JPS61126772A - Temperature regulating component for layer-built fuel cell - Google Patents

Temperature regulating component for layer-built fuel cell

Info

Publication number
JPS61126772A
JPS61126772A JP59248216A JP24821684A JPS61126772A JP S61126772 A JPS61126772 A JP S61126772A JP 59248216 A JP59248216 A JP 59248216A JP 24821684 A JP24821684 A JP 24821684A JP S61126772 A JPS61126772 A JP S61126772A
Authority
JP
Japan
Prior art keywords
flat plate
fuel cell
temperature regulating
cooling medium
metallic flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248216A
Other languages
Japanese (ja)
Inventor
Taesuke Nakayama
中山 妙輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59248216A priority Critical patent/JPS61126772A/en
Publication of JPS61126772A publication Critical patent/JPS61126772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable the simplification of soldering or welding work process and at the same time to enable the increase of mechanical strength and heat removing capability by providing multiple grooves on one face of the first metallic flat plate to form a continuous circulating path for cooling medium. CONSTITUTION:A circulating path 7, through which cooling medium flows, is formed on one face of the first metallic flat plate 6 as multiple continuous grooves of multiple blocks and an inlet and an outlet flow path 8a, 8b for cooling medium are provided on one side face of the metallic flat plate 6. Temperature regulating components 5 mounted with insertion in each of a certain number of unit cells improve cooling performance owing to the enlargement of heat transfer surface area. Also, the temperature regulating component 5 can be made thin because of the increase of its mechanical strength by using the metallic flat plate and thereby the height of a multilayer-built fuel cell can be lowered. Therefore, its mounting, transportation and installation become easy and at the same time its electrical resistance becomes approximately 1/100, compared with that of the carbon plate and thereby IR loss can be reduced. Furthermore, fastening face pressure is made uniform because of the flatness of the upper and lower surfaces of the temperature regulating component and electrical contact resistance is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層形燃料電池の温度調節体く関するもの
であり、もう少し詳しくいうと、燃料電、他、電解質マ
トリックス、酸化剤電極およびガス分離板を順次複数個
積場した積層体の中間または表面に配設される積層形燃
料電池の温度調節体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a temperature controller for stacked fuel cells, and more specifically, to fuel cells, electrolyte matrices, oxidizer electrodes, and gas The present invention relates to a temperature control body for a stacked fuel cell that is disposed in the middle or on the surface of a stacked body in which a plurality of separator plates are sequentially stacked.

〔従来の技術〕[Conventional technology]

第2図は1例えば、*開昭!l−/jり04/号公報に
示された従来の燃料電池の温度調節体を示し1図におい
て、上・下面にそれぞれ燃料流路と酸化剤流路(図示せ
ず)が形成され、カーボン板等から製作された温度調節
体(1)の下板(/a)中KU字形状をした熱交換配管
(コ)を装着して上板(/b)で塞ぎ、熱交換配管(コ
)に接続された循環水入口管(J)および循環水出口管
(り)が温度調節体r/lの外部に設置されている。
Figure 2 is 1For example, *Kaisho! Figure 1 shows the temperature control body of a conventional fuel cell disclosed in L-/JRI No. Attach the KU-shaped heat exchange piping (C) inside the lower plate (/a) of the temperature control body (1) made from a plate, etc., close it with the upper plate (/b), and connect the heat exchange piping (C). A circulating water inlet pipe (J) and a circulating water outlet pipe (RI) connected to are installed outside the temperature controller r/l.

以上の構成により、燃料!極、冨解質マトリックス、#
化剤電極から構成される単電池をガス分離板を用いて複
数個積層した燃料電池忙おいて。
With the above configuration, fuel! polar, soluble matrix, #
A fuel cell is constructed by stacking multiple single cells each consisting of a chemical agent electrode using a gas separation plate.

