to the concentration canister F1, where water vapor is generated and discharged from the conduit 4. At this time, it is logical to use the conduit 1'as a so-called barometric clamp. The concentration of the raw material dilute sulfuric acid to be used needs to be such that the partial vapor pressure of the aqueous sulfuric acid solution after absorbing most of the steam generated in the concentrating can F2 is at least equal to or lower than the pressure in the highly concentrating can F2. The permissible concentration is governed by the temperature of the cooling water used for the absorption cooler, but it is 40-70 at around room temperature.
A concentration of% is sufficient. If the concentration of the raw material dilute sulfuric acid is not sufficient to secure this concentration, use a separate low-concentration concentrator to concentrate it before using it as the absorption cooling liquid, or if necessary, use the preconcentration can F1. It is also possible to increase the concentration by mixing part of the sulfuric acid concentrated in 1. or part of the product from the highly concentrated can F2 with the raw dilute sulfuric acid. The absorption cooler used here may be a type that performs absorption and cooling at the same time, but it is a combination of an absorption tower of a type that performs absorption and cooling in different places, and the absorption liquid is cooled and circulated by a separate heat exchanger. It may be a model of.

〔作 用〕[Work]

水溶液を高濃度に濃縮する場合、従来法では高真空を維
持するためにスチームエジエクター、スチームブースタ
ーの直列2段(第2図E11、E14)、あるいは少なくとも
スチームブースター1段を用いる真空発生器を使用し
て、これによつて濃縮時に発生する蒸気を全量系から排
除する必要があつた。これは水の蒸気圧が常温付近で10
〜数十Torrあり、通常用いる大気脚凝縮器が30Torr程度
以下の高真空には経済的に使用できないことによる(微
量のイナートガスを除くため大気脚後にスチームエジエ
クターを要することもある)。このためスチームブース
ターで吸引する水蒸気を全量吸引後、圧縮して大気脚凝
縮器の使用できる圧力(約30Torr以上)まで高める必要
があつた。
In the case of concentrating an aqueous solution to a high concentration, in the conventional method, in order to maintain a high vacuum, a steam generator and two stages of steam boosters in series (E11 and E14 in Fig. 2) or a vacuum generator using at least one stage of a steam booster is used. In use, it was necessary to exclude from this system the vapors generated during the concentration, from the total volume. This is 10 when the vapor pressure of water is near room temperature.
~ There are several tens Torr, because the atmospheric leg condenser normally used cannot be economically used for high vacuum below about 30 Torr (sometimes a steam ejector is required after the atmospheric leg to remove a small amount of inert gas). For this reason, it was necessary to compress all the water vapor sucked by the steam booster and then compress it to raise the pressure (at least 30 Torr or more) at which the atmospheric leg condenser can be used.

本発明はこのスチームブースターで使用する水蒸気原単
位を大幅に減ずるものである。すなわち本発明において
は高濃度用の濃縮缶F2で発生する水蒸気をスチームエジ
エクターE1およびスチームブースターE4によつて全量吸
引することはせず、単に高真空を維持させるに必要な最
低限度にとどめ、残りの殆ど全部の水蒸気は高真空下に
所要の濃度の水溶液と吸収混合させることによつて真空
度を維持させるものである。かくすることによつてここ
で使用するスチームの量を100倍以上も節約できる(1/1
00以下にできる)。
The present invention drastically reduces the basic unit of steam used in this steam booster. That is, in the present invention, the steam generated in the high-concentration concentration canister F2 is not completely sucked by the steam ejector E1 and the steam booster E4, but simply kept to the minimum necessary to maintain a high vacuum, Almost all the remaining water vapor is absorbed and mixed with an aqueous solution having a required concentration under high vacuum to maintain the degree of vacuum. By doing so, the amount of steam used here can be saved more than 100 times (1/1
Can be less than or equal to 00).

