JPS61125588A - Flow-down liquid film evaporating type heat exchanger - Google Patents

Flow-down liquid film evaporating type heat exchanger

Info

Publication number
JPS61125588A
JPS61125588A JP24627184A JP24627184A JPS61125588A JP S61125588 A JPS61125588 A JP S61125588A JP 24627184 A JP24627184 A JP 24627184A JP 24627184 A JP24627184 A JP 24627184A JP S61125588 A JPS61125588 A JP S61125588A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
heat exchanger
liquid
stage
distribution member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24627184A
Other languages
Japanese (ja)
Inventor
Norimitsu Abe
法光 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24627184A priority Critical patent/JPS61125588A/en
Publication of JPS61125588A publication Critical patent/JPS61125588A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits

Abstract

PURPOSE:To permit to form good liquid refrigerant thin film along all divisions of the group of heat transfer tubes by a method wherein at least 2 stages of liquid refrigerant distributing members are provided while a supplying port, for supplying the liquid refrigerant distributing members of respective stages with the liquid refrigerant, is provided. CONSTITUTION:The liquid refrigerant, forming uniform liquid refrigerant thin film 3 on the outer surfaces of the heat transfer tubes 2 in a division I, is supplied from the first liquid refrigerant supplying port 1a to the first stage liquid refrigerant distributing member 4a drops freely through liquid spraying holes 5a, flows down along the outer surfaces of the tubes 2 under forming the thin film 3 and a part of it is evaporated while remaining unevaporated liquid refrigerant flows into the second stage liquid refrigerant distributing member 46. However, the amount of the refrigerant, flowed down from the division I, is not sufficient to form the uniform thin film 3 on the outer surfaces of the tubes 2 in the division II. Therefore, the amount of shortage of the refrigerant is supplied from second liquid refrigerant supplying port 1b into the second stage liquid refrigerant distributing member 46. Further, in third stage of the refrigerant is also supplied from third liquid refrigerant supplying port 1C in the same manner.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、シェルとシェル内に水平多段に配列した複数
本の伝熱管及び液冷媒分配部材とで構成されている流下
液膜蒸発式熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a falling liquid film evaporative heat exchanger comprising a shell, a plurality of heat transfer tubes arranged horizontally in multiple stages within the shell, and a liquid refrigerant distribution member. Concerning vessels.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第9図は、従来の流下液膜蒸発式熱交換器、第10図は
、第9図の液冷媒薄膜の様子を示す要部拡大図である。
FIG. 9 is a conventional falling liquid film evaporative heat exchanger, and FIG. 10 is an enlarged view of main parts showing the state of the liquid refrigerant thin film in FIG.

シェル(8)内に水平多段に配列された伝熱管(2)は
、その両端を管板(9)により固定されている、これら
伝熱管(2)内に高温流体を供給するヘッダα[有]は
、管板(9)の外側に設けられている。液冷媒分配部材
(4)は、伝熱管群の上方に設置されており、シェル上
部には、液冷媒供給口fil及び蒸気Vの出口Ql)、
底部には液冷媒排出口α2が設けられている。
Heat exchanger tubes (2) arranged horizontally in multiple stages inside the shell (8) are fixed at both ends by tube plates (9), and are connected to a header α for supplying high-temperature fluid into these heat exchanger tubes (2). ] is provided on the outside of the tube plate (9). The liquid refrigerant distribution member (4) is installed above the heat exchanger tube group, and the upper part of the shell includes a liquid refrigerant supply port fil and a vapor V outlet Ql),
A liquid refrigerant outlet α2 is provided at the bottom.

液冷媒供給口(1)より供給された液冷媒Mは、液冷媒
分配部材(4)にたまり、そこに設けられている液散布
孔(5)から自由落下して伝熱管(2)の外表面上に液
冷媒薄膜(3)を形成して流下する。このとき伝熱管(
2)の内部には、高温流体が流れており、それによって
液冷媒薄膜(3)は加熱され、その一部が蒸発して蒸気
となって蒸気出口(111より熱交換器の外部へ流出す
る。
The liquid refrigerant M supplied from the liquid refrigerant supply port (1) accumulates in the liquid refrigerant distribution member (4), falls freely from the liquid distribution hole (5) provided there, and flows out of the heat transfer tube (2). A liquid refrigerant thin film (3) is formed on the surface and flows down. At this time, the heat exchanger tube (
2), a high-temperature fluid flows through the liquid refrigerant thin film (3), which heats a part of the liquid refrigerant thin film (3), and a part of it evaporates to become steam, which flows out of the heat exchanger through the steam outlet (111). .

また、ここで蒸発しきれなかった未蒸発の液冷媒UVは
、液冷媒排出口(1zから熱交換器外へ排出される。
Further, the unevaporated liquid refrigerant UV that has not been completely evaporated here is discharged from the liquid refrigerant outlet (1z) to the outside of the heat exchanger.

