JPS6112800B2 - - Google Patents

Info

Publication number
JPS6112800B2
JPS6112800B2 JP8766277A JP8766277A JPS6112800B2 JP S6112800 B2 JPS6112800 B2 JP S6112800B2 JP 8766277 A JP8766277 A JP 8766277A JP 8766277 A JP8766277 A JP 8766277A JP S6112800 B2 JPS6112800 B2 JP S6112800B2
Authority
JP
Japan
Prior art keywords
flame
painting
air
painted
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8766277A
Other languages
Japanese (ja)
Other versions
JPS5422965A (en
Inventor
Morinosuke Yamamoto
Gen Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIJITETSUKU KK
Original Assignee
BIJITETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIJITETSUKU KK filed Critical BIJITETSUKU KK
Priority to JP8766277A priority Critical patent/JPS5422965A/en
Publication of JPS5422965A publication Critical patent/JPS5422965A/en
Publication of JPS6112800B2 publication Critical patent/JPS6112800B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塗装じ具類に固着した塗料の燃焼除去
方法に関する。 塗装じ具類は種々の塗装分野において被塗物の
懸垂保持の目的で広く使用されている。塗装じ具
類は通常コンベアと連結し、被塗物を保持した状
態で被塗物と共に塗装され、硬化処理に付される
ため塗料が固着して、これを剥離除去することは
極めて困難である。 従来この塗装じ具類に固着した塗料を除去する
ための一方法として燃焼方法が実用化されてい
る。しかしながら従来の燃焼方法は塗装じ具類を
バーナー炎で直接燃焼する方法をとつているた
め、局部加熱となり塗装じ具類は局部的に極めて
高温となるため、燃焼炉から出て外気に触れると
急冷されて変形を起す。以上の欠点を改良するた
め塗装じ具類全体を直接側部から加熱する方法、
下部からの炎で燃焼する方法等が試みられたが、
いずれも塗装じ具を保持しているコンベアや台車
を加熱することとなつて却つて幣害が多い。 本発明は塗装じ具類の局部加熱による熱変形が
なく、コンベア類への熱移動が少くしかも固着塗
料の燃焼が効率よく達成される方法および装置を
提供するものである。 即ち、本発明は火炎を吹き込み空気流によつて
対流火炎とし、該対流火炎によつて塗装じ具類に
ついた固着塗料全面に着火させることを特徴とす
る塗装じ具類の固着塗料燃焼除去方法およびこれ
を実施するために好適な装置に関する。 本発明の理解を容易にするため第1図をあげて
説明する。第1図は本発明方法を実施するに適し
た装置の一具体例の見取図である。図中、1は燃
焼炉、2はバーナー、3は空気吹込口、4は塗装
じ具(ハンガー)、5はコンベアー、6は天井、
7は床および8は火炎用遮蔽(炉壁)を示す。 火炎はバーナー2から塗装じ具4に向けて放出
される。空気が吹き込まれない状態では従来法と
同様、塗装じ具は直接加熱され局部的に著しく高
い温度になる。本発明では空気吹込口3から吹き
込まれる空気によつて対流火炎を層流とする(二
次燃焼空気をかねる)。空気は塗装じ具4に沿つ
て下降し、バーナーから放出される火炎を誘導し
塗装じ具類をなでながら下降し、床部7、遮蔽
8、天井6を経て塗装じ具4の上部に到る。この
経路において連続的に対流火炎が形成され、塗装
じ具類は局部的に加熱されることなく実質上均一
に加熱され着火する。 空気吹込口およびバーナーの位置によつて対流
火炎の形や方向は異るが本発明の要旨を本質的に
変えるものではない。 本発明において好ましい空気吹込量は、吹込口
1m2あたり約580Nm3/分以下である。これより
多量の空気を吹き込むと炉内温度が低下し、自燃
温度の低下により固着塗料への着火が不完全とな
つて燃焼効率が低下し未燃焼部分が残る。もちろ
ん燃焼量の大きいバーナーを使用すると空気吹込
量を上記より大きくしても差しつかえないが実用
的ではない。 塗装じ具類を実質上ほぼ均一な燃焼温度に維持
し、全面着火を好適に行うに適した対流火炎の流
速は約8〜25m/秒である。この対流火炎の流速
は塗装じ具類の加熱温度と密接な関係があり、上
記範囲において温度と流速は近似的な比例関係を
有する。流速が上記範囲を外れると対流が乱れ局
部的な加熱または冷却が現れ始める。 本発明方法の実施に特に好適な装置は、第1図
に示すごとく天井部6中央に空気吹込口5および
その外側に左右対になつたバーナー2を配設した
燃焼炉である。もちろん空気吹込口およびバーナ
ーを炉の底に配設する方法、バーナー外側部に空
気吹込口を設ける方法もあるが、火炎がコンベア
5を加熱することとなるため、別にコンベア加熱
防止手段を設けねばならないと云う不便がある。
空気吹込口を天井部中央(塗装じ具運搬用通路)
に設けることによりコンベアを冷却するための別
の手段を要しない。これは特に好ましい態様であ
る。空気吹込口はその空隙幅を自在に調節できる
ようにしてもよい。 バーナーは火炎が空気流に対し逆流にならない
位置および方向にとりつけるのが好ましい。空気
流に対し逆に取りつけると好ましい対流が形成さ
れない上、消火および不完全燃焼の危険がある。
最も好ましくは天井部6の空気吹込口外側に、左
右一対を塗装じ具に対し対称に取り付ける。バー
ナー放出口(ノズル)は垂線に対し約0〜20度の
角度、または塗装じ具の形により異るがその延長
した中心軸が塗装じ具の最上部から下部1/4の間
にあるよう位置させるのが適当である。この角度
は任意に変えられるよう設置するのがよい。好ま
しいバーナーはロングフレームバーナーである。 火炎用遮蔽は対流を生じさせるために必須であ
る。対流を効果的に達成するため遮蔽と床部およ
び/または天井部にアールをつけてもよい。 本発明方法を用いると塗装じ具類は局部加熱さ
れず、したがつて熱による変形を全く生じないた
め塗装じ具類の取替経費が著しく節減できる。ま
た従来の直接加熱方式に比べ全体が加熱されるた
め固着塗料への着火が確実に行われ、自燃による
完全燃焼が達成される。さらにまた上部吹込式を
採用すればコンベア類の加熱が避けられ、コンベ
ア・システム全体の保守がはかられる等多くの利
点を有している。 以下、具体例をあげて本発明を説明する。 使用装置は第1図に示すものを使用し、その詳
細な仕様は以下の通りである。 バーナー:ロングフレームバーナー(燃焼容量1
〜20/時間、蒸気圧および油圧2〜6Kg/
cm2、所要空気量0.2m3/分) 燃焼炉容積:1000mm(高)×600mm(幅)×1000mm
(長さ) 空気吹込口のスリツト幅:100mm バーナーノズル位置および噴射角(α):4〜20
度可変型 空気吹込量:560Nm3/分(m2当り換算) 吹込空気温度:24〜38℃ テストピース寸法:12mm(径)×800mm(長) 固着塗料種類:アルキツド樹脂塗料 固着塗料厚さ:2750μ コンベア速度:100mm/分 処理時間:120秒 以上の条件で第1図に示す位置の温度および対
流火炎の流速を測定した。 図中の記号に対応する位置を表−1に示す。位
置はバーナーの軸を含む炉の横断面に関し、炉の
中心線からの距離(x)および天井部(外部)を
示す線からの距離(y)をmmで表わす。なお±の
記号は省略している。 測定は中温部は隔測熱電温度計(150℃>、主
要熱電対:銅−コンスタンタン)、高温部は隔測
熱電温度計(1100℃、主要熱電対:白金−ロジウ
ム)Rh=10%を用いて行つた。