起動時′VCは室温から動作温度まで加熱し、運転時に
は余剰熱を除去・冷却して一定温度に維持する必要から
、湯度調節体(/lをある単電池個数ごとに挿入φ設置
する構成となっている。すなわち、循環水入口管(3)
および循環水出口管(り)を用いて、U字形状をした熱
交換配管(2)に起動時には温水を。
At startup, the VC is heated from room temperature to operating temperature, and during operation it is necessary to remove excess heat and cool it to maintain a constant temperature. In other words, the circulating water inlet pipe (3)
At startup, hot water is supplied to the U-shaped heat exchange piping (2) using the circulating water outlet pipe (RI).

運転時には冷却水を強制循環させて、温度調節体<1)
を加熱もしくは冷却することにより積層形燃料電池の温
度を劃−する。
During operation, the cooling water is forcedly circulated and the temperature regulator <1)
The temperature of the stacked fuel cell is varied by heating or cooling the fuel cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の積層形燃料電池の温度調節体は以上のように構成
されていたので1次のような問題点があった。
Since the temperature control body of the conventional stacked fuel cell was constructed as described above, it had the following problems.

(a)  熱交換配管(2)と循環水入口・出口管(、
、?l 、 (4’)との接合箇所が多く60−付ある
いは溶接による接合作業に多大の時間を要するだけでな
く、非破壊検査が容易でない。
(a) Heat exchange piping (2) and circulating water inlet/outlet pipes (
,? 1, (4'), and not only does it take a lot of time to connect by welding or welding, but also non-destructive testing is not easy.

(bl  熱交換配管(2)は曲げ半径に制約があって
小さくできないために6熱交換配管(コ)の本数を多く
することができない。
(bl) The number of heat exchange pipes (2) cannot be increased because the bending radius of the heat exchange pipes (2) is limited and cannot be made smaller.

(C)  M皮調節体(1)はカーボン板で形成されて
いるため1強度的に弱く、カーボン板の厚さが大きくな
り、積層形燃料電池の高さが大きくなる。
(C) Since the M skin adjustment body (1) is formed of a carbon plate, its strength is weak, and the thickness of the carbon plate becomes large, which increases the height of the stacked fuel cell.

(dl  熱交換配管−)をカーボン板の溝にすきまな
くはめ込むために、充填剤を用いるが、そのため熱伝導
率が劣る。
A filler is used to fit the (dl heat exchange piping) into the groove of the carbon plate without any gaps, but this results in poor thermal conductivity.

この発明は、上記の問題点を解消するためになされたも
ので、ロー付あるいは溶接作業の工程を簡略化できると
ともに1機械的強度、熱の除去能を増大できる積層形燃
料電池の温度調節体を得ることを目的とする。
This invention was made to solve the above problems, and is a temperature control device for stacked fuel cells that can simplify the brazing or welding process and increase mechanical strength and heat removal ability. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る積層形燃料電池の温度調節体は。 A temperature regulator for a stacked fuel cell according to the present invention.

8gtの金属平板の片面に複数の溝を設けて連続した冷
却媒体の循環路を形成し、第1の金属平板に第λの金属
平板が固着されている。
A plurality of grooves are provided on one side of an 8gt metal flat plate to form a continuous cooling medium circulation path, and the λth metal flat plate is fixed to the first metal flat plate.

〔作 用〕[For production]

この発明においては、金属平板の中に冷却媒体の循環路
が形成されているために、循環水入口・出口管との接合
部がそれぞれ1個所で足り、かつ。
In this invention, since the cooling medium circulation path is formed in the metal flat plate, only one joint is required for each of the circulating water inlet and outlet pipes.

二枚の金属平板が固着されるために上e下面が平担にな
り、積層セルへ容易に挿入される。
Since the two flat metal plates are fixed, the upper and lower surfaces are flat and can be easily inserted into the laminated cell.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による温度vI4節体(5
)を示し、冷却媒体が流れる循環路(り)をv:/の金
属平板(6)の片面に機械加工あるいは塑性加工によっ
て3ブロツクの複数の連続した溝により形成し。
FIG. 1 shows the temperature vI4 segment (5
), and the circulation path through which the cooling medium flows is formed by a plurality of three blocks of continuous grooves on one side of the metal flat plate (6) of v:/ by machining or plastic working.