上記のように構成されている熱交換器では、伝熱管(2
)外表面上で液冷媒薄膜(3)が蒸発するため伝熱管群
の下段になるほど液冷媒量が減少して行くことになる。
In the heat exchanger configured as above, the heat exchanger tubes (2
) Since the liquid refrigerant thin film (3) evaporates on the outer surface, the amount of liquid refrigerant decreases toward the lower stage of the heat transfer tube group.

従って供給される液冷媒量が少なすぎると、伝熱管群の
上段では、伝熱管(2)外表面に良好な液冷媒薄膜(3
)が形成されるものの、下段部では、第10図に示すよ
うに液冷媒薄膜(3)が破断してしまい伝熱管(2)外
表面で水平方向に十分広がることができず、伝熱管(2
)外表面が露出する部分0が現われてしまい、結果とし
て熱交換の効率が低いものになってしまう。
Therefore, if the amount of liquid refrigerant supplied is too small, a good liquid refrigerant thin film (3
) is formed, but in the lower part, as shown in Figure 10, the liquid refrigerant thin film (3) breaks and cannot spread sufficiently horizontally on the outer surface of the heat exchanger tube (2), causing the heat exchanger tube ( 2
) A portion 0 where the outer surface is exposed appears, resulting in low heat exchange efficiency.

従って、従来の流下液膜蒸発式熱交換器では、必要以上
に多量の液冷媒を供給しなければならないという欠点が
あり、さらに伝熱管群の段数が液冷媒供給能力によって
制限されてしまうため、大型化がむずかしい等の欠点が
あった。
Therefore, the conventional falling film evaporative heat exchanger has the disadvantage of having to supply a larger amount of liquid refrigerant than necessary, and furthermore, the number of stages in the heat transfer tube group is limited by the liquid refrigerant supply capacity. It had drawbacks such as difficulty in increasing its size.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の点に鑑み必要最少限の液冷媒供給量で
伝熱管の配列段数にかかわらず伝熱管群全体に良好な液
冷媒薄膜を形成させて熱交換効率の高い流下液膜蒸発式
熱交換器を提供することを目的としている。
In view of the above-mentioned points, the present invention provides a falling liquid film evaporation system that forms a good thin film of liquid refrigerant over the entire heat exchanger tube group with the minimum required amount of liquid refrigerant supplied, regardless of the number of stages of heat exchanger tubes, and has high heat exchange efficiency. The purpose is to provide heat exchangers.

〔発明の概要〕[Summary of the invention]

本発明は、シェルと水平多段に配列された伝熱管群及び
液冷媒分配部材とで構成されており、伝熱管群の上方よ
り液冷媒を自由落下させ、伝熱管外表面に液冷媒薄膜を
形成し、その蒸発により熱伝達を行なう流下液膜蒸発式
熱交換器において、液冷媒分配部材を少なくとも2段以
上設け、かつ各段の液冷媒分配部材へ液冷媒を供給する
ための供給口を設けるか、または、供給口を最上段の液
冷媒分配部材へ供給するための1箇所とし、各液冷媒分
配部材は液冷媒量が定量を越えるとオーバー・フローし
て、下の段の液冷媒分配部材に流下するような構造とす
ることにより、各段における液冷媒量を最適量とする方
法、あるいは各段における液冷媒量に応じて下段になる
ほど液散布孔径を小さくし、かつ孔間ピッチを狭くする
か、または液冷媒分配部材の配置間隔を下段になるほど
狭くする方法のいずれかまたは、それぞれの組み合せに
よって伝熱管群全区間(−わたり、良好な液冷媒薄膜を
形成できるようにしたことを特徴とする流下液膜蒸発式
熱交換器である。
The present invention is composed of a shell, a group of heat transfer tubes arranged in multiple horizontal stages, and a liquid refrigerant distribution member, and allows liquid refrigerant to fall freely from above the group of heat transfer tubes to form a thin film of liquid refrigerant on the outer surface of the heat transfer tubes. In a falling liquid film evaporative heat exchanger that transfers heat through evaporation, at least two stages of liquid refrigerant distribution members are provided, and a supply port is provided for supplying liquid refrigerant to the liquid refrigerant distribution members of each stage. Alternatively, the supply port is set to one point for supplying the liquid refrigerant distribution member at the top stage, and each liquid refrigerant distribution member overflows when the amount of liquid refrigerant exceeds a fixed amount, and the liquid refrigerant distribution member at the lower stage overflows. A method is to optimize the amount of liquid refrigerant at each stage by creating a structure in which the liquid refrigerant flows down to the member, or to reduce the diameter of the liquid dispersion holes toward the lower stage according to the amount of liquid refrigerant at each stage, and to reduce the pitch between the holes. It is possible to form a good liquid refrigerant thin film over the entire section of the heat transfer tube group by either narrowing the distance between the heat transfer tubes, narrowing the arrangement interval of the liquid refrigerant distribution members toward the bottom, or a combination of these methods. This is a falling film evaporative heat exchanger.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液冷媒の供給量を必要最少限におさえ
ることができ、しかも、伝熱管の配列段数にかかわらず
伝熱管群全体に良好な液冷媒薄膜を形成することができ
、その結果熱交換効率の高い流下液膜蒸発式熱交換器を
提供することができる。
According to the present invention, it is possible to suppress the supply amount of liquid refrigerant to the necessary minimum, and also to form a good liquid refrigerant thin film over the entire heat exchanger tube group regardless of the number of stages in which the heat exchanger tubes are arranged. A falling film evaporative heat exchanger with high heat exchange efficiency can be provided.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を引用しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の第1実施例を示す断面図である。第
1図のように構成された熱交換器において、第1の液冷
媒供給口(1a)からは区間−■(=ある伝熱管(2)
の管外表面に均一な液冷媒薄膜(3)を形成するのに必
要な量の液冷媒が第1段目の液冷媒分配部材(4a)に
供給され、液散布孔(5a)から自由落下して、区間−
■にある伝熱管(2)外表面を液冷媒薄膜(3)となっ
て流下し、その一部は蒸発し、残りの未蒸発液冷媒は第
2段目の液冷媒分配部材(4b)に流入する。
FIG. 1 is a sectional view showing a first embodiment of the present invention. In the heat exchanger configured as shown in Fig. 1, from the first liquid refrigerant supply port (1a) there is a section -
The amount of liquid refrigerant necessary to form a uniform liquid refrigerant thin film (3) on the outer surface of the tube is supplied to the first stage liquid refrigerant distribution member (4a), and it freely falls from the liquid distribution hole (5a). Then, the interval −
A liquid refrigerant thin film (3) flows down the outer surface of the heat transfer tube (2) located at Inflow.