さらに特に濃度が上つてくると溶質自身の蒸気圧の増
大、あるいは飛沫同伴の増加等によつて系外へ吸引排出
され損失となる溶質は増加する傾向にある。第2図の従
来法によれば明らかに高度濃縮缶F2で発生する溶質蒸
気、あるいは溶質を含む飛沫同伴は全て吸引排除され、
大部分凝縮器C1を経て大気脚下から希薄水溶液となって
系外に排出されるのでその回収は困難である。本発明の
場合、第1図から明らかな通り管路5を通る溶質蒸気あ
るいは飛沫同伴の大部分は吸収冷却器C4で捕捉され、貯
槽T1へ回収され、次いで循環利用されるのであるから、
損失となる量は従来法と比較して無視し得ることは明ら
かである。
Further, especially when the concentration increases, the solute that is sucked and discharged outside the system due to an increase in the vapor pressure of the solute itself or an increase in entrainment of the solute tends to increase. According to the conventional method shown in FIG. 2, it is clear that all the solute vapor generated in the highly concentrated can F2 or the entrainment of droplets containing the solute is removed by suction.
Most of it passes through the condenser C1 and becomes a dilute aqueous solution from the bottom of the atmosphere to be discharged to the outside of the system, so that its recovery is difficult. In the case of the present invention, most of the solute vapor or entrained liquid that passes through the pipe line 5 which is clear from FIG. 1 is captured by the absorption cooler C4, collected in the storage tank T1, and then recycled.
It is clear that the amount of loss can be ignored compared to the conventional method.

なお高度濃縮缶F2へ送る水溶液の濃度は、そこでの蒸発
温度における水蒸気圧がスチームブースターを使用せざ
るを得ないような濃度、すなわち大気脚凝縮器のみの使
用では凝縮し難くなるような程度の濃度以上のものでな
くては効果がない。この濃度は例えば硫酸においてはそ
の濃縮缶の耐食性あるいは通常の安価な低圧スチームに
よる加熱限界等から、経済的に好ましいとされている温
度、例えば約150℃の場合で85重量%(以下単に85%と
略す、以下同様)濃度である。85%硫酸の150℃におけ
る水蒸気圧は約55Torrであり、55Torrは40℃の水蒸気圧
に相当する。夏期は冷却水温が40℃近くになることがあ
り、これ以下に大気脚上の圧を下げることが困難な場合
を生じる。従つて高度濃縮缶へ入る際の硫酸濃度には85
%以下という制約があることがわかる。
Note that the concentration of the aqueous solution sent to the highly concentrated can F2 is such that the vapor pressure at the evaporation temperature there is no choice but to use a steam booster, that is, it is difficult to condense using only the atmospheric leg condenser. It has no effect unless it is more than the concentration. This concentration is, for example, 85% by weight (hereinafter simply referred to as 85% by weight) at a temperature which is economically preferable in the case of sulfuric acid because of the corrosion resistance of the concentrator or the heating limit due to the usual inexpensive low pressure steam. Abbreviated, the same applies below). The vapor pressure of 85% sulfuric acid at 150 ° C is about 55 Torr, which corresponds to the vapor pressure of 40 ° C. In summer, the cooling water temperature may be close to 40 ° C, and it may be difficult to lower the pressure on the atmospheric leg below this temperature. Therefore, the sulfuric acid concentration when entering the highly concentrated can is 85
It turns out that there is a constraint of less than or equal to%.

高度濃縮缶における濃縮度は上限は理論的には最高共沸
組成である98%であるが、経済的に濃縮を行える限界は
硫酸の蒸気圧、沸点上昇からして96%程度である。
The upper limit of the degree of enrichment in a highly concentrated can is theoretically 98%, which is the highest azeotropic composition, but the limit for economically concentrating is about 96% due to the vapor pressure and boiling point of sulfuric acid.

