JPS61126633A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS61126633A
JPS61126633A JP24799484A JP24799484A JPS61126633A JP S61126633 A JPS61126633 A JP S61126633A JP 24799484 A JP24799484 A JP 24799484A JP 24799484 A JP24799484 A JP 24799484A JP S61126633 A JPS61126633 A JP S61126633A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
vertical magnetic
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24799484A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kazuyoshi Honda
和義 本田
Kiyokazu Touma
清和 東間
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24799484A priority Critical patent/JPS61126633A/en
Publication of JPS61126633A publication Critical patent/JPS61126633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain excellent reproduction output by forming a thin film consisting essentially of Co, Ni and Fe by specifying the ratio between the average deposition rate thereof and the oxygen partial pressure in a vacuum deposition device to form the back layer of a vertical magnetic anisotropic film of a vertical magnetic recording medium. CONSTITUTION:The soft magnetic layer consisting of Co, Ni and Fe is formed as the back layer of the vertical magnetic anisotropic film consisting of Co-Cr, etc. on the substrate consisting of polyimide film, etc. by a vacuum deposition method at the ratio (x) between the average deposition rate and oxygen partial pressure maintained under 2X10<7>Angstrom /sec. The always stable formation of the back layer having <=20 Oe coercive force is thus made possible. the coercive force is too large and is unsuitable if x is specified to <=2X10<7>Angstrom /sec. The verti cal magnetic recording medium which is suitable for high-density recording, has excellent recording and reproducing efficiency and decreases noise is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度記録再生特性の優れた。垂直磁気記録
媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention has excellent high-density recording and reproduction characteristics. The present invention relates to a method of manufacturing a perpendicular magnetic recording medium.

(従来例の構成とその問題点) 従来、高密度記録特性の優れた磁気記録の方法として、
垂直磁気記録方式があり、これは垂直異方性膜を磁性層
とした垂直磁気記録媒体を用いる。
(Conventional structure and its problems) Conventionally, as a magnetic recording method with excellent high-density recording characteristics,
There is a perpendicular magnetic recording method, which uses a perpendicular magnetic recording medium with a perpendicular anisotropic film as a magnetic layer.

このような媒体に信号を記録すると、残留磁化は媒体の
膜面に垂直な方向を向き、信号が短波長になる程媒体内
の反磁界は減少するため、優れた再生出力が得られる。
When a signal is recorded on such a medium, the residual magnetization is oriented in a direction perpendicular to the film surface of the medium, and the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, resulting in excellent reproduction output.

単層媒体と呼ばれる垂直磁気記録媒体がある。There is a perpendicular magnetic recording medium called a single layer medium.

これは高分子材料あるいは非磁性金属等の非磁性材料か
らなる基板上に、垂直磁気異方性膜を形成したもので、
その膜としては、Co−Cr膜、 Go−0膜、Co−
Ni−0膜あるいはBa−フェライト膜などが開発され
ている。
This is a perpendicular magnetic anisotropic film formed on a substrate made of a non-magnetic material such as a polymer material or a non-magnetic metal.
The films include Co-Cr film, Go-0 film, Co-
Ni-0 films, Ba-ferrite films, etc. have been developed.

上述のような単層膜媒体に対して2層膜媒体と呼ばれる
ものがある。これは非磁性基板と垂直磁気異方性膜との
間に、パーマロイ膜等の軟磁性裏打ち層を形成したもの
で、記録再生効率の大幅な向上が見られるものである。
In contrast to the above-mentioned single-layer media, there is something called a two-layer media. This is a device in which a soft magnetic backing layer such as a permalloy film is formed between a nonmagnetic substrate and a perpendicular magnetic anisotropic film, and a significant improvement in recording and reproducing efficiency can be seen.

特に、垂直磁気記録ヘッドとして最適と考えられている
、公知の補助磁極励磁型垂直磁気ヘッドを用いた場合の
、記録再生効率の改善は極めて顕著なものがある。
In particular, when a known auxiliary pole-excited perpendicular magnetic head, which is considered to be the most suitable perpendicular magnetic recording head, is used, the improvement in recording and reproducing efficiency is extremely remarkable.

上記2層膜媒体における軟磁性裏打ち層としては、 2
00e以下の保磁力を有する磁性膜が適している。20
0eを超えたものは、軟磁性裏打ち層の、磁気ヘッドの
一部としての働きが低下して記録再生効率を劣化させる
As the soft magnetic underlayer in the above two-layer film medium, 2
A magnetic film having a coercive force of 00e or less is suitable. 20
If it exceeds 0e, the function of the soft magnetic underlayer as a part of the magnetic head decreases, resulting in deterioration of recording and reproducing efficiency.

軟磁性裏打ち層の形成方法としては、真空蒸着法、スパ
ッタリング法あるいはメッキ法等があるが、生産性から
は真空蒸着法が最も優れており、また、その層膜として
はNi−Fe膜、Cu−Mo−Ni−Fe膜あるいはC
o系アモルファス膜等が、主としてスパッタリング法に
より検討されている。真空蒸着法を用いる場合には、記
録再生効率、ノイズ及び組成安定性の点から、Co−N
i−Fe膜が最も優れていることを、本発明者らは見出
した。
Methods for forming the soft magnetic underlayer include vacuum evaporation, sputtering, and plating, but the vacuum evaporation method is the most superior in terms of productivity. -Mo-Ni-Fe film or C
O-based amorphous films and the like are mainly being studied using sputtering methods. When using the vacuum evaporation method, Co-N
The inventors have found that the i-Fe film is the best.

本発明者らは、さらに実験、研究を進めた結果、真空蒸
着法により、Co−Ni−Fe膜を作製する際に、満足
する記録再生効率を示す2層膜媒体を得るためには、膜
の堆積速度と真空蒸着装置内部の酸素分圧との比Xを限
定する必要があることを明らかにした。
As a result of further experiments and research, the present inventors found that when producing a Co-Ni-Fe film using a vacuum evaporation method, in order to obtain a two-layer film medium that exhibits satisfactory recording and reproducing efficiency, the film It has been clarified that it is necessary to limit the ratio X between the deposition rate and the oxygen partial pressure inside the vacuum evaporation apparatus.

(発明の目的) 本発明は、真空蒸着法で上記Xを限定することにより、
200e以下のGo−Ni−Fe膜を安定に形成させ、
もって、記録再生効率の優れた垂直磁気記録媒体を製造
する方法を提供することを目的とする6(発明の構成) 本発明は、基板上に真空蒸着法により、Co、 Ni及
びFeを主成分とする薄膜が形成され、さらにその上に
垂直磁気異方性膜を形成してなる、2層膜媒体の垂直磁
気記録媒体の製造方法において、上記Co、 Ni及び
Feを主成分とする薄膜の平均の堆積速度と、真空蒸着
装置内部の酸素分圧との比を、2×107Å/秒・To
rr以上とすることにより上記目的を達成するものであ
る。
(Object of the invention) The present invention provides the following by limiting the above-mentioned X using a vacuum evaporation method.
To stably form a Go-Ni-Fe film of 200e or less,
Therefore, it is an object of the present invention to provide a method for manufacturing a perpendicular magnetic recording medium with excellent recording and reproducing efficiency. In a method for manufacturing a perpendicular magnetic recording medium of a two-layer film medium, in which a thin film is formed, and a perpendicular magnetic anisotropic film is further formed on the thin film, the thin film containing Co, Ni and Fe as main components. The ratio between the average deposition rate and the oxygen partial pressure inside the vacuum evaporation apparatus is 2×107 Å/sec・To
The above object is achieved by setting the value to be rr or more.

(実施例の説明) 以下実施例を用いて本発明の詳細な説明する。(Explanation of Examples) The present invention will be described in detail below using Examples.