しかし、区間−Iから流下してきた液冷媒量だけでは、
区間−■にある伝熱管(2)の管外表面に均一な液冷媒
薄膜(3)を形成するには、不十分である。
However, with only the amount of liquid refrigerant flowing down from section-I,
It is insufficient to form a uniform liquid refrigerant thin film (3) on the outer surface of the heat transfer tube (2) in section -■.

そこで、その不足分を第2の液冷媒供給口(1b)より
、第2段目の液冷媒分配部材(4b)へ供給してやる。
Therefore, the insufficient amount is supplied from the second liquid refrigerant supply port (1b) to the second stage liquid refrigerant distribution member (4b).

さらに、第3段目の液冷媒分配部材(4C)においても
、同様に区間−■から流下する液冷媒量たけでは、区間
−■で均一な液冷媒薄膜(3)を各伝熱管(2)の管外
表面に形成するには不十分である。そこで第3の液冷媒
供給口(IC)からその不足分を供給してやればよい。
Furthermore, in the third stage liquid refrigerant distribution member (4C), similarly, the amount of liquid refrigerant flowing down from section -■ is such that a uniform liquid refrigerant thin film (3) is distributed between each heat transfer tube (2) in section -■. It is insufficient to form on the extravascular surface of the tube. Therefore, the shortage can be supplied from the third liquid refrigerant supply port (IC).

従って、第1実施例による流下液膜蒸発式熱交換器では
、液冷媒分配部材を3段設置することにより、流下する
液冷媒を整流しなおしてやることができるとともに、各
段の液冷媒分配部材に、液冷媒を供給するための供給口
を設けること(二より、伝熱管群全体に良好な液冷媒薄
膜を形成することができる。
Therefore, in the falling liquid film evaporative heat exchanger according to the first embodiment, by installing three stages of liquid refrigerant distribution members, the flowing liquid refrigerant can be rectified again, and the liquid refrigerant distribution members of each stage can be rectified. (Secondly, it is possible to form a good liquid refrigerant thin film over the entire heat exchanger tube group.)

第2図は、本発明の第2実施例を示す断面図、第3図は
、第2図の要部拡大図である。
FIG. 2 is a sectional view showing a second embodiment of the present invention, and FIG. 3 is an enlarged view of the main part of FIG.

第2図に示した熱交換器では、各液冷媒分配部材(4a
) 、 (4b) 、 (4C)の横幅W、、W、、W
、は第3図のよう1;、下段(二なるほど太きく (W
l<Wt<Ws)なっている。
In the heat exchanger shown in FIG. 2, each liquid refrigerant distribution member (4a
), (4b), (4C) width W,,W,,W
, as shown in Figure 3.
l<Wt<Ws).