また高度濃縮缶から出る蒸気と混合すべき水溶液の濃度
は吸収冷却器の水温付近の温度で濃縮缶からの発生蒸気
を吸収後の混合水溶液の蒸気圧が、高度濃縮缶内の水蒸
気圧と等しいか、それ以下となるような濃度であること
を要する。これは硫酸の場合、40%以上好ましくは55%
以上85%以下であり、95%硫酸(170℃、PH2O=10.3mmH
g)を得るものとして、例えば60%硫酸(40℃、PH2O=
9.85mmHg)、40%硫酸(20℃、PH2O=9.95mmHg)等種々
の選択をなし得ることが明らかである。
The concentration of the aqueous solution to be mixed with the steam from the highly concentrated can is the vapor pressure of the mixed aqueous solution after absorbing the generated steam from the concentrated can at the temperature near the water temperature of the absorption cooler is equal to the vapor pressure in the highly concentrated can. Or, the concentration needs to be lower than that. In the case of sulfuric acid, this is 40% or more, preferably 55%
Above 85% and below 95% sulfuric acid (170 ℃, PH 2 O = 10.3mmH
g), for example, 60% sulfuric acid (40 ° C, PH 2 O =
It is obvious that various choices such as 9.85 mmHg), 40% sulfuric acid (20 ° C., PH 2 O = 9.95 mmHg) can be made.

高度濃縮缶の温度が低く、かつ濃度が高い程、吸収冷却
に要する希薄溶液の濃度は高く、温度は低くすることが
必要となる。原料水溶液濃度が上記の要求に対して低す
ぎる場合は当然予備的な濃縮操作は行われるので、適当
な濃度になつた水溶液を本発明の吸収冷却液とするこ
と、あるいは途中の濃縮度の水溶液の一部、例えば前濃
縮缶の中間製品の一部を、もしくは必要に応じて製品の
一部を希薄原料水溶液と混合することによつて吸収冷却
に必要な濃度に高めて用いてもよいことは明らかであ
り、本発明はこのような場合をも包含するものである。
The lower the temperature and the higher the concentration of the highly concentrated canister, the higher the concentration of the dilute solution required for absorption cooling and the lower the temperature. If the concentration of the raw material aqueous solution is too low for the above requirement, a preliminary concentration operation is naturally performed. Therefore, use an aqueous solution having an appropriate concentration as the absorption cooling liquid of the present invention, or an aqueous solution having a concentration in the middle. Part of the intermediate product of the preconcentration can, or if necessary, part of the product may be mixed with a dilute aqueous solution of the raw material to increase the concentration to the level required for absorption cooling before use. Is obvious, and the present invention covers such a case.

以上本発明を硫酸水溶液の濃縮の場合について説明した
が、それ以外、例えば燐酸や苛性アルカリ等吸湿性の無
機化合物についても適用可能であることは明らかであ
り、かつ溶質は必ずしも純粋であることを要せず、有
機、無機の不純物の多少の混入は許容し得るものであ
り、これらをすべて本発明は包含する。
Although the present invention has been described above with respect to the case of concentrating an aqueous solution of sulfuric acid, it is clear that other than that, it is also applicable to hygroscopic inorganic compounds such as phosphoric acid and caustic, and the solute is not necessarily pure. It is not necessary to allow some mixing of organic and inorganic impurities, and the present invention includes all of them.

〔実施例〕〔Example〕

第1図本発明方法、第2図従来法について各図示の部位
における温度、圧力、濃度、流量等を第1表に示す。
FIG. 1 Table 1 shows the temperature, pressure, concentration, flow rate, etc. at the illustrated portions for the method of the present invention and FIG.

〔発明の効果〕 本発明によれば加熱蒸発用のスチーム使用量は従来法の
450kg/hrから680kg/hrと若干増加するものの、ブースタ
ー用スチームを含めたエジエクター用スチームが1190kg
/hrから20kg/hrと大幅に減少するため、全体のスチーム
使用量は1640kg/ton硫酸から700kg/ton硫酸へと著しく
減少した。すなわち蒸気原単位の大幅な改善をなし得
る。
EFFECT OF THE INVENTION According to the present invention, the amount of steam used for heating and evaporating is less than that of conventional methods.
Although it slightly increases from 450kg / hr to 680kg / hr, 1190kg of steam for engineer including steam for booster
Since it significantly decreased from / hr to 20 kg / hr, the total amount of steam used was significantly reduced from 1640 kg / ton sulfuric acid to 700 kg / ton sulfuric acid. That is, the steam consumption rate can be greatly improved.

