JPS61125723A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS61125723A
JPS61125723A JP24805384A JP24805384A JPS61125723A JP S61125723 A JPS61125723 A JP S61125723A JP 24805384 A JP24805384 A JP 24805384A JP 24805384 A JP24805384 A JP 24805384A JP S61125723 A JPS61125723 A JP S61125723A
Authority
JP
Japan
Prior art keywords
electrode
time
electric discharge
machining
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24805384A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24805384A priority Critical patent/JPS61125723A/en
Publication of JPS61125723A publication Critical patent/JPS61125723A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent wear damage of electrode and improve efficiency in normal time by providing quiescent time in applied voltage pulse of interpole with an abnormality discriminating signal from an interpole condition discriminating means regardless of presence of electric discharge and applying voltage continuously in normal time and eliminating discharge concentration. CONSTITUTION:When interpole machining condition is normal, pulse voltage is applied to interpole until electric discharge is generated without providing futile quiescent time so as not to make a switching element 15b OFF, and when machining condition of interpole is deteriorated to perform complete deionization, and concentration of electric discharge is eliminate and wear and damage of electrode are prevented. That is, when output Q of flip-flop 101 is 1, a switching element 15b is turned OFF via an amplifier 15d and when ON time setting output tau 9 of a counter 103 becomes 1, an AND gate 102 resets the flip-flop 101, then Q becomes zero (Q=0) and OFF time is obtained. And OFF condition is kept on until an OFF time setting terminal taur becomes 1, and taur becomes a predetermined OFF time of 0-1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電極と被加工物間で放電を発生させ、この
放電エネルギで被加工物全切削加工する放電加工装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrical discharge machining apparatus that generates electrical discharge between an electrode and a workpiece, and uses the discharge energy to completely cut the workpiece.

〔従来の技術〕[Conventional technology]

従来、この種の放電加工装置には、被加工物を棒状電極
で穴加工するものと、被加工物にあらかじめドリルなど
であけた紡孔にワイヤ電極を貫通させ、この被加工物と
ワイヤ電極を相対的に移動させて被加工物を切断加工す
るものとがある。
Conventionally, this type of electrical discharge machining equipment has two types of electrical discharge machining equipment: one that drills a hole in a workpiece using a rod-shaped electrode, and the other that drills a hole in the workpiece with a drill or the like and then passes the wire electrode through it. There is one that cuts the workpiece by moving the two relative to each other.

以下、この放電加工装置の概要を第7図に示すワイヤ電
極使用の放電加工装置を例に説明する。
The outline of this electric discharge machining apparatus will be explained below by taking as an example the electric discharge machining apparatus using a wire electrode shown in FIG.

第7図において、1は被加工物で、加工開始時、紡孔1
aに通されたワイヤ電極2との間に絶縁性の液3t−供
給介在させている。
In Fig. 7, 1 is the workpiece, and at the start of processing, the spinning hole 1
An insulating liquid 3t is interposed between the wire electrode 2 passed through a and the wire electrode 2.

上記絶縁性の液3を以下加工液と記述する。加工液は、
タンク4からボンダ5で、被加工物1とワイヤ電極20
間隙(極間間隙)にノズル6により噴射される。
The above-mentioned insulating liquid 3 will be hereinafter referred to as a processing liquid. The processing fluid is
From the tank 4 to the bonder 5, the workpiece 1 and the wire electrode 20
The nozzle 6 sprays the liquid into the gap (gap between the poles).

被加工物1とワイヤ電極2との間の相対運動は、被加工
物1を載せているテーブル11の移動により行われる。
The relative movement between the workpiece 1 and the wire electrode 2 is performed by moving the table 11 on which the workpiece 1 is placed.

テーブル11Vi、Y軸駆動モータ13とX軸上−41
2により駆動される。以上の構成により、被加工物1と
電極2の相対運動は前述のXXYl[Il平面内に於て
2tK元平面の運動となる。
Table 11Vi, Y-axis drive motor 13 and X-axis top-41
2. With the above configuration, the relative movement between the workpiece 1 and the electrode 2 becomes a movement in a 2tK plane within the aforementioned XXYl[Il plane.

