JPS61124836A - Apparatus for obtaining stress image - Google Patents

Apparatus for obtaining stress image

Info

Publication number
JPS61124836A
JPS61124836A JP24678084A JP24678084A JPS61124836A JP S61124836 A JPS61124836 A JP S61124836A JP 24678084 A JP24678084 A JP 24678084A JP 24678084 A JP24678084 A JP 24678084A JP S61124836 A JPS61124836 A JP S61124836A
Authority
JP
Japan
Prior art keywords
signal
load
frequency
sample
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24678084A
Other languages
Japanese (ja)
Other versions
JPH0453247B2 (en
Inventor
Mamoru Irizuki
守 入月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP24678084A priority Critical patent/JPS61124836A/en
Publication of JPS61124836A publication Critical patent/JPS61124836A/en
Publication of JPH0453247B2 publication Critical patent/JPH0453247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/248Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using infrared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To obtain an accurate stress distribution image even if the frequency of load varies, by monitoring the frequency of the load applied to a specimen and obtaining the stress distribution image only by the temp. signal at the time of predetermined frequency. CONSTITUTION:When the frequency of the change in the load applied to a specimen 1 is within a predetermined range, a pulling start pulse signal is supplied to an A/D converter 5 and the image signal from a scanner 3 is sampled at this time as a pulling time signal and converted to a digital signal to be supplied to a data processing apparatus 18. A large number of data, which are based on a large number of times of scannings by the scanner 3, of the surface of the specimen 1 are integrated in memory 9. Thereafter, the data processing apparatus 18 calculates the difference between the signal intensities of a compression time signal and the pulling time signal at every part of the specimen and this difference signal is supplied to an image display apparatus 20 to display the stress distribution of the specimen.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱弾性効果を用いた応力分布画像を得る装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for obtaining stress distribution images using thermoelastic effects.

[従来の技術] 熱弾性効果を用いて非接触で試料の応力分布を測定する
ことが行われている。この測定は、試料の応力集中部位
の表面温度が、圧縮荷重を受けたとき上昇し、逆に引張
り荷重を受けたとき下降することに着目したものである
。すなわち、この測定では、試料に周期的に荷重を印加
し、その間、試料の温度に対応した試料表面からの赤外
線を検出しており、試料の各部分毎に荷重を加えたとき
の温度から荷重なし又は逆方向荷重を加えたときの温度
を差し引いた信号を得、この差信号に基づいて試料の温
度分布像、すなわち応力分布画像を得るようにしている
[Prior Art] The stress distribution of a sample is measured in a non-contact manner using the thermoelastic effect. This measurement focuses on the fact that the surface temperature of the stress concentration area of the sample increases when subjected to a compressive load, and conversely decreases when subjected to a tensile load. In other words, in this measurement, a load is applied to the sample periodically, and during that time, infrared rays from the sample surface corresponding to the sample temperature are detected, and the load is calculated from the temperature when the load is applied to each part of the sample. A signal is obtained by subtracting the temperature when no load or reverse load is applied, and a temperature distribution image of the sample, that is, a stress distribution image is obtained based on this difference signal.

[発明が解決しようとする問題点] ところで、応力分布画像を得るためには、試料に周期的
に荷重を印加しなければならないが、この周期的な荷重
の変化の周波数が変動していると、荷重時の温度もその
変動に応じて変化するため、正確な応力分布画像を得る
ことはできない。
[Problems to be Solved by the Invention] Incidentally, in order to obtain a stress distribution image, it is necessary to apply a load periodically to the sample, but if the frequency of this periodic change in load varies, , since the temperature during loading changes accordingly, it is not possible to obtain an accurate stress distribution image.

本発明は、上述した点に鑑みてなされたもので、荷重の
周波数が変動しても、正確な応力分布画像を得ることの
できる装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an apparatus that can obtain an accurate stress distribution image even if the frequency of the load changes.

[問題点を解決するための手段] 本発明に基づく応力画像分布を得る装置は、被測定試料
に周期的な荷重を与える荷重印加手段と、該荷重が印加
されている試料の各部分からの赤外線を検出する手段と
、該試料に加えられる荷重変化に同期した周期的変化信
号から該変化の周波数に対応した信号を得る手段と、該
周期的変化の周波数が所定範囲内の周波数になったこと
を検知する手段と、該検知手段からの信号に基づき該検
出手段からの映像信号をサンプリングする手段と、該サ
ンプリングされた信号に基づいて応力画像を得るための
データ処理手段とを備えたことを特徴としている。
[Means for Solving the Problems] An apparatus for obtaining a stress image distribution based on the present invention includes a load applying means that applies a periodic load to a sample to be measured, and a load applying means that applies a periodic load to a sample to be measured, and a load applying means that applies a periodic load to a sample to be measured, and means for detecting infrared rays, means for obtaining a signal corresponding to the frequency of the change from a periodic change signal synchronized with the load change applied to the sample, and the frequency of the periodic change falling within a predetermined range. A method for detecting a stress, a means for sampling a video signal from the detection means based on a signal from the detection means, and a data processing means for obtaining a stress image based on the sampled signal. It is characterized by