高度濃縮缶から出る水蒸気は92%硫酸では13重量%の硫
酸蒸気分圧をもち、かつ多少の飛沫同伴を含み、それら
は従来法の場合すべて希薄な硫酸水溶液となるから回収
は困難で中和等の除害処理を要するが(第1表の従来法
では硫酸の約2%が損失となつている)、本発明ではこ
れら蒸気等の大部分は原料酸に吸収されて循環濃縮され
るので殆と損失とならない。従つて除害のための負荷は
著しく軽減される。
The water vapor discharged from the highly concentrated can has a sulfuric acid vapor partial pressure of 13% by weight with 92% sulfuric acid, and also contains a small amount of entrained water. Since all of them are diluted sulfuric acid aqueous solutions in the conventional method, it is difficult to recover and neutralize. However, in the present invention, most of these vapors are absorbed by the raw acid and are circulated and concentrated. There is almost no loss. Therefore, the load for detoxification is significantly reduced.

このように本発明は省エネルギーのみならず、公害防止
上も極めて有用である。
As described above, the present invention is extremely useful not only for energy saving but also for pollution prevention.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例である硫酸濃度の場合のフロー
シート、第2図は従来法の硫酸濃縮のフローシートであ
る。 1,1′,1″,2,3,4,5,6,11,12,13,14,15……管路 F1……前濃縮缶、F2……高度濃縮缶 H1,H2,H11,H12……溶液加熱用熱交換器 E1,E2,E3,E11,E12,E13……スチームエジエクター E4,E14………スチームブースター C1,C2,C3,C11,C12,C13……凝縮器 C4……吸収冷却器 T1……貯槽、P1,P2,P12,P13……ポンプ CW……冷却水、STM……スチーム
FIG. 1 is a flow sheet for a sulfuric acid concentration according to an embodiment of the present invention, and FIG. 2 is a flow sheet for sulfuric acid concentration according to a conventional method. 1,1 ′, 1 ″, 2,3,4,5,6,11,12,13,14,15 …… Pipeline F1 …… Preconcentration can, F2 …… High concentration can H1, H2, H11, H12 …… Heat exchanger for solution heating E1, E2, E3, E11, E12, E13 …… Steam radiator E4, E14 ………… Steam booster C1, C2, C3, C11, C12, C13 …… Condenser C4… … Absorption cooler T1 …… storage tank, P1, P2, P12, P13 …… pump CW …… cooling water, STM …… steam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸湿性の化合物の水溶液を、少なくとも1
個の前濃縮缶と高度濃縮缶とを用いて濃縮して高濃度と
する際に、高度濃縮缶から真空濃縮によって発生する水
蒸気を、その水蒸気分圧よりも低い水蒸気分圧を有する
同じ化合物の水溶液と接触させて吸収するとともに、前
記の水蒸気を吸収して希釈された水溶液を前濃縮缶に送
って濃縮し、この濃縮液を高度濃縮缶に送って高濃度と
することを特徴とする吸湿性化合物水溶液の濃縮方法。
1. An aqueous solution of a hygroscopic compound at least 1.
Water vapor generated by vacuum concentration from the highly concentrated can when condensing to high concentration by using individual pre-concentrators and highly concentrated cans has the same partial vapor pressure lower than that of the same compound. Moisture absorption characterized by contacting with an aqueous solution for absorption and absorbing the above-mentioned water vapor and sending the diluted aqueous solution to a pre-concentration can for concentration, and then sending this concentrated solution to a highly concentrated can for high concentration Method for Concentrating Aqueous Compound Aqueous Solution.
【請求項2】吸湿性の化合物が硫酸であり、かつ濃縮濃
度が85重量%以上の硫酸を製造するための真空濃縮器で
ある高度濃縮缶から発生する水蒸気を、40重量%以上85
重量%以下の硫酸水溶液と接触させて吸収する特許請求
の範囲第(1)項記載の吸湿性化合物水溶液の濃縮方
法。
2. Water vapor generated from a highly concentrated can which is a vacuum concentrator for producing sulfuric acid whose hygroscopic compound is sulfuric acid and whose concentration concentration is 85% by weight or more, is 40% by weight or more and 85% by weight or more.
The method for concentrating an aqueous solution of a hygroscopic compound according to claim (1), wherein the method comprises contacting with an aqueous solution of sulfuric acid of not more than wt% to absorb the aqueous solution.
JP61248509A 1986-10-21 1986-10-21 Method for concentrating hygroscopic compound aqueous solution Expired - Fee Related JPH0722641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61248509A JPH0722641B2 (en) 1986-10-21 1986-10-21 Method for concentrating hygroscopic compound aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61248509A JPH0722641B2 (en) 1986-10-21 1986-10-21 Method for concentrating hygroscopic compound aqueous solution