The present invention relates to a method for burning off paint stuck to painted fixtures. Painting fixtures are widely used in various painting fields for the purpose of suspending and holding objects to be painted. Painting fixtures are usually connected to a conveyor and are painted with the object while holding it, and then subjected to a curing process, which causes the paint to stick and is extremely difficult to peel off and remove. . Conventionally, a combustion method has been put into practical use as a method for removing paint stuck to painted fixtures. However, in the conventional combustion method, the painted fixtures are directly combusted with a burner flame, which results in local heating and the painted fixtures become extremely hot locally, so when they come out of the combustion furnace and come into contact with the outside air, It is rapidly cooled and deforms. In order to improve the above drawbacks, there is a method of heating the entire painted fixture directly from the side.
Methods such as burning with flame from the bottom were tried, but
In either case, the conveyor or trolley that holds the painting tools is heated, which causes more damage to the equipment. The present invention provides a method and apparatus that eliminates thermal deformation of painted fixtures due to local heating, reduces heat transfer to conveyors, and efficiently burns off fixed paint. That is, the present invention provides a method for burning and removing stuck paint from painted fixtures, which comprises blowing a flame into a convection flame using an air flow, and igniting the entire surface of the stuck paint stuck to the painted fixture by the convection flame. and apparatus suitable for carrying out the same. In order to facilitate understanding of the present invention, the present invention will be explained with reference to FIG. FIG. 1 is a sketch of a specific example of an apparatus suitable for carrying out the method of the present invention. In the figure, 1 is a combustion furnace, 2 is a burner, 3 is an air inlet, 4 is a paint fixture (hanger), 5 is a conveyor, 6 is a ceiling,
7 indicates the floor and 8 indicates the flame shield (furnace wall). Flame is emitted from the burner 2 towards the painting tool 4. In the absence of air blowing, as in the conventional method, the painting fixture is directly heated and locally reaches a significantly high temperature. In the present invention, the convection flame is made into a laminar flow by the air blown in from the air inlet 3 (also serves as secondary combustion air). The air descends along the painting fixture 4, guides the flame emitted from the burner, and descends while caressing the painting fixture, passes through the floor 7, the shield 8, and the ceiling 6, and reaches the top of the painting fixture 4. Arrive. A convection flame is continuously formed in this path, and the painted fixtures are heated substantially uniformly and ignited without being locally heated. Although the shape and direction of the convection flame differ depending on the position of the air inlet and the burner, this does not essentially change the gist of the present invention. In the present invention, the preferred air blowing rate is about 580 Nm 3 /min or less per 1 m 2 of air inlets. If a larger amount of air is blown in, the temperature inside the furnace will drop, and due to the drop in self-combustion temperature, the ignition of the fixed paint will be incomplete, resulting in a decrease in combustion efficiency and an unburned portion will remain. Of course, if a burner with a large combustion rate is used, the amount of air blown can be made larger than the above, but this is not practical. A suitable convective flame flow velocity for maintaining a substantially uniform combustion temperature and good overall ignition of the painted fixture is about 8 to 25 meters per second. The flow velocity of this convection flame is closely related to the heating temperature of the painted fixtures, and within the above range, the temperature and flow velocity have an approximately proportional relationship. When the flow velocity is out of the above