上記のごとく構成された熱交換器では、液冷媒供給口(
1)からは伝熱管群全体に均一な液冷媒薄膜(3)を形
成するのに必要な量の液冷媒が供給され第1段目の液冷
媒分配部材(4a)にたまり、一部は液散布孔(5a)
から自由落下して、区間−Iにある伝熱管(2)の表面
を液冷媒薄膜(3)となって流下しながら蒸発し、未蒸
発の液冷媒は、第2段目の液冷媒分配部材(4b)に流
入する。また、第1段目の液冷媒分配部材(4m)に供
給された液冷媒のうち余分な液冷媒は、液止め部(6a
)からオーバー・フローする、このときWl < Wt
となっているため、オーバー・フローした液冷媒は、第
2段目の液冷媒分配部材(4b)へ流入する。第2段目
の液冷媒分配部材(4b)においても、液冷媒の一部は
、液散布孔(5b)より自由落下し、余分な液冷媒は液
止め部(6b)からオーバー・フローする、このときも
Wt<W3となっているためオーバー・フローした液冷
媒は、第3段目の液冷媒分配部材(4C)へと流入する
。すなわち、従来のように、液冷媒薄膜(3)の蒸発に
よって液冷媒量が下段になるに従って減少し、均一な液
冷媒薄膜(3)の形成がうまく行なわれなくなるという
ことはなく、不足分は上段の液冷媒分配部材からのオー
バー・フローによって補給され、液冷媒流量は全区間に
おいて一定に保たれるため伝熱管群全体に良好な液冷媒
薄膜(3)が形成される。
In the heat exchanger configured as above, the liquid refrigerant supply port (
From 1), the amount of liquid refrigerant necessary to form a uniform liquid refrigerant thin film (3) over the entire heat transfer tube group is supplied and accumulates in the first stage liquid refrigerant distribution member (4a). Spray hole (5a)
The liquid refrigerant evaporates while flowing down the surface of the heat transfer tube (2) in section-I as a liquid refrigerant thin film (3), and the unevaporated liquid refrigerant is transferred to the second stage liquid refrigerant distribution member. (4b). In addition, excess liquid refrigerant out of the liquid refrigerant supplied to the first stage liquid refrigerant distribution member (4m) is removed from the liquid stopper (6a).
), then Wl < Wt
Therefore, the overflowed liquid refrigerant flows into the second stage liquid refrigerant distribution member (4b). Also in the second stage liquid refrigerant distribution member (4b), a part of the liquid refrigerant freely falls from the liquid distribution hole (5b), and the excess liquid refrigerant overflows from the liquid stopper (6b). At this time as well, since Wt<W3, the overflowing liquid refrigerant flows into the third stage liquid refrigerant distribution member (4C). That is, unlike in the past, the amount of liquid refrigerant decreases toward the lower stage due to evaporation of the liquid refrigerant thin film (3), and the formation of a uniform liquid refrigerant thin film (3) does not occur properly, and the shortage is The liquid refrigerant is replenished by overflow from the upper liquid refrigerant distribution member, and the liquid refrigerant flow rate is kept constant over the entire section, so that a good liquid refrigerant thin film (3) is formed over the entire heat transfer tube group.

上段の液冷媒分配部材から余分な液冷媒をオーバー・フ
ローさせて下段の液冷媒分配部材に供給するには、ff
12図、第3図に示した方法に限ることなく、たとえば
、第4図に示すように各段の液冷媒分配部材(4a) 
、 (4b)、 (4c)の両端の一方を高い液止め部
(6a) 、 (6b) 、 (6c)、もう一方を低
い液止め部(7a + 、 (7b) 、 (7c)と
し、低い液止め部(7a) 、 (7b) 。
To overflow excess liquid refrigerant from the upper liquid refrigerant distribution member and supply it to the lower liquid refrigerant distribution member, use ff.
The method is not limited to the methods shown in FIG. 12 and FIG. 3, and for example, as shown in FIG.
, (4b), (4c), one of the ends is a high liquid stopper (6a), (6b), (6c), and the other is a low liquid stopper (7a +, (7b), (7c). Liquid stopper parts (7a), (7b).

(7C)から余分な液冷媒をオーバー・フローさせ、液
冷媒分配部材(4g) 、 (4b) 、 (4e)は
、各段で互い違い1:ずらして配置し、上段より流下し
てくる液冷媒を受は止めるという方法、あるいは、他の
公知の方法によってもよい。
Excess liquid refrigerant overflows from (7C), and liquid refrigerant distribution members (4g), (4b), and (4e) are arranged alternately in each stage, and liquid refrigerant flows down from the upper stage. It is also possible to use a method of accepting and stopping the application, or other known methods.

第5図は、本発明の第3実施例を示す断面図であり、第
6図は第5図の要部拡大図である。
FIG. 5 is a sectional view showing a third embodiment of the present invention, and FIG. 6 is an enlarged view of the main part of FIG.

第5図のよう(二構成された熱交換器では、液冷媒分配
部材を3段設け、かつ各段の液散布孔の孔径と、孔間ピ
ッチはあらかじめ各段での液冷媒量に応じた最適の径及
びピッチとなるように、すなわち下段になるほど孔径は
小さく、そして孔間ピッチは狭くなるように設定してい
る。
As shown in Figure 5 (in a heat exchanger with two configurations, three stages of liquid refrigerant distribution members are provided, and the diameter of the liquid distribution holes in each stage and the pitch between the holes are determined in advance according to the amount of liquid refrigerant in each stage. The diameter and pitch are set to be optimal, that is, the hole diameter is set to be smaller and the pitch between holes is set to be narrower toward the bottom.

液冷媒供給口(1)からは、伝熱管群全体に均一な液冷
媒薄膜(3)を形成するのに必要な量の液冷媒が供給さ
れ、第1段目の液冷媒分配部材(4a)にたまる。第1
段目の液冷媒分配部材(4a)では、下段の液冷媒分配
部材(4b) 、 (4c)にくらべて液冷媒量が多い
ため、液散布孔(51)は第6図のように、下段にくら
べて大きめの孔径d、とし、その孔間ピッチP、はある
程度広くても伝熱管(2)外表面上で十分に広がること
ができる。
From the liquid refrigerant supply port (1), the amount of liquid refrigerant necessary to form a uniform liquid refrigerant thin film (3) over the entire heat transfer tube group is supplied to the first stage liquid refrigerant distribution member (4a). It accumulates. 1st
In the liquid refrigerant distribution member (4a) of the lower stage, the amount of liquid refrigerant is larger than that of the lower stage liquid refrigerant distribution members (4b) and (4c), so the liquid distribution holes (51) are arranged in the lower stage as shown in FIG. Even if the hole diameter d is larger than that of the heat exchanger tube (2) and the pitch P between the holes is wide to some extent, it can be sufficiently spread on the outer surface of the heat exchanger tube (2).

第2段目以後は、液冷媒の蒸発1ユより、液冷媒量は、
下段になるほど減少するため、各段での液冷媒量に合わ
せて第2段目の液冷媒分配部材(4b)にある液散布孔
(5b)は、区間=■より流下する液冷媒量に応じた孔
径及び孔間ピッチとする。すなわち第1段目の液散布孔
(5a)径d1よりも小さい径dtとし、さらにその孔
間ピッチP1は、第1段目よりも狭くすればよい。同様
に、第3段目の液冷媒分配部材(4c)にある液散布孔
(5c)の孔径は、第2段目の液散布孔(5b)径d、
よりも小さい径d、とし、さらにその孔間ピッチP、は
′W&2段目よりも狭くすればよい。
After the second stage, the amount of liquid refrigerant is
Since it decreases as it goes lower, the liquid refrigerant distribution hole (5b) in the second stage liquid refrigerant distribution member (4b) is adjusted according to the amount of liquid refrigerant flowing down from section = The hole diameter and pitch between holes shall be set as follows. That is, the diameter dt may be smaller than the diameter d1 of the liquid dispersion holes (5a) in the first stage, and the pitch P1 between the holes may be narrower than that in the first stage. Similarly, the diameter of the liquid distribution hole (5c) in the third stage liquid refrigerant distribution member (4c) is the diameter d of the second stage liquid distribution hole (5b),
The diameter d may be smaller than that, and the pitch P between the holes may be narrower than that of the second stage.

従って、第3実施例による熱交換器では、液冷媒分配部
材を3段設け、さらに下段になるほど液散布孔の孔径な
小さく設定し、かつ下段になるほど孔間ピッチを狭く設
定しているため、液冷媒量の減少による液冷媒分配部材
からの液冷媒流下の不均一をなくすことができ、さら(
−伝熱管外表面に均一な液冷媒薄膜を形成することがで
きる。
Therefore, in the heat exchanger according to the third embodiment, the liquid refrigerant distribution member is provided in three stages, and the hole diameter of the liquid distribution holes is set to be smaller in the lower stages, and the pitch between the holes is set to be narrower in the lower stages. It is possible to eliminate uneven flow of liquid refrigerant from the liquid refrigerant distribution member due to a decrease in the amount of liquid refrigerant, and also (
- A uniform liquid refrigerant thin film can be formed on the outer surface of the heat exchanger tube.

第7図は本発明の第4実施例を示す断面図であり、第8
図は第7図の要部拡大図である。
FIG. 7 is a sectional view showing a fourth embodiment of the present invention, and an eighth embodiment of the present invention.
The figure is an enlarged view of the main part of FIG. 7.

第7図のように構成された熱交換器では、液冷媒分配部
材を3段設けかっ各液冷媒分配部材の配置間隔が各段で
の液冷媒量に応じた最適間隔となるように設定されてい
る。
In the heat exchanger configured as shown in Fig. 7, three stages of liquid refrigerant distribution members are provided, and the arrangement interval of each liquid refrigerant distribution member is set to be the optimum interval according to the amount of liquid refrigerant at each stage. ing.

さらに具体的1:説明すると、液冷媒供給口(1)から
は伝熱管群全体に均一な液冷媒薄膜(3)を形成するの
に必要な量の液冷媒が供給され、第1段目の液冷媒分配
部材(4M)にたまり、液散布孔(5a)から自由落下
して、伝熱管(2)の管外表面上に液冷媒薄膜(3)を
形成する。
More specifically 1: To explain, the liquid refrigerant supply port (1) supplies the necessary amount of liquid refrigerant to form a uniform liquid refrigerant thin film (3) over the entire heat transfer tube group, and The liquid refrigerant accumulates in the liquid refrigerant distribution member (4M) and falls freely from the liquid distribution hole (5a), forming a liquid refrigerant thin film (3) on the outer surface of the heat transfer tube (2).

第1段目の液冷媒分配部材(4a)と第2段目の液冷媒
分配部材(4b)との間隔H2は、液冷媒量が下段にく
らべて多いため、ある程度広くともよく、液冷媒薄膜(
3)が破断せずに流下できる間隔とする。
The distance H2 between the first stage liquid refrigerant distribution member (4a) and the second stage liquid refrigerant distribution member (4b) may be wider to some extent because the amount of liquid refrigerant is larger than that of the lower stage, and the distance H2 between the liquid refrigerant distribution member (4a) in the first stage and the liquid refrigerant distribution member (4b) in the second stage may be wider to some extent. (
3) should be spaced so that it can flow down without breaking.

そして第2段目以後の配置間隔は、伝熱管(2)外表面
上での液冷媒の蒸発により、伝熱管群の下段になるほど
液冷媒量が減少するため、区間−■にくらべて早く液冷
媒薄膜(3)の破断が生じる、従つて′@2段目と第3
段目の液冷媒分配部材(4b) 。
The arrangement intervals after the second stage are such that due to the evaporation of the liquid refrigerant on the outer surface of the heat exchanger tubes (2), the amount of liquid refrigerant decreases toward the lower stage of the heat exchanger tube group. A rupture of the refrigerant film (3) occurs, thus '@2nd and 3rd stage
Liquid refrigerant distribution member (4b) in the second stage.

(4C)の間隔H2及び、第3段目の液冷媒分配部材(
4C)と、シェル底部との間隔H8は、液冷媒量の減少
とともに、しだいに狭く設定する。すなわちHI>Ht
 > Hsとなるように設定してやればよい。
(4C) interval H2 and the third stage liquid refrigerant distribution member (
4C) and the shell bottom is set to gradually become narrower as the amount of liquid refrigerant decreases. That is, HI>Ht
> Hs.

従って、第4実施例による熱交換器では、下段になるほ
ど液冷媒分配部材の配置間隔を狭くしているため、液冷
媒量の減少による液冷媒薄膜の破断を早期に整流しなお
してやることによって防ぐことができ、伝熱管群全体に
良好な液冷媒薄膜を形成することができる。
Therefore, in the heat exchanger according to the fourth embodiment, since the arrangement interval of the liquid refrigerant distribution members is narrowed toward the lower stage, breakage of the liquid refrigerant thin film due to a decrease in the amount of liquid refrigerant can be prevented by rectifying the flow at an early stage. This makes it possible to form a good liquid refrigerant thin film over the entire heat exchanger tube group.

本発明による流下液膜蒸発式熱交換器では、伝熱管の配
列段数にかかわらず伝熱管群全体に良好な液冷媒薄膜を
形成することができ、その結果、熱交換効率の高い流下
液膜蒸発式熱交換器を実現することができる。
In the falling film evaporative heat exchanger according to the present invention, a good liquid refrigerant thin film can be formed over the entire heat exchanger tube group regardless of the number of stages in which the heat exchanger tubes are arranged, and as a result, the falling film evaporation with high heat exchange efficiency type heat exchanger can be realized.

第1実施例から第4実施例では、それぞれの方法及び効
果についてのみ説明したが、各実施例を組み合わせて熱
交換器を構成すればより一層の効果を得ることができる
In the first to fourth embodiments, only the respective methods and effects have been described, but even more effects can be obtained by configuring a heat exchanger by combining each embodiment.

尚、本発明の実施例ではすべて未蒸発の液冷媒を液冷媒
排出口より熱交換器の外部へ排出する構造を示したが、
液冷媒排出口を設けないで最下段(区間−■)をプール
沸騰部として、ここで未蒸発の液冷媒の全量を蒸発させ
てもよい。
In addition, in all the embodiments of the present invention, a structure was shown in which unevaporated liquid refrigerant was discharged to the outside of the heat exchanger from the liquid refrigerant discharge port.
The bottom stage (section -■) may be used as a pool boiling section without providing a liquid refrigerant discharge port, and the entire amount of unevaporated liquid refrigerant may be evaporated here.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す断面図、第2図は本
発明の第2実施例を示す断面図、第3図は第2図の要部
拡大図、第4図は第2実施例の他のオーバー・フロー機
構を示す図、第5図は本発明の第3実施例を示す断面図
、第6図は15図の要部拡大図、第7図は本発明の第4
実施例を示す断面図、第8図は第7図の要部拡大図、第
9図は従来の流下液膜蒸発式熱交換器を示す図、第10
図は第9図の要部拡大図である。 1、1M、 lb、 IC・・・液冷媒供給口、2・・
・伝熱管、3・・・液冷媒薄膜、4,4a、 4b、 
4C・・・液冷媒分配部材、5、5a 、 5b 、 
5cm・・液散布孔、6”+ 6b+ 60+ ” +
 7J 7C=・液止め部、11・・・蒸気出口、12
・・・液冷媒排出口。 代理人 弁理士 則 近 憲 佑 (ほか1名)第  
1  図 第  2 図 第  3 図 第4図 第  5 図 、ノ/ 第  6 因 第  7 図 第  8 図
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a second embodiment of the present invention, FIG. 3 is an enlarged view of the main part of FIG. 2, and FIG. 5 is a sectional view showing the third embodiment of the present invention, FIG. 6 is an enlarged view of the main part of FIG. 15, and FIG. 4
8 is an enlarged view of the main part of FIG. 7, FIG. 9 is a diagram showing a conventional falling film evaporative heat exchanger, and FIG. 10 is a cross-sectional view showing the embodiment.
The figure is an enlarged view of the main part of FIG. 1, 1M, lb, IC...Liquid refrigerant supply port, 2...
・Heat transfer tube, 3...liquid refrigerant thin film, 4, 4a, 4b,
4C...liquid refrigerant distribution member, 5, 5a, 5b,
5cm...Liquid spray hole, 6"+ 6b+ 60+"+
7J 7C=・Liquid stopper, 11...Steam outlet, 12
...Liquid refrigerant outlet. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Cause Figure 7 Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)シェルとシェル内に複数本の伝熱管を水平多段に
配列し、各列の伝熱管に液冷媒を散布し、伝熱管外表面
に液冷媒薄膜を形成するための液冷媒分配部材を有し、
さらにシェル壁には少なくとも液冷媒供給口及び蒸気出
口を設け、伝熱管表面の液冷媒薄膜の蒸発により、伝熱
管内を流れる流体と熱交換するように構成した流下液膜
蒸発式熱交換器において、前記液冷媒分配部材を少なく
とも2段以上設けていることを特徴とする流下液膜蒸発
式熱交換器。
(1) A shell and a liquid refrigerant distribution member for arranging a plurality of heat transfer tubes in multiple horizontal stages within the shell, distributing liquid refrigerant to each row of heat transfer tubes, and forming a thin film of liquid refrigerant on the outer surface of the heat transfer tubes. have,
Furthermore, in a falling liquid film evaporative heat exchanger, the shell wall is provided with at least a liquid refrigerant supply port and a vapor outlet, and heat is exchanged with the fluid flowing inside the heat transfer tube by evaporation of the liquid refrigerant thin film on the surface of the heat transfer tube. . A falling liquid film evaporative heat exchanger, characterized in that the liquid refrigerant distribution member is provided in at least two stages.
(2)各段の液冷媒分配部材に液冷媒を供給するための
液冷媒供給口を設けたことを特徴とする特許請求の範囲
第1項記載の流下液膜蒸発式熱交換器。
(2) A falling liquid film evaporative heat exchanger according to claim 1, further comprising a liquid refrigerant supply port for supplying liquid refrigerant to each stage of the liquid refrigerant distribution member.
(3)液冷媒分配部材は、液冷媒量が定量を越えるとオ
ーバー・フローし、さらにそのオーバー・フローした液
冷媒は、各段のそれよりも下方の次の段にある液冷媒分
配部材に流入するようなオーバー・フロー機構をそなえ
ていることを特徴とする特許請求の範囲第1項記載の流
下液膜蒸発式熱交換器。
(3) The liquid refrigerant distribution member overflows when the amount of liquid refrigerant exceeds a fixed amount, and the overflowed liquid refrigerant is transferred to the liquid refrigerant distribution member in the next stage below that of each stage. 2. A falling film evaporative heat exchanger according to claim 1, further comprising an overflow mechanism for causing an inflow.
(4)液冷媒分配部材に設けられている、液散布孔の孔
径を下段になるほど小さくかつ、孔間ピッチを下段にな
るほど狭く設定したことを特徴とする特許請求の範囲第
1項記載の流下液膜蒸発式熱交換器。
(4) The flow according to claim 1, characterized in that the diameter of the liquid dispersion holes provided in the liquid refrigerant distribution member is set to be smaller toward the lower level, and the pitch between the holes is set to be narrower toward the lower level. Liquid film evaporative heat exchanger.
(5)液冷媒分配部材の配置間隔を下段になるほど狭く
なるように設定していることを特徴とする特許請求の範
囲第1項または、第4項記載の流下液膜蒸発式熱交換器
(5) A falling liquid film evaporative heat exchanger according to claim 1 or 4, wherein the interval between the liquid refrigerant distribution members is set to become narrower toward the lower stage.
JP24627184A 1984-11-22 1984-11-22 Flow-down liquid film evaporating type heat exchanger Pending JPS61125588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24627184A JPS61125588A (en) 1984-11-22 1984-11-22 Flow-down liquid film evaporating type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24627184A JPS61125588A (en) 1984-11-22 1984-11-22 Flow-down liquid film evaporating type heat exchanger

Publications (1)