Publications (2)

Publication Number Publication Date
JPS63104603A JPS63104603A (en) 1988-05-10
JPH0722641B2 true JPH0722641B2 (en) 1995-03-15

Family

ID=17179239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61248509A Expired - Fee Related JPH0722641B2 (en) 1986-10-21 1986-10-21 Method for concentrating hygroscopic compound aqueous solution

Country Status (1)

Country Link
JP (1) JPH0722641B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557498B2 (en) * 2009-09-29 2014-07-23 株式会社ササクラ Evaporative concentration method
CN101935077B (en) * 2010-08-27 2012-06-20 南通京通石墨设备有限公司 Waste acid concentration multistage treatment method
WO2013113651A1 (en) * 2012-01-31 2013-08-08 Bayer Intellectual Property Gmbh Method and system for producing nitrobenzene
CN109850954B (en) * 2019-04-15 2023-11-24 卢星 Sulfuric acid process titanium white ferrous sulfate crystallization device
CN114455551A (en) * 2022-02-11 2022-05-10 宣达实业集团有限公司 Concentration and reuse device for chlorine gas drying waste acid and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176170A (en) * 1974-12-17 1976-07-01 Naoji Itsushiki TADANKONDENSHINGUBOIRA NYORU SUIYOEKINO NOSHUKUSOCHI

Also Published As

Publication number Publication date
JPS63104603A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
US3203875A (en) Apparatus for distilling water with waste heat
CN1229278C (en) Process and plant for extraction or recovery of acids from solutions these acids
EP0933331B1 (en) Evaporative concentration apparatus for waste water
GB2044115A (en) Process and apparatus for the evaporation of water from water-containing substances
FI58519C (en) FOERFARANDE FOER REGENERERING AV BETNINGSSYROR
EP1204594A1 (en) Method for the evaporation of an aqueous solution containing ammonia
US4181506A (en) Method for recovering concentrated sulphur dioxide from waste gases containing sulphur dioxide
JPH0393610A (en) Method for concentrating sulfuric acid containing metal sulfate
JPH0722641B2 (en) Method for concentrating hygroscopic compound aqueous solution
GB2073871A (en) Vaporising apparatus having a heatreturn system
GB512657A (en) Improvements in or relating to method of and apparatus for distillation
JPS6389410A (en) Concentration of sulfuric acid
JPH0659381B2 (en) Wet dehumidifier
JP4789902B2 (en) Concentrator
JP4568264B2 (en) Organic waste liquid processing apparatus and processing method
US3811246A (en) Closed loop system for the elimination of fluorine pollution from phosphoric plants
JPH0541772Y2 (en)
CN109795991A (en) Safe and energy-saving purification treatment process for fluorosulfuric acid
US2184923A (en) Process of recovering ammonia from used cuprammonium artificial silk precipitation liquors
CN112870746B (en) MVR heat pump system for realizing integration of concentration, steam stripping and rectification
CN105174333B (en) A kind of method for separating and processing containing water-miscible organic solvent waste water
JPH0148203B2 (en)
JPH04330903A (en) Method for evaporating and concentrating water solution containing water soluble organic compound
KR960010363B1 (en) Evaporating and concentrating method of aqueous organic materials
FI81967B (en) OVER ANALYZING FOR SEPARATION OF OAKING CONDITIONERS GASER AND AONGA.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees