JPS6112872A - Production of metallic plating reinforced plastic material and production of lightweight waveguide - Google Patents

Production of metallic plating reinforced plastic material and production of lightweight waveguide

Info

Publication number
JPS6112872A
JPS6112872A JP59131688A JP13168884A JPS6112872A JP S6112872 A JPS6112872 A JP S6112872A JP 59131688 A JP59131688 A JP 59131688A JP 13168884 A JP13168884 A JP 13168884A JP S6112872 A JPS6112872 A JP S6112872A
Authority
JP
Japan
Prior art keywords
reinforced plastic
plastic material
powder
plating layer
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131688A
Other languages
Japanese (ja)
Inventor
Tatsuyoshi Aisaka
逢坂 達吉
Naoto Kanbara
蒲原 尚登
Hisami Ochiai
落合 久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59131688A priority Critical patent/JPS6112872A/en
Publication of JPS6112872A publication Critical patent/JPS6112872A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain a reinforced plastic material having a highly adhesive metallic plating layer by dispersing metallic powder to the surface of the reinforced plastic material and curing the powder then eluting the metallic powder by an etching treatment and subjecting the surface to chemical plating. CONSTITUTION:Carbon fibers 1 are alternately laminated in the directions 0 deg. and 90 deg. and a liquid epoxy resin 3 dispersed therein with Al powder 2 is coated on the surface thereof and is cured to form the reinforced plastic material. The above-mentioned material is etched by a hydrochloric acid soln. to elute the Al powder 2 on the surface and to form fine pores 4 on the surface; in succession, the surface is subjected to a hydrophiling and activating treatment, then to chemical copper plating by the conventional method to form a copper plating layer 5. Al particles 12 are dispersed to the outside peripheral surface of a molding die 11 if necessary and after the material 13 is molded by utilizing the above-mentioned method, the molding is removed from the die and a chemical plating layer 15 is formed on the inside surface by the procedure similar to the above-mentioned procedure, by which the lightweight waveguide is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金属めっき強化プラスチック材料の製造方法及
び軽量導波管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a metal-plated reinforced plastic material and a method of manufacturing a lightweight waveguide.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

プラスチック材料の表面に金属層を被覆すると、(a)
金属に比べて軽量、(b)電導性の付与、(C)耐候性
の改善、(d)吸水率の減少等多くの利点があるため、
自動車部品゛を始め各種の工業製品や家庭用品まで広く
利用されている。このようにプラスチック材料の表面に
金属層を被覆するには、無電解の化学めっきが使用され
る。
When a metal layer is coated on the surface of a plastic material, (a)
Compared to metals, it has many advantages such as being lighter, (b) imparting electrical conductivity, (c) improving weather resistance, and (d) reducing water absorption.
It is widely used in automobile parts, various industrial products, and household goods. Electroless chemical plating is used to coat the surface of the plastic material with a metal layer in this way.

このめっき技術においては、プラスチック材料表面の前
処理工程として実施されるエツチングが重要であり、こ
れによってめっき層の密着強度が決定されるといっても
過言ではない。
In this plating technology, etching performed as a pretreatment step on the surface of the plastic material is important, and it is no exaggeration to say that this determines the adhesion strength of the plating layer.

従来、一般的に行なわれているABS樹脂の場合を例に
とって説明すると、前処理工程のエツチングによpAB
s樹脂のブタジェンゴムの部分が比較的容易に溶出し、
プラスチック表面における細孔の生成、親水性化及び活
性化が同時に行なわれる。つづいて行なわれるめっき処
理において、特に前述した細孔部分がプラスチックとめ
つき層との密着性を改善するアンカー効果の役割を果た
し、めっき層の密着強度を向上させている。
Taking the case of ABS resin, which has been commonly used in the past, as an example, pAB
The butadiene rubber part of the S resin is relatively easily eluted,
Pore generation, hydrophilization and activation on the plastic surface occur simultaneously. In the subsequent plating process, the above-mentioned pores in particular serve as an anchor effect to improve the adhesion between the plastic and the plating layer, thereby improving the adhesion strength of the plating layer.

ところで、産業用ロボットや人工衛星などには高強度軽
量材が要求され、例えば炭素繊維で強化した強化プラス
チック(以下、CFRPと略記する)が多用されている
。こうした強化プラスチックのマトリックスとしては一
般に機械的特性や熱的特性の優れたエポキシ樹脂が用い
られる。
By the way, high-strength, lightweight materials are required for industrial robots, artificial satellites, etc., and for example, reinforced plastic reinforced with carbon fiber (hereinafter abbreviated as CFRP) is often used. Epoxy resin, which has excellent mechanical and thermal properties, is generally used as a matrix for such reinforced plastics.

しかし、エポキシ樹脂にはABS樹脂におけるブタジェ
ンゴム部分のようにエツチングで選択的に溶出する成分
がないため、上述しためっき技術はそのままでは適用で
きないかあるいは適用できても十分は密着強度のあるめ
っき層が得られないという欠点がある。
However, unlike the butadiene rubber part in ABS resin, epoxy resin does not have a component that can be selectively eluted by etching, so the above-mentioned plating technology cannot be applied as is, or even if it can be applied, the plating layer has sufficient adhesion strength. The disadvantage is that it cannot be obtained.

また、このようなCFPRの表面に金属めっきを施こし
たものとして、人工衛星など宇宙航空用のスリット導波
管アンテナや、ホーン型導波管など各種の導波管が知ら
れている。これら導波管は中空体であるため、重量軽減
や製造工程の低減及び信頼性向上の面から、樹脂による
接着構造やリベット又はボルトによる接合構造ではなく
一体成形構造であることが望ましい。
Various types of waveguides, such as slit waveguide antennas for aerospace applications such as artificial satellites, and horn-shaped waveguides, are known as CFPRs whose surfaces are plated with metal. Since these waveguides are hollow bodies, from the viewpoints of weight reduction, manufacturing process reduction, and reliability improvement, it is desirable that they have an integrally molded structure rather than a bonded structure using resin or a joint structure using rivets or bolts.

こうした一体成形構造の導波管を製造するには、例えば
米国特許第3.713,753号や特開昭50−162
98号に開示されている方法が用いられている。この方
法は、外形寸法を正確に与えるような外型を用い、内部
に膨張加圧し得る袋状内型を入れ、内部から外部へ被成
形物を押しつけるものである。
In order to manufacture such a waveguide having an integrally molded structure, for example, U.S. Pat.
The method disclosed in No. 98 is used. In this method, an outer mold having accurate external dimensions is used, a bag-shaped inner mold that can be expanded and pressurized is placed inside, and the object to be molded is pressed from the inside to the outside.

しかし、この方法で用いられる内型は剛性が低く軟弱で
あるため内面形状を正確に成形することは困難である。
However, the inner mold used in this method has low rigidity and is soft, making it difficult to accurately mold the inner shape.

特に、矩形断面を有する導波管ではコーナ一部など樹脂
の流動性が悪くなる箇所で肉厚変化を生じ、内表面の平
滑度の乱れを招く原因となる。しかも、導波管では内表
面に高い寸法精度と平滑度が要求されるため成形後に仕
上げ加工が不可欠であるが、前記方法による成形品では
機械研摩によってコーナ一部を作る際に強化繊維が削シ
取られるので、剛性が最も必要なコーナ一部で剛性の低
下が生じるという欠点かあった。
In particular, in a waveguide having a rectangular cross section, thickness changes occur at locations where the fluidity of the resin deteriorates, such as at corners, which causes disturbances in the smoothness of the inner surface. Moreover, since waveguides require high dimensional accuracy and smoothness on their inner surfaces, finishing processing is essential after molding, but in molded products made using the above method, the reinforcing fibers are removed when forming part of the corner by mechanical polishing. This had the disadvantage that stiffness was reduced at some corners where stiffness was most needed.

〔発明の目的〕[Purpose of the invention]

本発明は上記憂情に鑑みてなされたものであや、大きな
密着強度で金属めっき層を形成した強化プラスチック材
料を製造し得る方法及び大きな密着強度で金属めっき層
を形成1〜、しかも内面のコーナ一部付近の肉厚変化や
剛性の低下を招くことなく軽量導波管を製造し得る方法
を提供しようとするものである。
The present invention has been made in view of the above-mentioned concerns, and includes a method for manufacturing a reinforced plastic material having a metal plating layer formed thereon with high adhesion strength, and a method for forming a metal plating layer with high adhesion strength. The present invention aims to provide a method for manufacturing a lightweight waveguide without causing a change in wall thickness or a decrease in rigidity in the vicinity of a portion.

〔発明の概要〕[Summary of the invention]

本願第1の発明の金属めっき強化プラスチック材料の製
造方法は、樹脂及び強化繊維からなる強化プラスチック
材料の表面に金属粉末を分散させ、硬化した後、該強化
プラスチック材料の表1面をエツチング処理して前記金
属粉末を溶出させ、更に化学めっきを施こすことを特徴
とするものである。
The method for manufacturing a metal-plated reinforced plastic material according to the first invention of the present application involves dispersing metal powder on the surface of a reinforced plastic material made of resin and reinforcing fibers, and after curing, etching one surface of the reinforced plastic material. The method is characterized in that the metal powder is eluted using a method of eluting the metal powder, and further chemical plating is applied.

このような方法によれば、エツチング処理を行ない硬化
後の強化プラスチック材料の表面から金属粉末を溶出さ
せることによシ、細孔を生成することができるので、化
学めっきにより形成された金属めっき層と強化プラスチ
ック材料との密着性を向上することができる。
According to this method, pores can be generated by eluting metal powder from the surface of the reinforced plastic material after hardening through etching treatment, so that the metal plating layer formed by chemical plating can be and can improve adhesion with reinforced plastic materials.

また、本願第2の発明の軽量導波管の製造方法は、所定
の形状を有する成形型の外周に、成形壓に接する面に金
属粒子を分散させた状態で樹脂及び強化繊維からなる強
化プラスチック材料を積層し、硬化成形した後脱型し、
該強化プラスチック材料の内表面をエツチング処理して
前記金属粉末を溶出させ、更に化学めっきを施こすこと
を特徴とするものである。
In addition, the method for manufacturing a lightweight waveguide according to the second invention of the present application is to produce a reinforced plastic made of resin and reinforcing fibers with metal particles dispersed on the outer periphery of a mold having a predetermined shape and on the surface in contact with the mold. Materials are laminated, hardened and molded, and then removed from the mold.
The inner surface of the reinforced plastic material is etched to dissolve the metal powder, and further chemical plating is applied.

このような方法によれば、本願第1の発明と同様に金属
めっき層と強化プラスチック材料との密着性を向上する
ことができる。また、成形型として従来の方法と異なり
、鉄、鋼、アルミニウム、銅などの金属やこれらの合金
など強化プラスチック材料を硬化成形する温度において
は十分な剛性を保ち得る材料を用いることができるので
、内表面の平滑度の低下、コーナ一部付近の肉厚変化及
び剛性の低下を解消することができる。
According to such a method, the adhesion between the metal plating layer and the reinforced plastic material can be improved similarly to the first invention of the present application. In addition, unlike conventional methods, the mold can be made of a material that maintains sufficient rigidity at the temperature for hardening and molding reinforced plastic materials such as metals such as iron, steel, aluminum, and copper, and alloys of these materials. It is possible to eliminate the decrease in the smoothness of the inner surface, the change in wall thickness near a part of the corner, and the decrease in rigidity.

本発明において用いられる強化繊維としてはカーボン繊
維、ガラス繊維あるいはアラミド繊維等ヲ埜げろことが
できる。
The reinforcing fibers used in the present invention include carbon fibers, glass fibers, aramid fibers, and the like.

また、金属粉末としてはFe l Ni r co l
 At +Mf、 Cr 、 Znなどの金属やこれら
の合金を挙げることができ、酸又はアルカリを用いたエ
ツチング処理によりm出するものであればよい。なお、
エツチング処理によシ生成する細孔が小さくかつ均一に
分布し、しかも強化繊維を損傷することなく低速にエツ
チングができるように、金属粉末の大きさは10μm以
下であることが望ましい。
In addition, as a metal powder, FeINircoI
Examples include metals such as At + Mf, Cr, and Zn, and alloys thereof, as long as they can be etched by etching with acid or alkali. In addition,
The size of the metal powder is preferably 10 .mu.m or less so that the pores generated by the etching process are small and uniformly distributed, and the etching can be performed at low speed without damaging the reinforcing fibers.

更に、本願第2の発明において、強化プラスチック材料
の成形型に接する面に金属粉末を分散させるには、予め
樹脂に金属粉末を分散させて成形型の外周に塗布した後
、強化繊維を積層してもよいし、成形型の外周に静電気
を利用して金属粉末を付着させるか又は金属粉末を分散
させた溶剤を塗布した後、樹脂及び強化繊維からなる強
化プラスチック材料を積層してもよい。
Furthermore, in the second invention of the present application, in order to disperse metal powder on the surface of the reinforced plastic material that comes into contact with the mold, the metal powder is dispersed in resin in advance and applied to the outer periphery of the mold, and then reinforcing fibers are laminated. Alternatively, after attaching metal powder to the outer periphery of the mold using static electricity or applying a solvent in which metal powder is dispersed, a reinforced plastic material made of resin and reinforcing fibers may be laminated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第1図(a)〜(C)を参照して銅めっきを施こしたC
FRP積層板を製造する場合について説明する。
Example 1 C coated with copper plating with reference to FIGS. 1(a) to (C)
A case of manufacturing an FRP laminate will be explained.

まず、高弾性炭素繊維一方向プリプレグシート(P41
11、東し社與商品名)1.・・・を8枚、0°及び9
0’の方向に交互に積層した。
First, high modulus carbon fiber unidirectional prepreg sheet (P41
11. Toshishayo product name) 1. ...8 pieces, 0° and 9
They were laminated alternately in the 0' direction.

次に、その表面に平均粒径5μm(最大10μm)のA
7?S末2.・・・を体積比で30%分散させた液状エ
ポキシ樹脂3(エポン815(シェル化学社製商品名)
:92重量%、トリエチレンテトラアミン(TETA)
: 8重量%)を15μm厚まで塗布した。つづいて、
真空バック法によシ130℃で3時間硬化処理を行ない
、500mm×500mmX 0.5911!Hの積層
板を得た(第1図(a)図示)。
Next, A with an average particle size of 5 μm (maximum 10 μm)
7? S end 2. Liquid epoxy resin 3 (Epon 815 (trade name manufactured by Shell Chemical Co., Ltd.)) in which ... is dispersed at a volume ratio of 30%
:92% by weight, triethylenetetraamine (TETA)
: 8% by weight) was applied to a thickness of 15 μm. Continuing,
Curing was performed at 130°C for 3 hours using the vacuum bag method, and the size was 500mm x 500mm x 0.5911! A laminate of H was obtained (as shown in FIG. 1(a)).

次いで、この積層板を5NのHC/溶液でエツチングし
、表面のAI!粉末2.・・・を溶出させて積層板の表
面に細孔4.・・・を生成させた。つづいて、この積層
板を無水クロム酸250 r/l、硫酸300 ml/
lの混合液(50℃)に15分間浸漬し、表面の親水性
化、活性化を行なった(第1図(b)図示)。
The laminate was then etched with a 5N HC/solution to remove the surface AI! Powder 2. ... is eluted to form pores 4. on the surface of the laminate. ... was generated. Next, this laminate was treated with 250 r/l of chromic anhydride and 300 ml/l of sulfuric acid.
The surface was made hydrophilic and activated by immersing it in a mixed solution of 1 (50° C.) for 15 minutes (as shown in FIG. 1(b)).

次いで、常法に従ってシラプレープロセスの活性化処理
及び化学銅めっき(CP−78、ジ−ブレ社製商品名)
を用い、48℃で1時間めっき処理を施し、積層板表面
に5μmの銅めっき層5を形成した(第1図(C)図示
)。
Next, activation treatment of Silapray process and chemical copper plating (CP-78, trade name manufactured by Giblet Co., Ltd.) were performed according to a conventional method.
A plating treatment was performed at 48° C. for 1 hour to form a 5 μm copper plating layer 5 on the surface of the laminate (as shown in FIG. 1(C)).

得られた積層板から8個の試験片を切シ出し、粘着テー
プによる引きはがしテストを行ない、銅めっき層の密着
強度を調べた。この結果を下記第1表に示す。なお、下
記第1表中比較例は、エポキシ樹脂にA/粉末を分散さ
せないこと以外は上記実施例と同一条件で処理した積層
板から切シ出した試験片についての試験結果である。
Eight test pieces were cut out from the obtained laminate and subjected to a peel test using adhesive tape to examine the adhesion strength of the copper plating layer. The results are shown in Table 1 below. The Comparative Examples in Table 1 below are test results for test pieces cut from laminates treated under the same conditions as the Examples above, except that A/powder was not dispersed in the epoxy resin.

第1表 上記第1表から明らかなように実施例1の方法によれば
、CFRPの表面に銅めっき層を形成し易く、シかもそ
の密着強度も優れていることが判る。
Table 1 As is clear from Table 1 above, according to the method of Example 1, it is easy to form a copper plating layer on the surface of CFRP, and its adhesion strength is also excellent.

実施例2 第2図(a)及び(b)を参照して軽量導波管を製造す
る場合について説明する。
Example 2 The case of manufacturing a lightweight waveguide will be described with reference to FIGS. 2(a) and 2(b).

まず、外形寸法40.04間x 20.04順×300
m+aのアルミニウム製金型11を用意し、その外周に
リリースクロスを巻きつけた。次に、リリースクロスの
表面に、平均粒径5μm (最大10μm)のA/粗粒
子体積比で30チ分散させた液状エポキシ樹脂(エポン
815:92重量%、TERA: 8重量%)を15μ
m厚まで塗布した。つづいて、その上に高弾性炭素繊維
一方向ブリプレグシート(P4111 )8枚を06及
び90°の方向に交互に積層して巻きつけた。
First, external dimensions 40.04 x 20.04 x 300
An m+a aluminum mold 11 was prepared, and a release cloth was wrapped around its outer periphery. Next, 15 μm of liquid epoxy resin (Epon 815: 92% by weight, TERA: 8% by weight) dispersed at an A/coarse particle volume ratio of 30 μm with an average particle size of 5 μm (maximum 10 μm) was applied to the surface of the release cloth.
It was applied to a thickness of m. Subsequently, eight sheets of high modulus carbon fiber unidirectional Bripreg sheets (P4111) were laminated and wound alternately in the 06 and 90° directions.

この段階で、金型11の外周に、金型11に接する面に
A/粉末12.・・・を分散させた状態でエポキシ樹脂
と炭素繊維プリプレグシートとからなるFRP材料13
が積層されている。更に、その土にリリースクロス、ブ
リーダクロス、プリーザクロスを重ねて真空バック14
内に設置した(第2図(a)図示)。
At this stage, the outer periphery of the mold 11 is coated with A/powder 12. FRP material 13 made of epoxy resin and carbon fiber prepreg sheet in which ... is dispersed.
are layered. Furthermore, layer release cloth, bleeder cloth, and pleaser cloth on the soil and vacuum bag 14.
(as shown in Figure 2(a)).