range, convection is disrupted and localized heating or cooling begins to appear. A particularly suitable apparatus for carrying out the method of the present invention is a combustion furnace having an air inlet 5 in the center of the ceiling 6 and a pair of left and right burners 2 disposed outside the air inlet 5 as shown in FIG. Of course, there is also a method of arranging the air inlet and the burner at the bottom of the furnace, or a method of providing the air inlet on the outside of the burner, but since the flames will heat the conveyor 5, it is necessary to provide a separate means to prevent the conveyor from heating. There is the inconvenience of not having to do so.
Place the air inlet in the center of the ceiling (pathway for transporting painting supplies)
This eliminates the need for separate means for cooling the conveyor. This is a particularly preferred embodiment. The air gap width of the air inlet may be freely adjustable. Preferably, the burner is positioned and oriented such that the flame does not flow against the air flow. If it is installed opposite to the air flow, favorable convection will not be formed and there is a risk of fire extinguishment and incomplete combustion.
Most preferably, a pair of left and right parts are attached to the outside of the air inlet of the ceiling part 6 symmetrically with respect to the painting fixture. The burner outlet (nozzle) should be positioned at an angle of approximately 0 to 20 degrees to the vertical, or with its extended center axis between the top and bottom quarter of the fixture, depending on the shape of the fixture. It is appropriate to locate it. It is best to install it so that this angle can be changed arbitrarily. A preferred burner is a long flame burner. Flame shielding is essential to create convection. The shielding and the floor and/or ceiling may be rounded to effectively achieve convection. By using the method of the present invention, the painted fixtures are not locally heated and, therefore, are not deformed by heat at all, so that the cost of replacing painted fixtures can be significantly reduced. In addition, since the entire body is heated compared to conventional direct heating methods, the fixed paint is ignited more reliably, achieving complete combustion through self-combustion. Furthermore, the use of the top blow type has many advantages, such as avoiding heating of the conveyors and facilitating maintenance of the entire conveyor system. The present invention will be explained below by giving specific examples. The device used is shown in FIG. 1, and its detailed specifications are as follows. Burner: Long flame burner (combustion capacity 1
~20/hour, steam pressure and oil pressure 2-6Kg/
cm2 , required air amount 0.2m3 /min) Combustion furnace volume: 1000mm (height) x 600mm (width) x 1000mm
(Length) Air inlet slit width: 100mm Burner nozzle position and spray angle (α): 4 to 20
Variable temperature air blowing amount: 560Nm3 /min (converted per m2 ) Blowing air temperature: 24 to 38℃ Test piece dimensions: 12mm (diameter) x 800mm (length) Fixed paint type: Alkyd resin paint Fixed paint thickness: 2750μ Conveyor speed: 100mm/min Processing time: 120 seconds The temperature and convection flame flow velocity at the positions shown in Figure 1 were measured under the following conditions. Table 1 shows the positions corresponding to the symbols in the figure. The position is expressed in mm as the distance (x) from the center line of the furnace and the distance (y) from the line indicating the ceiling (external) with respect to the cross-section of the furnace including the axis of the burner. Note that the ± symbol is omitted. Measurement was carried out using a remote thermocouple (150℃>, main thermocouple: copper-constantan) for medium temperature areas, and a remote thermocouple (1100℃, main thermocouple: platinum-rhodium) for high temperature areas, Rh = 10%. Ivy.