Publication Number Publication Date
JPS61125588A true JPS61125588A (en) 1986-06-13

Family

ID=17146046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24627184A Pending JPS61125588A (en) 1984-11-22 1984-11-22 Flow-down liquid film evaporating type heat exchanger

Country Status (1)

Country Link
JP (1) JPS61125588A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008825A3 (en) * 1998-11-18 2001-01-03 Donaldson Company, Inc. Evaporative cooler for a gas turbine engine
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
US8051900B2 (en) * 2008-01-31 2011-11-08 Southern Taiwan University Of Technology Internal jet inpingement type shell and tube heat exchanger
US20130277019A1 (en) * 2012-04-23 2013-10-24 Aaf-Mcquay Inc. Heat exchanger
CN103851834A (en) * 2012-11-30 2014-06-11 Lg电子株式会社 Evaporator and turbo chiller including the same
CN104061803A (en) * 2014-06-18 2014-09-24 南通鸿景天机械设备科技有限公司 Multi-stage temperature reducing circulation water cooling device
US20150013951A1 (en) * 2013-07-11 2015-01-15 Aaf-Mcquay Inc. Heat exchanger
JP2015515601A (en) * 2012-04-23 2015-05-28 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
CN105042949A (en) * 2015-09-01 2015-11-11 南京冷德节能科技有限公司 Forced recycling complete spraying evaporator
WO2017160369A1 (en) * 2015-06-29 2017-09-21 Johnson Controls Technology Company Condensation and falling film evaporation hybrid heat exchanger
WO2019105607A1 (en) * 2017-11-28 2019-06-06 Onda S.P.A. Evaporator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008825A3 (en) * 1998-11-18 2001-01-03 Donaldson Company, Inc. Evaporative cooler for a gas turbine engine
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
US8051900B2 (en) * 2008-01-31 2011-11-08 Southern Taiwan University Of Technology Internal jet inpingement type shell and tube heat exchanger
JP2015515601A (en) * 2012-04-23 2015-05-28 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
US20130277019A1 (en) * 2012-04-23 2013-10-24 Aaf-Mcquay Inc. Heat exchanger
US9541314B2 (en) * 2012-04-23 2017-01-10 Daikin Applied Americas Inc. Heat exchanger
US9513039B2 (en) 2012-04-23 2016-12-06 Daikin Applied Americas Inc. Heat exchanger
CN104303000A (en) * 2012-04-23 2015-01-21 大金应用美国股份有限公司 Heat exchanger
CN103851834A (en) * 2012-11-30 2014-06-11 Lg电子株式会社 Evaporator and turbo chiller including the same
US20150013951A1 (en) * 2013-07-11 2015-01-15 Aaf-Mcquay Inc. Heat exchanger
US9677818B2 (en) * 2013-07-11 2017-06-13 Daikin Applied Americas Inc. Heat exchanger
CN104061803A (en) * 2014-06-18 2014-09-24 南通鸿景天机械设备科技有限公司 Multi-stage temperature reducing circulation water cooling device
WO2017160369A1 (en) * 2015-06-29 2017-09-21 Johnson Controls Technology Company Condensation and falling film evaporation hybrid heat exchanger
US10288329B2 (en) 2015-06-29 2019-05-14 Johnson Controls Technology Company Condensation and falling film evaporation hybrid heat exchanger
CN105042949A (en) * 2015-09-01 2015-11-11 南京冷德节能科技有限公司 Forced recycling complete spraying evaporator
WO2019105607A1 (en) * 2017-11-28 2019-06-06 Onda S.P.A. Evaporator

Similar Documents

Publication Publication Date Title
JPS61125588A (en) Flow-down liquid film evaporating type heat exchanger
JPS58205084A (en) Thin film evaporating type heat exchanger
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
KR100730427B1 (en) Falling film evaporator for a vapor compression refrigeration chiller
RU2722080C2 (en) Multi-level distribution system for an evaporator
JP2015514959A (en) Heat exchanger
JPH0459555B2 (en)
JPH10267468A (en) Distribution header
CN107356017A (en) Downward film evaporator liquid distributor
KR100333468B1 (en) Heat exchanger including falling-film evaporator and refrigerant distribution system
CN111670333B (en) Latent heat exchanger chamber device
US2840352A (en) Evaporative condenser
US2317234A (en) Refrigeration
US20210394080A1 (en) Evaporators, condensers and systems for separation
JPS6179987A (en) Flow-down liquid film evaporating type heat exchanger
JPH01244286A (en) Shell tube type heat exchanger
JPS5818094A (en) Evaporator
JPS6179985A (en) Flow-down liquid film evaporating type heat exchanger
JPS6215653Y2 (en)
JPS6179986A (en) Flow-down liquid film evaporating type heat exchanger
JPS5842776Y2 (en) condenser
JPS63143486A (en) Condensation evaporator
JPS6172954A (en) Hot-water suppler
JP2764174B2 (en) Falling liquid film evaporator
JPS6358098A (en) Plate fin type vaporizer