ワイヤ電極2は、ワイヤ供給リール7にエリ供給され、
下部ワイヤガイド8A、被加工物1中全通過して上部ガ
イド8Bに達し、電気エネルギ給電部9を介して、ワイ
ヤ巻取り兼テンションローラIOKより巻取られる。上
記XSY軸の駆動モータ12.13の駆動及び制御を行
う制御装置14は、数値制御装置tNc制御装置)や倣
い装置あるいは、電算機音用いた制御装置が用いられて
いる。電気エネルギを供給する加工電源18は、例えば
、直流電tl15a%スイッチング素子15b1電流制
限抵抗15c及び前記スイッチング素子15bl制(至
)する制御回路15d&Cよって構成嘔れている。
The wire electrode 2 is supplied to a wire supply reel 7,
The wire passes through the lower wire guide 8A and the workpiece 1, reaches the upper guide 8B, and is wound up by the wire winding/tension roller IOK via the electric energy feeding section 9. As the control device 14 that drives and controls the drive motors 12 and 13 of the XSY axes, a numerical control device (tNc control device), a copying device, or a control device using computer sound is used. The processing power supply 18 that supplies electrical energy is composed of, for example, a DC current switching element 15a%, a current limiting resistor 15c, and a control circuit 15d&C controlling the switching element 15bl.

仄に従来装置の動作について説明する。加工電源15か
らは高周波パルス電圧が被加工物1とワイヤ電極2間に
印加され、1つのパルスによる放電爆発により被加工@
1の一部?:溶融飛散嘔せる。
The operation of the conventional device will be briefly explained. A high-frequency pulse voltage is applied between the workpiece 1 and the wire electrode 2 from the machining power supply 15, and the workpiece @
Part of 1? : Melting and splattering vomiting.

この場合、極間は高温のtめガス化及びイオン化してい
るため、次のパルス電圧全印加するまでには一定の休止
時間全必要とし、この休止時間が短か過ぎると極間が充
分に絶縁回復していないうちに、再び同一場所に放電が
集中しワイヤ電極2の溶断全発生させる。
In this case, since the gap between the electrodes is gasified and ionized due to the high temperature, a certain rest period is required before the next full pulse voltage is applied, and if this pause time is too short, the gap between the electrodes is insufficient. Before the insulation has been recovered, the discharge concentrates again at the same location, causing the wire electrode 2 to completely melt.

従って、通常の加工電源では被加工物の種類、板厚等に
依り加工電源15の休止時間等の電気条件をワイヤ電極
切れ金主じさせない程度の充分余裕金持つ九条件で加工
するのが普通である。故に、加工速度は理論的限界値よ
り相当低くならざるt得ず、更にワイヤ電極2が均一で
なく太さか変化する場合、もしくはワイヤの一部に突起
やキズ等があり放電が集中した場合にはワイヤ電極2の
溶断は避けられない。
Therefore, with a normal machining power source, depending on the type of workpiece, plate thickness, etc., it is normal to process the electrical conditions such as the down time of the machining power source 15 with enough margin to prevent the wire electrode cutting metal from becoming active. It is. Therefore, the machining speed has to be considerably lower than the theoretical limit value, and furthermore, if the wire electrode 2 is not uniform and changes in thickness, or if there is a protrusion or scratch on a part of the wire and the discharge is concentrated. In this case, melting of the wire electrode 2 is unavoidable.

〔発明か解決しょうとする問題点〕[Problem to be solved by invention]

以上のように従来のワイヤカット放電加工装置では、ワ
イヤ電極2の新婦を引き起さないようにするため、加工
電源15の出力エネルギーを少くする等して、仮に放電
の集中がワイヤ電極2の一点に集中しても断線しないよ
うにしていたため、加工速度が著しく低いという問題点
があった。
As described above, in the conventional wire-cut electric discharge machining apparatus, in order to prevent the wire electrode 2 from discharging, the output energy of the machining power source 15 is reduced, so that if the concentration of electric discharge does not occur on the wire electrode 2. The problem was that the processing speed was extremely low because it was designed to prevent the wires from breaking even if they were concentrated at one point.