真空蒸着法によりCo−Ni−Fe膜を形成する場合、
膜の堆積速度、残留ガスの種類及び量が膜の磁気特性に
大きな影響を与える。実験によれば、Co−Ni−Fe
膜の平均堆積速度と、真空蒸着装置内の酸素分圧との比
Xを、2×107Å/秒・Torr以上にすれば、20
08以下の保磁力を有するCo−Ni−Fe膜が安定に
得られ、従って特性の優れた2層膜媒体の垂直磁気記録
媒体から得られることが明らかになった。これをも少し
詳しく説明すると、5XlO−”Torrにした真空蒸
着装置に、アルゴン、窒素及び酸素を導入し、Co−N
i−Fe膜を蒸着した。その結果、膜の堆積速度及び酸
素が膜の磁気特性に影響を与えることが明らかになうた
。なお、アルゴン及び窒素は8 X 10−’Torr
まで導入してみたが、形成されたCo−N1−Fe膜の
磁気特性には影響が見られず、また、上記、膜の堆積速
度または酸素分圧は独立して膜の磁気特性に影響するも
のではなく、それらの比、つまりGo−Ni−Fe膜の
堆積速度と酸素分圧との比Xが、真空蒸着法によりGo
−Ni−Fe膜を蒸着する場合に、その磁気特性に影響
することが判明した。
When forming a Co-Ni-Fe film by vacuum evaporation method,
The deposition rate of the film and the type and amount of residual gas have a large effect on the magnetic properties of the film. According to experiments, Co-Ni-Fe
If the ratio X between the average deposition rate of the film and the oxygen partial pressure in the vacuum evaporation apparatus is set to 2×10 7 Å/sec・Torr or more, 20
It has been revealed that a Co--Ni--Fe film having a coercive force of 0.08 or less can be stably obtained, and can therefore be obtained from a perpendicular magnetic recording medium of a two-layer film medium with excellent characteristics. To explain this in a little more detail, argon, nitrogen, and oxygen are introduced into a vacuum evaporation equipment set to 5XlO-'' Torr, and Co-N
An i-Fe film was deposited. The results revealed that the film deposition rate and oxygen affected the film's magnetic properties. In addition, argon and nitrogen are 8 x 10-'Torr
However, no effect was seen on the magnetic properties of the formed Co-N1-Fe film, and as mentioned above, the deposition rate or oxygen partial pressure of the film independently affects the magnetic properties of the film. Rather, their ratio, that is, the ratio X between the deposition rate of the Go-Ni-Fe film and the oxygen partial pressure, is
It has been found that when depositing a -Ni-Fe film, it affects its magnetic properties.

図は真空蒸着法でCo−N1−Fe膜を蒸着した場合の
、上記Xと膜の保磁力との関係を示したものである。
The figure shows the relationship between the above-mentioned X and the coercive force of the film when a Co--N1--Fe film is deposited by vacuum evaporation.

曲線1,2及び3はそれぞれ、Co、、Ni、sFem
s 1CO2(INis□Fets及びC0BNis7
Fetsなる組成の膜の関係を示している。なお膜厚は
、8000人、基板には耐熱性の高分子フィルムを用い
、蒸着時の基板温度は230℃とし、膜の堆積速度を8
00〜12000人/秒とした時のものである。
Curves 1, 2 and 3 are Co, Ni, sFem, respectively.
s 1CO2 (INis□Fets and C0BNis7
It shows the relationship between films with a composition called FETs. The film thickness was 8,000 yen, a heat-resistant polymer film was used as the substrate, the substrate temperature during vapor deposition was 230°C, and the film deposition rate was 8,000 yen.
00 to 12,000 people/second.

膜の堆積速度あるいは酸素の導入量を変化させてそれら
の比Xを変えたが、Xの値が同じであれば同一の保磁力
を有するCo−Ni−Fe膜が得られた。
Although the ratio X was changed by changing the film deposition rate or the amount of oxygen introduced, Co--Ni--Fe films having the same coercive force were obtained as long as the value of X was the same.

図から、Xを2X10’八/秒・Torr以上にするこ
とにより、保磁力が200e以下のCo−Ni−Fe膜
が得られるが、約lXl0’人/秒・Torr以下にな
ると、保磁力は急激に大きくなってしまい、2層膜媒体
用の軟磁性裏打ち層として適さなくなることが分かる。
From the figure, a Co-Ni-Fe film with a coercive force of 200e or less can be obtained by making X more than 2X10'8/sec.Torr, but when it becomes less than about 1X10'8/sec.Torr, the coercive force becomes It can be seen that the size suddenly increases, making it unsuitable as a soft magnetic underlayer for a two-layer film medium.

l×107Å/秒・Torrから2XIO’人/秒4o
rrのXの範囲では、保磁力のX依存性が大きすぎるた
め、この領域は膜の形成には不適である。
l×107Å/sec・Torr to 2XIO' people/sec 4o
In the range of X of rr, the dependence of coercive force on X is too large, so this region is unsuitable for film formation.