【表】 炉体天井部A,B,B′,Cおよび炉内上部a,
a′における温度の経時変化を表−2に示す。
[Table] Furnace ceiling parts A, B, B', C and upper part of the furnace a,
Table 2 shows the temperature change over time at a'.

【表】 表−2の結果から明らかなように、炉内上部
a,a′の温度が800℃程度に加熱されても炉体天
井部の温度は被処理体燃焼中70℃以下に保持され
ており、従来問題点となつていた炉体天井部およ
びコンベアや台車の熱伝導による欠損は全く問題
ない。 さらに炉内の位置a,b,c,d,e,fおよ
び対応する位置a′,b′,c′,d′,e′,f′における

度と対流火炎の流速を経時的に測定した。温度を
第2図に、対流火炎の流速を第3図に示す。 第2図において横軸(×100℃)は温度変化を
示し、中央から左右に行くにつれて温度は低下す
る。縦軸は炉内における各測定位置の垂直位置を
示し、図の中央部に示す測定位置に対応してい
る。第2図の上からそれぞれ燃焼着火後30秒、1
分、1分30秒、2分経過後に測定したグラフであ
る。 第2図から明らかなように、炉内の温度は炉の
中心部に懸垂されているテストピースに関してほ
ぼ対称的に経時変化し、各測定点の温度は逐次変
化している。このことは本発明方法の特徴、すな
わちバーナーから放出される火炎を直接テストピ
ースにあてないで、炉体上部からの吹込空気流に
よつて対流火炎とし、該対流火炎によつてテスト
ピースの全面に実質上均一な熱伝達を行わせて固
着塗料に着火させること、を示す。 第3図において横軸(m/秒)は対流火炎の流
速を示し、中央から左右に行くにつれて流速は遅
くなる。縦軸は第2図の場合と同様で、炉内にお
ける各測定位置の垂直位置を示し、図の中央部に
示す測定位置に対応している。第3図の上からそ
れぞれ燃焼着火後30秒、1分、1分30秒、2分経
過後に測定したグラフである。 第3図から明らかなように、炉内の火炎流速は
炉の中心線に関してほぼ対称的に経時変化し、各
測定点の流速は逐次変化している。第3図の結果
も上記の本発明方法の特徴を示す。本発明を好適
に行う際の好ましい対流火炎の流速は約8〜25
m/秒で、しかも加熱温度と近似的な比例関係に
あることはすでに述べた。塗装じ具類の加熱温度
と炉内対流火炎の流速とのこのような密度な関係
は第2図と第3図の比較から容易に理解できる。
[Table] As is clear from the results in Table 2, even if the temperature of the upper parts a and a' of the furnace is heated to about 800°C, the temperature of the furnace ceiling is maintained below 70°C during the combustion of the objects to be treated. Therefore, there is no problem with damage caused by heat conduction in the ceiling of the furnace body, conveyor, or cart, which was a problem in the past. Furthermore, the temperature and flow velocity of the convective flame at positions a, b, c, d, e, f and the corresponding positions a', b', c', d', e', f' in the furnace were measured over time. . The temperature is shown in Figure 2, and the flow velocity of the convection flame is shown in Figure 3. In Fig. 2, the horizontal axis (x100°C) indicates temperature change, and the temperature decreases as you move from the center to the left and right. The vertical axis indicates the vertical position of each measurement position within the furnace, and corresponds to the measurement position shown in the center of the figure. From the top of Figure 2, 30 seconds after combustion ignition, 1
These are graphs taken after minutes, 1 minute 30 seconds, and 2 minutes. As is clear from FIG. 2, the temperature inside the furnace changes over time in a nearly symmetrical manner with respect to the test piece suspended in the center of the furnace, and the temperature at each measurement point changes successively. This is a feature of the method of the present invention, in which the flame emitted from the burner is not applied directly to the test piece, but is turned into a convection flame by the air flow blown from the upper part of the furnace body, and the convection flame is applied to the entire surface of the test piece. to ignite the adhered paint with