金属平板(6)の一側面に冷却媒体の入口および出口流
路(ta)(tb)を設ける。この入口および出口流路
(f)に冷却媒体の入口管および出口管(?aM9b)
を接合する。(10)は電子ビーム溶接などで第1の金
属平板(6)に固着されるwX2の金属平板である。
Cooling medium inlet and outlet channels (ta) (tb) are provided on one side of the metal flat plate (6). Coolant inlet pipe and outlet pipe (?aM9b) are connected to this inlet and outlet flow path (f).
join. (10) is a wX2 metal flat plate fixed to the first metal flat plate (6) by electron beam welding or the like.

以上の構成により、単電池が複数個積層された燃料電池
に、起動時の加熱、運転時の冷却を円滑に行うために、
ある単電池個数ごとに挿入・設置された温度調節体(j
lは、金属平板(6)に冷却媒体が流れる循環路(7)
が1機械加工あるいは塑性加工によって、はぼ全面に多
数設けられているために。
With the above configuration, in order to smoothly heat the fuel cell in which multiple single cells are stacked during startup and cool it during operation,
A temperature control body (j
l is a circulation path (7) through which a cooling medium flows through a metal flat plate (6)
This is because they are provided in large numbers on almost the entire surface by machining or plastic processing.

伝熱面積の拡大によって冷却性能が向上し、積層された
単電池を市内に均一に加熱あるいは冷却することができ
る。また、カーボン板に比べて金属平板を用いることに
よって1機械強度的に強くなるため、温度調節体(りの
薄形化がはかれ、高積層な燃料電池の高さを低くするこ
とができ9組立。
The expansion of the heat transfer area improves cooling performance, making it possible to uniformly heat or cool the stacked cells within the city. In addition, the use of flat metal plates increases mechanical strength compared to carbon plates, allowing for thinner temperature regulators and lowering the height of highly laminated fuel cells. assembly.

輸送、据付が容易になるとともに、電気抵抗がカーボン
板のそれに比べて約//100になり、IRiが低減で
きる。
Not only is transportation and installation easier, but the electrical resistance is about 100 times lower than that of a carbon plate, and IRi can be reduced.

さらに、:a変調節体の上・下面が平担であるために、
積層電池に挿入したときに、すきまがなくなり、締付面
圧が均一化し、電気的な接触抵抗が低減される。
Furthermore, because the upper and lower surfaces of the :a variable body are flat,
When inserted into a stacked battery, there is no gap, the tightening surface pressure becomes uniform, and electrical contact resistance is reduced.

なお、上記実施例では、循環路(7)を3つのブロック
に分けたが、1つ以上のブロックであればいくつでもよ
い。循環路(7)のパターンは、上記実施穐 例から容易に類ゾできるパターンは無数にあり。
In the above embodiment, the circulation path (7) is divided into three blocks, but any number of blocks may be used as long as it is one or more blocks. There are countless patterns of the circulation path (7) that can be easily similar to the above-mentioned embodiments.

入口流路(ga)から連続的に設けられ出口流路(ざb
)に接続されればよい。
An outlet flow path (zab) is provided continuously from the inlet flow path (ga).
).

また、第2の金属平板(lO)として、多数の溝を形成
した第1の金属平板(6)と同一のものを用いてもよい
Furthermore, the second metal flat plate (lO) may be the same as the first metal flat plate (6) in which a large number of grooves are formed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、多数の溝により循環路を形
成したgtの金属平板に、第λの金属平板を固着したの
で1次の効果がある。
As described above, the present invention has a first-order effect because the λth metal flat plate is fixed to the gt metal flat plate in which a circulation path is formed by a large number of grooves.

(a)  温度調節体の上・下面が平担であるために。(a) The upper and lower surfaces of the temperature regulator are flat.