そこで、従来、加工状態の良否あるいは電極の損傷直前
状態を判別し、この判別結果に基づいて自動的に正常加
工状態に復帰させあるいは電極の損傷全回避させるよう
な安全対策を施して、加工速度全低下させないようにす
ることが行なわれている。
Conventionally, safety measures have been taken to determine whether the machining condition is good or bad or whether the electrode is about to be damaged, and based on this determination result, automatically restore the normal machining condition or completely avoid damage to the electrode, thereby increasing the machining speed. Efforts are being made to prevent a total decline.

この場合、加工状態の良否あるいけワイヤ電極の断線の
直前状Bt判別するのに最本一般的な手段は、上記の極
間電圧値の平均値を観測することである。すなわち、平
均電圧値が低い時は、極間インピータンスが低い場合で
あって、短絡あるいはスラッジとか加工粉の滞留により
、放電のための絶縁破壊が起りfすくなり放電集中(ワ
イヤ切断の最大要因)が発生していること金示す。
In this case, the most common means for determining whether the machining condition is good or not, or whether the wire electrode is about to break, is to observe the average value of the voltage between the electrodes. In other words, when the average voltage value is low, the impedance between the electrodes is low, and insulation breakdown due to discharge is more likely to occur due to short circuits or accumulation of sludge or machining powder, resulting in discharge concentration (the main cause of wire breakage). ) is occurring.

しかし、狭ギャップでの加工(精度の良い加工に不可欠
)においては、正常な極間状態でも短絡が類発するので
、この短絡全検知して安全対策を施していたのでは、や
はり加工能率が著しく低下するという問題点があった。
However, when machining with narrow gaps (essential for high-precision machining), short circuits occur even under normal machining conditions, so if all short circuits were detected and safety measures were taken, machining efficiency would be significantly reduced. There was a problem with the decline.

この発明はかかる問題点を解決するためになされたもの
で、加工速度全低下させることなく適確に加工状態の良
否全判別し、電極の損傷事故を未然に防止することので
きろ放電加工装置を得ること金目的とする。
This invention was made to solve this problem, and is an electric discharge machining device that can accurately determine whether the machining condition is good or bad without reducing the machining speed, and can prevent electrode damage accidents. The goal is to earn money.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる放電加工装置は、!極と被加工物間に
パルス電圧全印加してか烏当該両者の対向する極間に放
電が発生するまでの漏れ電at検出する検出手段および
この噴出出力に基づいて極間状態を判別する極間状態判
別手段金膜け、この判別結果に基づいて、上記パルス電
圧全極間に放電が発生するまで印加し続けるかオン、オ
フの繰り返しとするかを制御する制御手段を備えたもの
である。
The electrical discharge machining device according to this invention is! Detection means for detecting leakage current until a discharge occurs between opposing electrodes when a full pulse voltage is applied between the electrode and the workpiece, and a electrode for determining the state between the electrodes based on the ejection output. and control means for controlling whether to continue applying the pulse voltage until a discharge occurs between all poles or to repeatedly turn it on and off, based on the determination result. .

〔作用〕[Effect]

この発明における制御手段は、極間状態判別手段から異
常判別信号を受vj7Cときには、放電の有無にかかわ
らず極間に印加する底圧パルスに休止時間を設ヴ、消イ
オン効果を持たせることにより放電集中を解消して電極
の消耗損傷金防ぎ、極間状態が良好であるという判別信
号を受けたときには、放電開始まで電圧を連続印加し、
放電頻度を増大させて加工能率の同上を図る。
When the control means in this invention receives an abnormality determination signal from the inter-electrode state determination means, the control means sets a pause time for the bottom pressure pulse applied between the electrodes regardless of the presence or absence of discharge, and provides a deionization effect. Eliminates discharge concentration and prevents wear and tear on the electrodes. When receiving a determination signal indicating that the electrode spacing is good, voltage is continuously applied until discharge starts.
The machining efficiency is increased by increasing the discharge frequency.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す概要図であり、符号
1〜15は上記従来装置とをく同一のものである。16
は加工電源15により極間に供給されるパルス電iを検
出するための電流検出器、17は制御指令信号発生装置
で、前記電流検出器16からの検出電流工および極間電
圧Vg全入力とし、制御装置14、加工電源15などに
制御指令信号を供給するように構成1几ている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and numerals 1 to 15 are the same as those in the conventional device described above. 16
1 is a current detector for detecting the pulsed electricity i supplied between the machining power sources 15, and 17 is a control command signal generator, which has all inputs of the detected current from the current detector 16 and the voltage Vg between the machining holes. , a control device 14, a machining power source 15, etc., to supply control command signals.