substantially uniform heat transfer. In FIG. 3, the horizontal axis (m/sec) indicates the flow velocity of the convective flame, and the flow velocity decreases as one moves from the center to the left and right. As in FIG. 2, the vertical axis indicates the vertical position of each measurement position within the furnace, and corresponds to the measurement position shown in the center of the figure. These graphs were measured 30 seconds, 1 minute, 1 minute 30 seconds, and 2 minutes after combustion ignition from the top of FIG. 3, respectively. As is clear from FIG. 3, the flame flow velocity within the furnace changes over time almost symmetrically with respect to the center line of the furnace, and the flow velocity at each measurement point changes successively. The results shown in FIG. 3 also demonstrate the characteristics of the method of the present invention described above. The preferred convective flame flow velocity when carrying out the present invention is about 8 to 25
As already mentioned, it is expressed in m/sec and is approximately proportional to the heating temperature. Such a dense relationship between the heating temperature of the painted fixtures and the flow velocity of the convection flame in the furnace can be easily understood from a comparison of FIGS. 2 and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固着塗料燃焼除去装置の燃焼炉での断
面図である。1は燃焼炉、2はバーナー、3は空
気吹込口、4は塗装じ具(ハンガー)、5はコン
ベア、6は天井、7は床、8は火炎用遮蔽(炉
壁)をそれぞれ示す。また、A,B,C,………
等の符号は固着塗料燃焼中の温度および/または
火炎流速測定点を示す。第2図は第1図に示した
測定点a,b,c,………等における温度の固着
塗料着火後の経時変化を示すもので、上からそれ
ぞれ30秒後、1分後、1分30秒後、2分後のグラ
フである。横軸が温度(×100℃)で、縦軸は各
測定位置の垂直位置を示す。第3図は第1図に示
した測定点a,b,c,………等における火炎流
速の固着塗料着火後の経時変化を示すもので、上
からそれぞれ30秒後、1分後、1分30秒後、2分
後のグラフである。横軸が流速(m/秒)で、縦
軸は各測定位置の垂直位置を示す。
FIG. 1 is a sectional view of a combustion furnace of a fixed paint combustion removal device. 1 is a combustion furnace, 2 is a burner, 3 is an air inlet, 4 is a paint fixture (hanger), 5 is a conveyor, 6 is a ceiling, 7 is a floor, and 8 is a flame shield (furnace wall). Also, A, B, C,...
Symbols such as , etc. indicate points at which temperature and/or flame velocity are measured during combustion of fixed paint. Figure 2 shows the change in temperature over time after ignition of the fixed paint at measurement points a, b, c, etc. shown in Figure 1. From the top, 30 seconds, 1 minute, and 1 minute, respectively. These are graphs after 30 seconds and 2 minutes. The horizontal axis represents the temperature (×100°C), and the vertical axis represents the vertical position of each measurement position. Figure 3 shows the change in flame flow velocity over time after ignition of the fixed paint at measurement points a, b, c, etc. shown in Figure 1. These are graphs after 30 minutes and 2 minutes. The horizontal axis represents the flow velocity (m/sec), and the vertical axis represents the vertical position of each measurement position.