次いで、真空バック14から脱ガスしながら、130℃
、4 Kg/m2の加圧加熱炉内に2時間保持して硬化
処理を施(−た後、脱型して矩形中空体を得た。つづい
て、この中空体を5NのHCl!溶液でエツチングし、
A/粉末を溶出させて内表面に細孔を生成させた。つづ
いて、この中空体を無水クロム酸250 f/l、硫酸
300 m1llの混合液(50℃)に15分間浸漬し
、内表面の親水性化、活性化を行なった。更に、常法に
従ってシラプレープロセスの活性化処理と化学銅めつ@
(CP−78)を用いためつき処理(48℃、1時間)
を実施し、内表面に5μmの絡めつき層を形成した。最
後に、銀めっき処理を行ない、FRP材料13の内表面
に金属層15が形成された導波管を製造した(第2図(
b)図示)。
Next, while degassing from the vacuum bag 14, the temperature was increased to 130°C.
, 4 Kg/m2 in a pressurized heating furnace for 2 hours to perform a hardening treatment (-), and then demolded to obtain a rectangular hollow body.Subsequently, this hollow body was heated with a 5N HCl! solution. etching,
A/ Powder was eluted to generate pores on the inner surface. Subsequently, this hollow body was immersed for 15 minutes in a mixed solution (50° C.) of 250 f/l of chromic anhydride and 300 ml of sulfuric acid to make the inner surface hydrophilic and activate it. Furthermore, according to the conventional method, activation treatment of Silapray process and chemical copper metal treatment @
Maturing treatment using (CP-78) (48°C, 1 hour)
was carried out to form a 5 μm entangled layer on the inner surface. Finally, silver plating was performed to manufacture a waveguide in which a metal layer 15 was formed on the inner surface of the FRP material 13 (see Fig. 2).
b) As shown).

得られた導波管の特性を下記第2表に示す。The properties of the obtained waveguide are shown in Table 2 below.

第2表 上記第2表から明らかなように、実施例2の方法により
得られた導波管は寸法公差が小さくしかも強い。また、
極めて軽量であり、伝送特性も優れている。なお、実施
例1と同様な粘着テープによる引きはが゛しテストを行
なったところ、密着強度も大きいことが確認された。
Table 2 As is clear from Table 2 above, the waveguide obtained by the method of Example 2 has small dimensional tolerances and is strong. Also,
It is extremely lightweight and has excellent transmission characteristics. In addition, when a peeling test was conducted using the same adhesive tape as in Example 1, it was confirmed that the adhesion strength was also high.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、密着性の高い金属め
っき層を形成した強化プラスチック材料が得られ、また
密着性の高い金属めっき層を形成するとともに内面のコ
ーナ一部の肉厚変化や剛性の低下のない優れた軽量導波
管が得られるなど工業上極めて有用な方法を提供できる
ものである。
As detailed above, according to the present invention, it is possible to obtain a reinforced plastic material on which a metal plating layer with high adhesion is formed. It is possible to provide an extremely useful method industrially, such as obtaining an excellent lightweight waveguide with no reduction in rigidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の実施例1における銅め
つきC”FRP積層板の製造方法を示す説明図、第2図
(a)及び(b)は本発明の実施例2における軽量導波
管の製造方法を示す断面図である。 1・・−炭素繊維プリプレグシート、2・・・AI! 
 粉末、3・・・エポキシ樹脂、4・・・細孔、5・・
・銅めっき層、1ノ・・・金型、12・・・A/粉末、
I3・・・FRP材料、14・・・真空バック、15・
・・金属めっき層。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 (b)
FIGS. 1(a) to (C) are explanatory diagrams showing a method for manufacturing a copper-plated C'' FRP laminate in Example 1 of the present invention, and FIGS. 2(a) and (b) are examples of the present invention. 2 is a sectional view showing a method for manufacturing a lightweight waveguide in No. 2. 1...-carbon fiber prepreg sheet, 2... AI!
Powder, 3... Epoxy resin, 4... Pore, 5...
・Copper plating layer, 1...mold, 12...A/powder,
I3...FRP material, 14...Vacuum bag, 15.
...Metal plating layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)樹脂及び強化繊維からなる強化プラスチック材料
の表面に金属粉末を分散させ、硬化した後、該強化プラ
スチック材料の表面をエッチング処理して前記金属粉末
を溶出させ、更に化学めっきを施こすことを特徴とする
金属めっき強化プラスチック材料の製造方法。
(1) Distributing metal powder on the surface of a reinforced plastic material made of resin and reinforcing fibers, and after curing, etching the surface of the reinforced plastic material to elute the metal powder, and further applying chemical plating. A method for manufacturing a metal-plated reinforced plastic material.
(2)所定の形状を有する成形型の外周に、成形型に接
する面に金属粒子を分散させた状態で樹脂及び強化繊維
からなる強化プラスチック材料を積層し、硬化成形した
後脱型し、該強化プラスチック材料の内表面をエッチン
グ処理して前記金属粉末を溶出させ、更に化学めっきを
施こすことを特徴とする軽量導波管の製造方法。
(2) A reinforced plastic material made of resin and reinforcing fibers is laminated around the outer periphery of a mold having a predetermined shape, with metal particles dispersed on the surface in contact with the mold, hardened and molded, and then removed from the mold. A method for manufacturing a lightweight waveguide, comprising etching the inner surface of a reinforced plastic material to elute the metal powder, and further applying chemical plating.
JP59131688A 1984-06-26 1984-06-26 Production of metallic plating reinforced plastic material and production of lightweight waveguide Pending JPS6112872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131688A JPS6112872A (en) 1984-06-26 1984-06-26 Production of metallic plating reinforced plastic material and production of lightweight waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131688A JPS6112872A (en) 1984-06-26 1984-06-26 Production of metallic plating reinforced plastic material and production of lightweight waveguide