第2図は、タイムチャートであって、上記第1図記載の
回路中の電流検出器16より得られ九電流波形工及びこ
れより微少電流を含め電流の有無ヲ、検出し1、Oのデ
ィジタル信号と(また整形信号S1、極間電圧信号Vg
t−スレッショルド電圧■。
FIG. 2 is a time chart showing the current waveform obtained from the current detector 16 in the circuit shown in FIG. signal (also shaping signal S1, electrode voltage signal Vg
t-threshold voltage■.

にて、澤負荷状態か放電中かに判別した信号SvJ? 
jび上記の償号S工、Svより得た次の2信号Sυ、s
D’に示している。すなわち、電流が流れているが放電
していない信号S。は、論理式5U−8v・SIとあら
れされ、漏れ電流がパルス印加中に存在すること上水す
。また、信号SDは論理式S。
, the signal SvJ? was determined to be in a fully loaded state or during discharging.
j and the following two signals Sυ, s obtained from the above compensation code S, Sv
It is shown in D'. That is, a signal S in which current is flowing but not discharging. is written as the logical formula 5U-8v SI, which shows that leakage current exists during pulse application. Moreover, the signal SD is a logical formula S.

= Sv−SIとあられされ、パルス印加中に全く無電
流状態であること上水している。
= Sv-SI, which indicates that there is no current at all during pulse application.

第3図は、第2図のタイムチャートに記載した信号群S
□、5v1SUXSDを得るための漏れ電流検出手段1
8としての回路構成例である。電流検出器16のti傷
信号波形整形回路19により、整形信号SIとなって電
流の有無を示す信号となる。
Figure 3 shows the signal group S described in the time chart of Figure 2.
□、Leakage current detection means 1 for obtaining 5v1 SUXSD
8 is an example of a circuit configuration. The signal waveform shaping circuit 19 of the current detector 16 generates a shaped signal SI, which is a signal indicating the presence or absence of current.

極間電圧vgは、分圧回路r3、「、により分圧され、
レベルコンパレータ20で基準スレッショルド電圧■□
より大か小かが比較され、放電か無負荷状態であるかの
判別が行なわれる。
The electrode-to-electrode voltage vg is divided by a voltage dividing circuit r3,
Reference threshold voltage with level comparator 20
A comparison is made to see if it is larger or smaller, and it is determined whether it is a discharge state or a no-load state.

漏れ電流の存在を示す信号S。は、アンドゲート21に
より、前記の論理式sU= sv−SIの形で出力され
、無負荷信号SDは、アンドゲート22により論理式S
D:5v−8Iの形で出力される。
A signal S indicating the presence of leakage current. is outputted by the AND gate 21 in the form of the above-mentioned logical formula sU=sv-SI, and the no-load signal SD is outputted by the AND gate 22 in the form of the logical formula S
D: Output in the form of 5v-8I.

実験によれば、上記信号S、 =” 1の時すなわち漏
れ電流が無負荷状態で流れてい友場合には、以下に記述
するような極間状態であることが判明した。
According to experiments, it has been found that when the signal S = 1, that is, when the leakage current is flowing in a no-load state, an interpole state occurs as described below.

(1)  @ n t lが流れる時には、極間間隙に
おけるある1点において、スラッジ、金属イオン等の濃
度が異常に高くなり、抵抗にして数百Ω以下になってい
る。
(1) When @ n t l flows, the concentration of sludge, metal ions, etc. becomes abnormally high at one point in the gap between the electrodes, and the resistance becomes less than several hundred Ω.

(2)  数μ秒〜1m秒i度連続して信号SU! 1
であった場合、何等かの消イオン対策を行えは、極間状
態の回復は行いうるが、数10m秒以上連続した場合は
回復不能でワイヤ断線にまで至る。
(2) Signal SU continuously for several microseconds to 1 milliseconds! 1
In this case, if some countermeasure for deionization is taken, the state between the electrodes can be recovered, but if the condition continues for several tens of milliseconds or more, recovery is impossible and even wire breakage occurs.

(3)  ワイヤ電極上に突起物あるいはパリ等がある
と、その1点における電界強度が極間内部で強くなり、
かつ信号Sυ=1となり、しかも、放電の集中はその1
点が引きずったあとに発生する。
(3) If there is a protrusion or a hole on the wire electrode, the electric field strength at that one point will become stronger inside the gap between the electrodes.
And the signal Sυ=1, and the concentration of discharge is 1.
Occurs after the point is dragged.

(4)漏れ電流がなく信号SD = 1の時には、イオ
ン濃度は低く、極間における状態は良好で、集中放電、
異常アーク放電発生はない。ただし、異常状態になって
いる時でもたまに信号5D−1となる時もある。この場
合には持続しない(SD=1が数m秒間連続しない)。
(4) When there is no leakage current and the signal SD = 1, the ion concentration is low and the condition between the electrodes is good, resulting in concentrated discharge,
No abnormal arc discharge occurred. However, the signal 5D-1 may sometimes occur even in an abnormal state. In this case, it does not persist (SD=1 does not continue for several milliseconds).

以上のように、信号SUと信号SDに基づいて、極間状
態の検出を行うことができる。すなわち、上記(2)、
(4)のごとく、信号SUと信号SDの連続量あるいは
発生のしかたを分析できるようにすれば、極間状態を検
出できる。
As described above, the gap state can be detected based on the signal SU and the signal SD. That is, (2) above,
As shown in (4), if the continuous amount of the signal SU and the signal SD or the way in which they occur can be analyzed, the interpole state can be detected.

第4図は上記の信号S、、S、iアンドゲート23.2
41に介して入力し、極間状態の良否判別を行う極間状
態判別回路の1例を示すものであって、入力された信号
5U1SDはその数が可逆カウンタ25により計数され
る。よって信JI!ISUが信号S、より発生頻度大で
あれば、カウンタ25t:を積算重れ、その内容は次第
に大となる。
Figure 4 shows the above signals S, , S, i and gate 23.2.
41, the number of input signals 5U1SD is counted by a reversible counter 25. Therefore, Shinji! If the ISU occurs more frequently than the signal S, the counter 25t: is multiplied and its contents gradually become larger.

上記カウンタ25の積算値か、所定値たとえは100個
に越すト、テイジタルコンバレータ26は極間不良判別
信号(以下、SAと称す)全出力(SA=1)する。こ
の信号SAはアンドゲート23の否定入力端子にも供給
印加されて該アンドゲートからの出力をなくシ、それ以
上、カウンタ25の内容が増えすき゛て、オーバーフロ
ーあるいは、スケールオーバーしないようにしている。
When the integrated value of the counter 25 exceeds a predetermined value, for example 100, the digital converter 26 outputs a gap defect determination signal (hereinafter referred to as SA) at full output (SA=1). This signal SA is also applied to the negative input terminal of the AND gate 23 to eliminate the output from the AND gate, thereby preventing the contents of the counter 25 from increasing any further and overflowing or overscaling.

また、上記信号SAは後記制御手段に供給でれて極間回
復制御に供される。
Further, the signal SA is supplied to a control means to be described later and is used for pole spacing recovery control.

極間状態が正常となり、信号sD=g iが続くと、カ
ウンタ25は減算賂れ、最後には、内容がΣ=Oとなる
ので、それ以上、減算しないようにディジタルコンパレ
ータ27の出力信号SB″f:アンドゲート24の否定
入力端子に供給印加して該アンドケートからの出力をな
くするようにする。
When the state between the poles becomes normal and the signal sD=g i continues, the counter 25 starts subtracting, and finally, the content becomes Σ=O, so the output signal SB of the digital comparator 27 is changed to prevent further subtraction. ``f: Applied to the negative input terminal of the AND gate 24 to eliminate the output from the AND gate.

従って、上記カウンタ25の内容?1ディジタル→アナ
ログ変換器28でアナログ量に変換して測定すれば、こ
の変換器28の出力信号St−用いて連続的11C極間
状態をモニターできる。
Therefore, what is the content of the counter 25? If the signal is converted into an analog quantity by the 1 digital to analog converter 28 and measured, the state between the 11C electrodes can be continuously monitored using the output signal St- of the converter 28.

第5図は前記第4図に示す極間状態判別回路の各信号S
U%  SD%  SM I SMはアナログ出力)、
SAと極間状態を示す極間電流信号Iおよび極間電圧信
号■gのタイムチャートである。
FIG. 5 shows each signal S of the gap state discriminating circuit shown in FIG.
U% SD% SM I SM is analog output),
It is a time chart of SA and an inter-electrode current signal I and an inter-electrode voltage signal g indicating an inter-electrode state.

以下、上記異常放電信号SAに基づいて、極間に対する
パルス電圧の連続印加か断続印加かを制御する制御手段
30の1例を第6図を用いて説明する。
Hereinafter, an example of the control means 30 that controls whether to continuously or intermittently apply a pulse voltage to the gap between electrodes based on the abnormal discharge signal SA will be described with reference to FIG. 6.

極間の加工状態が正常である時には、パルス電圧を極間
に印加して放電が発生するまでは、スイッチング素子1
5biオフとしないようにして無駄な休止時間を設けず
、極間の加工状態が悪化すると、放電が発生しなくても
、一旦体止時間を設けて完全な消イオ/l−行なわしめ
、放電集中の一要因金解消するという動作全行うもので
ある。
When the machining condition between the machining holes is normal, the switching element 1 remains closed until a pulse voltage is applied to the machining gap and discharge occurs.
If the machining condition between the machining holes deteriorates, a stopping time is provided to completely eliminate the iodine/l-, even if no discharge occurs. The entire operation is to eliminate one factor in concentration: money.

第6図において、101はR−Sフリッ170ツブで、
この出力Q−1の時、増幅器15di介してスイッチン
グ素子15biオンとする。このQ=1の時ANDゲー
ト102は、カウンタ103のオンタイム設定出力τ、
が41%になるまで出出力は10.であるが、τPが′
1、になると、フリラグフロップ101t−リセツトす
るのでQ−0となりオフタイムとなる。
In Figure 6, 101 is the R-S flip 170 knob,
When the output is Q-1, the switching element 15bi is turned on via the amplifier 15di. When Q=1, the AND gate 102 outputs the on-time setting output τ of the counter 103,
The output power is 10. until it reaches 41%. However, τP′
When it becomes 1, the free lag flop 101t is reset, so it becomes Q-0 and it is off time.

この時、同時にANDゲート102の出力は、ORゲー
)104t−介して発振器(O3C)110とカウンタ
103にリセットするので、カウントは最初から行われ
る。
At this time, the output of the AND gate 102 is simultaneously reset to the oscillator (O3C) 110 and the counter 103 via the OR gate (OR gate) 104t, so that counting is performed from the beginning.

一方、Q−0となると、Q−1となるからANDゲート
105の一方のゲートの入力すなわちオフタイム設定端
子τ、が1になるまでこのオフ状態を保ち、τ、が0か
ら1になるまでの所定時間オフタイムとなる。
On the other hand, when Q-0 becomes Q-1, this off state is maintained until the input of one gate of the AND gate 105, that is, the off-time setting terminal τ, becomes 1, and until τ becomes 1 from 0. The predetermined period of time will be off time.

この第6図の回路においては、カウンタ103の入力ゲ
ート106は発振器O8Cの出力をそのまま通過させて
、上記のオン、オフ制御をするかどうか全決定するが、
入力ゲート106の入力はNANDゲート107により
制御される。すなわち、カウンタ25からの異常放電信
号SAが1の時、すなわち加工状態が悪化した時か、短
絡、放電、休止などで極間電圧■2が低い時に、発振器
O8Cの出力がカウンタ103でカウントされる。
In the circuit shown in FIG. 6, the input gate 106 of the counter 103 passes the output of the oscillator O8C as it is, and makes a complete decision as to whether or not to perform the above-mentioned on/off control.
The input of input gate 106 is controlled by NAND gate 107. That is, when the abnormal discharge signal SA from the counter 25 is 1, that is, when the machining condition has deteriorated or when the inter-electrode voltage 2 is low due to short circuit, discharge, suspension, etc., the output of the oscillator O8C is counted by the counter 103. Ru.

なお、R1−Rtは極間電圧■3の分圧回路、108は
電圧コンパレータで、電源109とボリュームVRKよ
り基準電圧V+ t”設定し、極間電圧vgが高く分圧
回路R7の端子電圧■、が基準電圧V1より高い時には
出力が1となり、上記信号SAがOであればNANDゲ
ート107の出力は0となってカウントしない。
In addition, R1-Rt is a voltage divider circuit for voltage divider circuit R7, 108 is a voltage comparator, and a reference voltage V+t'' is set from power supply 109 and volume VRK. , is higher than the reference voltage V1, the output becomes 1, and if the signal SA is O, the output of the NAND gate 107 becomes 0 and does not count.

よって、極間電圧Vgが高い時はカウントせず、短絡、
放電、休止および加工状態悪化の時カウント(、て、ス
イッチング素子15bのオン、オフf:繰り返す。
Therefore, when the voltage between electrodes Vg is high, it is not counted, and short circuits and
Count the times of discharge, pause, and deterioration of the machining condition (, t, turn on/off of the switching element 15b f: repeat.

ところで上記説明では、この発明をワイヤ電極を用いる
ワイヤカット放電加工装置に利用する場合について述べ
たが、棒状電極を用いる放電加工装置にも利用できるこ
とはいうまでもない。
Incidentally, in the above description, the present invention is applied to a wire-cut electric discharge machining apparatus using wire electrodes, but it goes without saying that it can also be applied to an electric discharge machining apparatus using rod-shaped electrodes.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、被加工物と電極間に
パルス電圧全印加した後、放電に至るまでの間における
漏れ[流を検出し、この検出結果をもとにして正常放電
と異常放電の判別を行なうものであるから、加工速度を
低下させることなく適確に加工状態の良否を判別するこ
とができる。
As described above, according to the present invention, after the full pulse voltage is applied between the workpiece and the electrode, the leakage [flow] is detected until the discharge occurs, and based on this detection result, it is determined that the discharge is normal. Since abnormal discharge is determined, it is possible to accurately determine whether the machining condition is good or bad without reducing the machining speed.

そして、判別された結果に基づいてパルス電圧の連続印
加か断続印加か全制御するので、異常状態が検出された
ときは放電の有無にかかわらず、極間に印加するパルス
電圧に休止時間を設け、消イオン効果を持たせることに
より族1!集中11消して電極の損傷事故を防ぎ、極間
状態が良好であれば放電開始までパルス電圧全連続印加
して放を類lft増大し加工能塞の向上を図るという効
果がある。
Based on the determined result, the pulse voltage is fully controlled as to whether it is applied continuously or intermittently, so when an abnormal condition is detected, a rest period is set for the pulse voltage applied between the poles, regardless of whether or not there is a discharge. , Group 1 by giving it a deionization effect! This has the effect of eliminating the concentration 11 to prevent damage to the electrodes, and if the gap between the electrodes is good, the pulse voltage is continuously applied until the discharge starts, increasing the discharge by a similar amount and improving the machining ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す原理説明図、第2図
はその動作説明のためのタイムチャート、第3図は極間
状態検出のための漏れ電流検出回路図、II!4図は極
間状態判別回路図、第5図はその動作説明のためのタイ
ムチャート、第6図は制御手段の回路構成を示すブロッ
ク図、第7図は従来のワイヤカット放電加工装fi1′
t−示す原理図である。 1・・・被加工物、  2・・・電極(ワイヤ電極)、
18・・・漏fi電流検出手段、  29・・・極間状
態判別手段、  3o・・・制御手段〇 なお、図中同一符号は同一または相当部分全示す。
FIG. 1 is a principle explanatory diagram showing an embodiment of the present invention, FIG. 2 is a time chart for explaining its operation, and FIG. 3 is a leakage current detection circuit diagram for detecting the gap state. II! Fig. 4 is a circuit diagram for determining the gap state, Fig. 5 is a time chart for explaining its operation, Fig. 6 is a block diagram showing the circuit configuration of the control means, and Fig. 7 is a conventional wire-cut electrical discharge machining device fi1'.
It is a principle diagram showing t-. 1... Workpiece, 2... Electrode (wire electrode),
18... Leakage fi current detection means, 29... Inter-electrode state determination means, 3o... Control means〇The same reference numerals in the drawings indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物とを絶縁性加工液を介在させて対向させ
、その両者極間にパルス電圧を印加して該両者が対向す
る極間に放電を発生させ、その放電エネルギで、上記被
加工物を加工する放電加工装置において、上記電極と上
記被加工物間に上記パルス電圧を印加した後、放電に至
るまでの間における漏れ電流を検出する検出手段と、こ
の検出手段の検出出力に基づいて極間状態を判別して信
号を出力する極間状態判別手段と、この極間状態判別手
段の出力に基づいて上記パルス電圧を放電するまで印加
し続けるかオン、オフの繰り返しとするかを制御する制
御手段とを具備したことを特徴とする放電加工装置。
An electrode and a workpiece are placed opposite to each other with an insulating machining fluid interposed therebetween, and a pulse voltage is applied between the two electrodes to generate an electric discharge between the two electrodes, and the discharge energy is used to cause the workpiece to be machined. In an electric discharge machining device for machining an object, a detection means for detecting a leakage current in the period from application of the pulse voltage between the electrode and the workpiece until discharge occurs, and a detection means based on the detection output of the detection means. and an inter-electrode condition determining means for discriminating the inter-electrode condition and outputting a signal, and determining whether to continue applying the pulse voltage until it is discharged or to repeatedly turn it on and off based on the output of the inter-electrode condition discriminating means. An electric discharge machining apparatus characterized by comprising a control means for controlling the electric discharge machining apparatus.
JP24805384A 1984-11-26 1984-11-26 Electric discharge machine Pending JPS61125723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24805384A JPS61125723A (en) 1984-11-26 1984-11-26 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24805384A JPS61125723A (en) 1984-11-26 1984-11-26 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS61125723A true JPS61125723A (en) 1986-06-13

Family

ID=17172495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24805384A Pending JPS61125723A (en) 1984-11-26 1984-11-26 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS61125723A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108696A (en) * 1973-12-11 1974-10-16
JPS5545328A (en) * 1978-09-25 1980-03-31 Isao Naruse Knife device on bush cutter
JPS59196123A (en) * 1983-04-19 1984-11-07 Toyoda Gosei Co Ltd Method and device for controlling electric discharge in electric discharge machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108696A (en) * 1973-12-11 1974-10-16
JPS5545328A (en) * 1978-09-25 1980-03-31 Isao Naruse Knife device on bush cutter
JPS59196123A (en) * 1983-04-19 1984-11-07 Toyoda Gosei Co Ltd Method and device for controlling electric discharge in electric discharge machine

Similar Documents

Publication Publication Date Title
KR920006506B1 (en) Wire electric discharge machine apparatus
JPS61125723A (en) Electric discharge machine
JPS61125734A (en) Wire cut electric discharge processing device
JPS61111813A (en) Spark erosion apparatus
JPS61125729A (en) Electric discharge machine
JPS61125721A (en) Electric discharge machine
JPS61125722A (en) Electric discharge machine
JPS61111841A (en) Wire-cut electric discharge machinine
JPS5930620A (en) Wire-cut electric discharge machining apparatus
JPS61125725A (en) Electric discharge machine
JPS61125736A (en) Wire cut electric discharge processing device
JPS62287919A (en) Electric discharge machine
JPS5930621A (en) Wire-cut electric discharge machining apparatus
JPS61125731A (en) Electric discharge machine
JPS61125727A (en) Electric discharge machine
JPS61111834A (en) Wire-cut electric discharge machinine
JPS61125726A (en) Electric discharge machine
JPS61125724A (en) Electric discharge machine
JPS63120024A (en) Wire-cut electric discharge machine
JPS61125728A (en) Electric discharge machine
JPS61111835A (en) Wire-cut electric discharge machinine
JPS61111845A (en) Wire-cut electric discharge machinine
JPS61111818A (en) Spark erosion apparatus
JPS61125730A (en) Electric discharge machine
JPS61111810A (en) Spark erosion apparatus