Claims (1)

【特許請求の範囲】 1 火炎を吹き込み空気流によつて対流火炎と
し、該対流火炎によつて塗装じ具類についた固着
塗料全面に着火させることを特徴とする塗装じ具
類の固着塗料燃焼除去法。 2 吹き込み空気量を吹込口1m2あたり、約
580Nm3/分以下とする第1項記載の方法。 3 対流火炎の流速を約8〜25m/秒とする第1
項または第2項記載の方法。 4 塗装じ具類が塗装用ハンガーである第1項か
ら第3項いずれかに記載の方法。 5 塗装じ具類が塗装用台車である第1項から第
3項いずれかに記載の方法。 6 天井部に一個または複数個のバーナー、送風
機および空気吹込口を、塗装じ具類の移動方向に
沿つて火炎用遮蔽を備えた燃焼炉であつて、該バ
ーナーから放出される下降火炎が空気吹込口から
の空気流および火炎用遮蔽によつて対流火炎とな
るごとく配設された塗装じ具類の固着塗料燃焼用
装置。 7 空気吹込口が中央部にあり、対をなしたバー
ナーがその外側に塗装じ具に対し対称となるよう
配設された第6項記載の装置。 8 対をなしたバーナーの噴射軸が該軸を含む炉
断面の重線に対し0〜20度の角をなすよう配置さ
れた第7項記載の装置。 9 空気吹込口の大きさを吹込空気量が吹込口1
m2あたり約580Nm3/分以下、対流火炎の流速約
8〜25m/秒に調節された第6項から第8項いず
れかに記載の装置。 10 火炎用遮蔽が天井部および/または床部と
アールを形成している第6項から第9項いずれか
に記載の装置。 11 塗装じ具類が塗装用ハンガーである第6項
から第10項いずれかに記載の装置。 12 塗装じ具類が塗装用台車である第6項から
第11項いずれかに記載の装置。
[Claims] 1. Combustion of fixed paint on painted fixtures, characterized by blowing a flame into a convection flame using an air flow, and igniting the entire surface of the fixed paint attached to the painted fixture by the convection flame. Removal method. 2 The amount of blown air per 1m2 of air outlet, approx.
580Nm 3 /min or less The method according to item 1. 3. The first stage where the flow velocity of the convection flame is approximately 8 to 25 m/sec.
or the method described in paragraph 2. 4. The method according to any one of paragraphs 1 to 3, wherein the painting fixture is a paint hanger. 5. The method according to any one of paragraphs 1 to 3, wherein the painting fixture is a painting trolley. 6 Combustion furnaces equipped with one or more burners, blowers and air inlets in the ceiling and a flame shield along the direction of movement of painted fixtures, in which the descending flame emitted from the burners is A device for burning stuck paint on painted fixtures arranged to create a convection flame by means of an air flow from an inlet and a flame shield. 7. The device according to paragraph 6, wherein the air inlet is located in the center and the paired burners are arranged on the outside symmetrically with respect to the painting fixture. 8. The apparatus according to claim 7, wherein the injection shafts of the pair of burners are arranged to form an angle of 0 to 20 degrees with respect to the line of gravity of the furnace cross section including the shafts. 9 The size of the air inlet is determined by the amount of air blown in
9. The apparatus of any of clauses 6 to 8, wherein the apparatus is adjusted to a convective flame flow rate of about 8 to 25 m/sec or less, with a convective flame flow rate of about 580 Nm 3 /min per m 2 or less. 10. The device according to any one of items 6 to 9, wherein the flame shield forms a radius with the ceiling and/or the floor. 11. The apparatus according to any one of paragraphs 6 to 10, wherein the painting fixture is a paint hanger. 12. The device according to any one of paragraphs 6 to 11, wherein the painting tool is a painting trolley.
JP8766277A 1977-07-20 1977-07-20 Method of and device for removing adhesive paint Granted JPS5422965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8766277A JPS5422965A (en) 1977-07-20 1977-07-20 Method of and device for removing adhesive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8766277A JPS5422965A (en) 1977-07-20 1977-07-20 Method of and device for removing adhesive paint