すなわち、安定に2層膜媒体用の軟磁性裏打ち層に用い
る、Co−Ni−Fe膜を作成するには、Xを2×10
7Å/秒・Torr以上にする必要がある。
That is, in order to stably create a Co-Ni-Fe film used as a soft magnetic underlayer for a two-layer film medium,
It is necessary to set it to 7 Å/sec.Torr or more.

なお、Go−Ni−Fe膜の組成としては、Coが5〜
32%、Niが50〜75%の範囲で゛は、  図に示
した各曲線1,2.3と同様に、Xが2×107Å/秒
4orr以上であれば、1400以下の保磁力が得られ
たが、上記以外の組成の場合は、Xをどのように変化さ
せても保磁力が200e以下の膜は形成できなかった。
The composition of the Go-Ni-Fe film is Co:
32% and Ni in the range of 50 to 75%, as in each curve 1 and 2.3 shown in the figure, if However, in the case of a composition other than the above, a film with a coercive force of 200e or less could not be formed no matter how X was changed.

また、蒸着時の基板温度を、室温から300℃の範囲に
変化させても、図に示した結果は殆ど変わらなかった。
Further, even when the substrate temperature during vapor deposition was changed from room temperature to 300° C., the results shown in the figure hardly changed.

図に示される結果が得られる理由は明らかではないが、
Xが小さくなると膜が微細構造に起因する、垂直異方性
を持つようになるものと考えられる。
Although it is not clear why the results shown in the figure are obtained,
It is considered that when X becomes smaller, the film has perpendicular anisotropy due to the fine structure.

具体例を次に挙げる。A specific example is given below.

膜厚50μmのポリイミドフィルムを基板に、膜厚60
00人のGo、。Ni、5Fe1=の膜を介して、膜厚
2000人のGo−Cr垂直磁気異方性膜を2層膜媒体
として。
A polyimide film with a thickness of 50 μm is used as a substrate, and a film thickness of 60 μm is used as a substrate.
00 Go. A Go-Cr perpendicular magnetic anisotropy film with a film thickness of 2000 was used as a two-layer film medium via a film of Ni and 5Fe1=.

真空蒸着法により形成した。上記Co、。Ni、、Fe
1.の膜の形成では、Xを4×107Å/秒・Torr
及び4X10r″人/秒・Torrとすることにより、
2種類のものを作った。前者は本発明の条件を満足する
が公社は満足していない。この前者及び後者により形成
した2層膜媒体としての垂直磁気異方性膜を、それぞれ
A及びBとすれば、AにおけるCo2゜NiG。
It was formed by a vacuum evaporation method. The above Co. Ni, ,Fe
1. In the film formation, X is set to 4×107 Å/sec・Torr
and 4×10r″ person/second・Torr,
I made two types. The former satisfies the conditions of the present invention, but the corporation does not. If the perpendicular magnetic anisotropic films as two-layer film media formed by the former and latter are A and B, respectively, then Co2°NiG in A.

Fe膜、膜の保磁力力は、50eであり、Bは310e
であった。これらA及びBの2層膜媒体に公知の、補助
磁極励磁型垂直磁気ヘッドを用いて、記録再生を行なっ
た結果を次表に示す。
The coercive force of Fe film and film is 50e, and B is 310e.
Met. The following table shows the results of recording and reproducing on these two-layer film media A and B using a known auxiliary pole excitation type perpendicular magnetic head.

なお、上記補助磁極励磁型垂直磁気ヘッドの主磁極の膜
厚は、0.2μmであった。上記の表において7 KF
RPIとは、1インチ(押2.5am)当り7000回
磁化反転のある記録状態であり、D、。とは、再生出力
が7 KFRPIの値の半分になる記録密度である。
The film thickness of the main pole of the auxiliary pole excitation type perpendicular magnetic head was 0.2 μm. In the table above, 7 KF
RPI is a recording state in which magnetization is reversed 7000 times per inch (pressure 2.5 am), and D. is the recording density at which the reproduction output is half of the value of 7 KFRPI.

また、7 KFRPIの出力値は、前記Bの2層膜媒体
の値を基準にして、すなわちOdBとして2層膜媒体A
の値を表わしている0表から、本発明の条件を満足する
2層膜媒体Aは1本発明によらない2層膜媒体已に対し
、7 KFRPIにおける出力値、及びり、。の何れに
おいても優れていることが分かる。
In addition, the output value of 7KFRPI is based on the value of the two-layer film medium B, that is, the output value of the two-layer film medium A as OdB.
From the table 0, which shows the values of the two-layer film medium A that satisfies the conditions of the present invention, the output value at 7 KFRPI is 1. It can be seen that it is excellent in both respects.