カーボン板へのはめ込みや、黒鉛パツキンの取付は等を
することなく、積層電池へ容易に挿入することができる
とともに、締付面圧が均一化し、電気的唾熱的な接触抵
抗を低減でざる。
It can be easily inserted into a stacked battery without fitting into a carbon plate or attaching a graphite gasket, etc., and the tightening surface pressure is evened out, reducing electrical contact resistance. .

(b)  カーボン板に比べて、金属平板を用いること
によって機械的強度が増大するために、温度調節体の薄
形化がはかれ、高積層な燃料電池の高さを低くすること
ができ1組立、輸送、据付が容易になるとともに、電気
抵抗がカーボン板に比べて約/ / / Q Oである
ことから、IR損の低減により出力向上に寄与できる。
(b) Compared to carbon plates, the use of flat metal plates increases the mechanical strength, allowing the temperature regulator to be made thinner and the height of highly laminated fuel cells to be lowered1. It is easier to assemble, transport, and install, and since the electrical resistance is about Q O compared to carbon plates, it can contribute to improved output by reducing IR loss.

(C)U字形熱交換配管のように曲げ半径に制約されて
、熱交換配管の本数が制限されることな(。
(C) Unlike U-shaped heat exchange piping, the number of heat exchange piping is not limited by the bending radius.

金属平板上にほぼ全面に冷却媒体の循環路を設けること
かでき、しかも2機械加工あるいは塑性加工によって、
任意に循環路を加工することができるので6面内に均一
に、しかも、効率よく冷却あるいは加熱ができる。
It is possible to provide a cooling medium circulation path on almost the entire surface of a flat metal plate, and by machining or plastic working,
Since the circulation path can be formed arbitrarily, cooling or heating can be carried out uniformly and efficiently within the six planes.

(d)  ffR度調節体の上・下面が平担で、しかも
すべて金属面でガス分離板もしくは、単電池と接触して
いるために、伝熱面積が大きく、集熱効果が大きい。
(d) Since the upper and lower surfaces of the ffR degree adjuster are flat and all metal surfaces are in contact with the gas separation plate or the cell, the heat transfer area is large and the heat collection effect is large.

(el  ロー付あるいは溶接個所が少なくなり、しか
も非破壊検査が容易となる。
(el) There are fewer brazed or welded parts, and non-destructive testing is easier.

(f)  を子ビーム溶接等による金、喘板同志の固着
が可能となり、工程が簡略化され、生産性が向上する。
(f) It becomes possible to fix the gold and pane plates together by child beam welding, etc., which simplifies the process and improves productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の分解斜視図、@λ図は従
来の温度調節体の分解斜視図である。 fよ)拳@濃度調節体、C6)・・lIlの金属平板、
 (7)・・循環路Agth>(gb)・・入口および
出口流路。 (va)(9b)−・入口および出口管 (lQ)*−
第2の金属平板。 1o:斤2の4ン飄平不反 氾2図 。 :土
FIG. 1 is an exploded perspective view of an embodiment of the present invention, and FIG. 1 is an exploded perspective view of a conventional temperature regulator. f) Fist @concentration regulator, C6)...lIl metal plate,
(7)...Circulation path Agth>(gb)...Inlet and outlet flow path. (va) (9b)-・Inlet and outlet pipe (lQ)*-
Second metal plate. 1o: Kato 2, 4-n Tepira Futanfuku 2 diagram. :soil