Publications (2)

Publication Number Publication Date
JPS5422965A JPS5422965A (en) 1979-02-21
JPS6112800B2 true JPS6112800B2 (en) 1986-04-10

Family

ID=13921151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8766277A Granted JPS5422965A (en) 1977-07-20 1977-07-20 Method of and device for removing adhesive paint

Country Status (1)

Country Link
JP (1) JPS5422965A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341411A (en) * 1986-08-07 1988-02-22 Kyowa Hakko Kogyo Co Ltd Dermatic agent for external use
JPH03112913A (en) * 1989-09-26 1991-05-14 Kanebo Ltd Emulsion type cosmetic

Also Published As

Publication number Publication date
JPS5422965A (en) 1979-02-21

Similar Documents

Publication Publication Date Title
US4284402A (en) Flame modifier to reduce NOx emissions
GB1021844A (en) Method and apparatus for supporting a sheet of heat softenable material, such as glass
CN204787776U (en) Enamel fritting furnace
BR102012011489A2 (en) Vessel heating method, vessels having confined spaces, and control of air ingress into confined spaces through a nozzle, and vessel heating equipment having a confined space and control of air ingress into the confined space.
US2968894A (en) Annealing lehr
JPS6112800B2 (en)
KR950000249A (en) Method for Rapid Heating of Shape Metal to Desired Temperature
GB693416A (en) Improvements in and relating to methods of and apparatus for coating hollow glassware
US2749109A (en) Heating apparatus
NO145793B (en) ANALOGY PROCEDURE FOR PREPARING THE PHYSIOLOGICALLY ACTIVE COMPOUND N- (R-TETRAHYDROFURFURYL) -NOROXYMORPHONE
US2269645A (en) Forge
JPS5433212A (en) Preventing apparatus for dew condensation in exhaust gas from industrial furnace
JPS5594442A (en) Heat treating furnace of upset pipe
GB902674A (en) System for baking carbonaceous products or the like
NO145795B (en) PROCEDURE FOR POLYMERIZATION OF THE ETHYL OR PROPYL, AND THE CATALYST COMPONENT FOR USE IN THE POLYMERIZATION
JPH0620076Y2 (en) Long object heating device
US3058870A (en) Method of debonding a brake lining from a brake shoe
JPS61140379A (en) Seam cleaning device of welded steel pipe
US2799605A (en) Continuous heating of steel strip
US1762239A (en) Method of coating articles with enamel
SU1695106A1 (en) Bell-type gas-fired furnace
US2367093A (en) Manufacture of insulating products
JPH0914618A (en) Gaseous fuel-oxygen burner
US2159480A (en) Oven furnace
JPS5952020B2 (en) Ladle heating device