(発明の効果) 本発明は2層膜媒体としての垂直磁気記録媒体の製造に
おいて、その裏打ち層のCo−Ni−Fe膜の蒸着条件
を解明して、優れた記録再生特性を有する、垂直磁気記
録媒体の製造方法であり、用いて大いに益するところが
ある。
(Effects of the Invention) In the production of a perpendicular magnetic recording medium as a two-layer film medium, the present invention clarifies the deposition conditions for a Co-Ni-Fe film as the backing layer, and provides a perpendicular magnetic recording medium with excellent recording and reproducing characteristics. It is a method of manufacturing recording media, and its use can be of great benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

図は2層膜媒体の裏打ち層としてのCo−Ni−Fe膜
の、保磁力と製造条件との関係図である。 X・・・Co−Ni−Fe膜の蒸着堆積速度と酸素分圧
との比。
The figure is a diagram showing the relationship between coercive force and manufacturing conditions of a Co--Ni--Fe film as a backing layer of a two-layer film medium. X: Ratio between the deposition rate of the Co-Ni-Fe film and the oxygen partial pressure.

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着装置を用いて基板上に、Co、Ni及びFeを
主成分とする薄膜を形成し、さらにその上面に垂直磁気
異方性膜を形成する2層膜垂直磁気記録媒体の製造方法
において、上記Co、Ni及びFeを主成分とする薄膜
を、その平均の堆積速度と上記真空蒸着装置内部の酸素
分圧との比を、2×10^7Å/秒・Torr以上とし
て形成させることを特徴とする垂直磁気記録媒体の製造
方法。
A method for manufacturing a two-layer perpendicular magnetic recording medium, in which a thin film mainly composed of Co, Ni, and Fe is formed on a substrate using a vacuum evaporation device, and a perpendicular magnetic anisotropic film is further formed on the top surface of the thin film, The thin film mainly composed of Co, Ni, and Fe is formed at a ratio of the average deposition rate to the oxygen partial pressure inside the vacuum evaporation apparatus of 2×10^7 Å/sec・Torr or more. A method for manufacturing a perpendicular magnetic recording medium.
JP24799484A 1984-11-26 1984-11-26 Production of vertical magnetic recording medium Pending JPS61126633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24799484A JPS61126633A (en) 1984-11-26 1984-11-26 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24799484A JPS61126633A (en) 1984-11-26 1984-11-26 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61126633A true JPS61126633A (en) 1986-06-14

Family

ID=17171607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24799484A Pending JPS61126633A (en) 1984-11-26 1984-11-26 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61126633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588366A1 (en) * 1992-09-17 1994-03-23 Kao Corporation Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588366A1 (en) * 1992-09-17 1994-03-23 Kao Corporation Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium
US5593723A (en) * 1992-09-17 1997-01-14 Kao Corporation Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium
US5723212A (en) * 1992-09-17 1998-03-03 Kao Corporation Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH01158618A (en) Magnetic recording medium
JPS61126633A (en) Production of vertical magnetic recording medium
JP3345199B2 (en) Perpendicular magnetic recording medium and magnetic recording device
US5496620A (en) Magnetic recording medium
JP2579184B2 (en) Magnetic recording media
JPS6177125A (en) Magnetic recording medium
JPH07192244A (en) Perpendicular magnetic recording medium and its production
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JPH0380445A (en) Magneto-optical recording medium
JP2000182233A (en) Magnetic recording medium
JPH056327B2 (en)
JPS5948822A (en) Vertical magnetic recording medium and its production
JP2002352407A (en) Magnetic recording medium and magnetic recording device
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPH01133217A (en) Magnetic recording body
JPH0460916A (en) Metal thin film type magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPH0823929B2 (en) Perpendicular magnetic recording media
JPH01173312A (en) Magnetic recording medium
JPS6163918A (en) Vertical magnetic recording medium
JPS62129934A (en) Magnetic recording medium
JPH01283319A (en) Production of magnetic material for magnetic head
JPS58158029A (en) Production of magnetic recording medium
JPS63251913A (en) Perpendicular magnetic recording medium