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電極、電解質マトリックス、酸化剤電極およ
びガス分離板を積層した積層体に配設される積層形燃料
電池の温度調節体において、 片面に形成した連続する複数の溝による冷却媒体の循環
路と、一側面に形成した前記循環路に通じる入口および
出口流路とを備えた第1の金属平板と、 前記入口および出口流路にそれぞれ接合された入口およ
び出口管と、 前記第1の金属平板の前記片面に固着された第2の金属
平板と、 を備えてなることを特徴とする積層形燃料電池の温度調
節体。
(1) In the temperature control body of a stacked fuel cell, which is arranged in a stacked structure in which a fuel electrode, an electrolyte matrix, an oxidizer electrode, and a gas separation plate are stacked, cooling medium is circulated through a plurality of continuous grooves formed on one side. a first flat metal plate having an inlet and an outlet channel formed on one side and communicating with the circulation channel; an inlet and an outlet pipe joined to the inlet and outlet channels, respectively; A temperature control body for a stacked fuel cell, comprising: a second flat metal plate fixed to the one side of the flat metal plate.
(2)第2の金属平板が第1の金属平板と同等のもので
ある特許請求の範囲第1項記載の積層形燃料電池の温度
調節体。
(2) The temperature regulator for a stacked fuel cell according to claim 1, wherein the second flat metal plate is equivalent to the first flat metal plate.
JP59248216A 1984-11-26 1984-11-26 Temperature regulating component for layer-built fuel cell Pending JPS61126772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248216A JPS61126772A (en) 1984-11-26 1984-11-26 Temperature regulating component for layer-built fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248216A JPS61126772A (en) 1984-11-26 1984-11-26 Temperature regulating component for layer-built fuel cell

Publications (1)

Publication Number Publication Date
JPS61126772A true JPS61126772A (en) 1986-06-14

Family

ID=17174906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248216A Pending JPS61126772A (en) 1984-11-26 1984-11-26 Temperature regulating component for layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPS61126772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489149A (en) * 1987-09-30 1989-04-03 Toshiba Corp Manufacture of cooling plate for molten carbonate fuel cell
JPH02140760U (en) * 1989-04-27 1990-11-26
WO2001006588A1 (en) * 1999-07-20 2001-01-25 International Fuel Cells, Llc Humidification system for a fuel cell power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489149A (en) * 1987-09-30 1989-04-03 Toshiba Corp Manufacture of cooling plate for molten carbonate fuel cell
JPH02140760U (en) * 1989-04-27 1990-11-26
WO2001006588A1 (en) * 1999-07-20 2001-01-25 International Fuel Cells, Llc Humidification system for a fuel cell power plant
US6322915B1 (en) * 1999-07-20 2001-11-27 International Fuel Cells Llc Humidification system for a fuel cell power plant

Similar Documents

Publication Publication Date Title
JP2569550B2 (en) Fuel cell temperature distribution improvement method
US10468691B2 (en) Bipolar plates for use in conduction-cooled electrochemical cells
US5212023A (en) Solid electrolytic fuel cell and method of dissipating heat therein
US4963442A (en) Internal manifolded molten carbonate fuel cell stack
US5342706A (en) Fully internal manifolded fuel cell stack
CA2907951C (en) Fuel gas flow path in a solid oxide fuel cell
JPH0374057A (en) Fuel cell stack which acts as manifold completely at the inside
US7846606B2 (en) Bipolar plate, a method for the production of a bipolar plate and a fuel cell block arrangement
CN101395751A (en) Cell stack and fuel cell with the same
KR20150036066A (en) Flow field plate for a fuel cell
US7322405B2 (en) Multi-pipe heat exchanger apparatus and method of producing the same
US20030124401A1 (en) Integrated recuperation loop in fuel cell stack
KR101078132B1 (en) Fuel cell and heating device for a fuel cell
JP3056829B2 (en) Solid oxide fuel cell
JPS61126772A (en) Temperature regulating component for layer-built fuel cell
WO2018083912A1 (en) Thermoelectric power generation heat exchanger
JPS6358769A (en) Gas passage of fuel cell
JP2621240B2 (en) Fuel cell
JPS6316576A (en) Air cooling type fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
CN213421920U (en) Different material laminated plate heat exchanger
JPH01246766A (en) Cooling plate for fuel cell
JP2006216328A (en) Fuel cell
KR100727821B1 (en) Heat exchanger
JP2659951B2 (en) Fuel cell stack