Publications (1)

Publication Number Publication Date
JPS6112872A true JPS6112872A (en) 1986-01-21

Family

ID=15063888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131688A Pending JPS6112872A (en) 1984-06-26 1984-06-26 Production of metallic plating reinforced plastic material and production of lightweight waveguide

Country Status (1)

Country Link
JP (1) JPS6112872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230607A (en) * 2000-02-18 2001-08-24 Nec Eng Ltd Stereoscopic circuit and producing method therefor
JP2012087397A (en) * 2010-10-22 2012-05-10 Nec Toshiba Space Systems Ltd Method of manufacturing plated resin product, and waveguide
JP2022037976A (en) * 2020-08-26 2022-03-10 三菱電機株式会社 Inner wall processing method for tubular molded object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230607A (en) * 2000-02-18 2001-08-24 Nec Eng Ltd Stereoscopic circuit and producing method therefor
JP2012087397A (en) * 2010-10-22 2012-05-10 Nec Toshiba Space Systems Ltd Method of manufacturing plated resin product, and waveguide
JP2022037976A (en) * 2020-08-26 2022-03-10 三菱電機株式会社 Inner wall processing method for tubular molded object

Similar Documents

Publication Publication Date Title
US4568603A (en) Fiber-reinforced syntactic foam composites prepared from polyglycidyl aromatic amine and polycarboxylic acid anhydride
US4595623A (en) Fiber-reinforced syntactic foam composites and method of forming same
EP2135736B1 (en) Copper alloy composite and process for producing the same
CN103882430B (en) Aluminum alloy composite and method of bonding therefor
JPH02238930A (en) Hollow cylindrical molded item
US5085722A (en) Method of manufacture of a composite material of metal and plastic
US2826524A (en) Method of forming wave guides
JPS6112872A (en) Production of metallic plating reinforced plastic material and production of lightweight waveguide
EP0181368B1 (en) Fiber-reinforced syntactic foam composites and method of forming same
US6816042B1 (en) Process to make lightweight objects
JPH05193097A (en) Gravure printing roll
GB2259667A (en) Method for manufacturing an integral moulded body
JPS60140902A (en) Manufacture of light weight waveguide
JP3370362B2 (en) Composite material molding method
JPH06106632A (en) Method for molding composite material product
JPH068354A (en) Roll made of fiber reinforced resin and production thereof
JPS632481B2 (en)
JPS63175502A (en) Manufacture of waveguide
JPH04286633A (en) Fiber reinforced plastic roll and manufacture thereof
JPS5946771B2 (en) Molding and electrodeposition method for fiber-reinforced plastic composites
JPS63259214A (en) Roller made of carbon fiber reinforced plastic and its manufacture
JPH07323503A (en) Hybrid pipe, production thereof and roller formed using hybrid pipe
CN112549727A (en) Low-density material with surface compounded with carbon fibers and preparation method thereof
CA1239750A (en) Fiber-reinforced syntactic foam composites and method of forming same
JPH0574455B2 (en)