[実施例] 以下本発明の一実施例を添附図面に基づいて詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は被測定試料であり、該試料1には
荷重印加112から荷重が印加されており、周期的に圧
縮、引張りを受けている。3は赤外線スキャナであり、
該赤外線スキャナ3は該試料1の表面からの赤外線を順
々に検出器に導き、映像信号を得るようにしている。該
映像信号は増幅器4によって増幅された後、A−D変換
器5に供給されディジタル信号に変換される。該荷重印
加機2からは試料1に印加する荷重の変化に対応した信
号が発生されており、その信号は増幅器6によりて増幅
された後コンパレータ7に供給される。
In FIG. 1, 1 is a sample to be measured, and a load is applied to the sample 1 from a load application 112, and the sample 1 is subjected to periodic compression and tension. 3 is an infrared scanner;
The infrared scanner 3 sequentially guides infrared rays from the surface of the sample 1 to a detector to obtain a video signal. After the video signal is amplified by an amplifier 4, it is supplied to an A-D converter 5 and converted into a digital signal. The load application device 2 generates a signal corresponding to a change in the load applied to the sample 1, and the signal is amplified by an amplifier 6 and then supplied to a comparator 7.

該コンパレータ7からの信号は第1と第2の単安定マル
チバイブレータ8.9に供給され、該2つの単安定マル
チバイブレータからのパルス信号は、カウンタ1oに供
給される。該カウンタ10は該単安定マルチバイブレー
タ8.9からのパルスに応じてクロック信号発生回路1
1からのクロック信号のカウントを行い、その値をラッ
チ回路12にラッチする。該ラッチ回路の値は第1と第
2のコンパレータ13.14に供給される。該第1と第
2のコンパレータの出力信号はアンド回路15に供給さ
れ、該アンド回路15の出力信号はアンド回路16.1
7に供給される。該アンド回路16には第1の単安定マ
ルチバイブレータ8からの信号も供給され、又、アンド
回路17には第2の単安定マルチバイブレータ9からの
信号も供給されている。該アンド回路16.17からの
信号は、前記A−D変換器5に供給されており、該A−
D変換器5は該アンド回路からの信号に応じて映像信号
のサンプリングを行っている。該A−D変換器5からの
信号はコンピュータの如きデータ処理手段18を介して
メモリ19に供給され記憶される。該データ処理手段1
8はメモリに記憶されたデータに基づいて所定の処理を
行い、その結果を表示装置20に供給する。
The signal from the comparator 7 is fed to a first and second monostable multivibrator 8.9, and the pulse signals from the two monostable multivibrators are fed to a counter 1o. The counter 10 generates a clock signal generator 1 in response to pulses from the monostable multivibrator 8.9.
The clock signal is counted from 1 and the value is latched in the latch circuit 12. The value of the latch circuit is supplied to a first and a second comparator 13.14. The output signals of the first and second comparators are supplied to an AND circuit 15, and the output signal of the AND circuit 15 is supplied to an AND circuit 16.1.
7. The AND circuit 16 is also supplied with a signal from the first monostable multivibrator 8, and the AND circuit 17 is also supplied with a signal from the second monostable multivibrator 9. The signals from the AND circuits 16 and 17 are supplied to the A-D converter 5, and the signals from the A-D converter 5 are supplied to the A-D converter 5.
The D converter 5 samples the video signal according to the signal from the AND circuit. The signal from the A/D converter 5 is supplied to a memory 19 via a data processing means 18 such as a computer and stored therein. The data processing means 1
8 performs predetermined processing based on the data stored in the memory, and supplies the result to the display device 20.

上述した如き構成において、被測定試料1には、荷重印
加機2によって圧縮と引張りの荷重が周期的に印加され
ているが、この周期的変化に対応した第2図(a)に示
す信号が該荷重印加機2から得られる。該第2図(a)
に示す信号は、増幅された後コンパレータ7に供給され
、第2図(b)に示す信号が得られる。該コンパレータ
7の出力信号は第1と第2の単安定マルチバイブレータ
8゜9に供給されるが、該第1の単安定マルチバイブレ
ータ8は供給される信号の立上りで第2図(C)に示す
パルス信号を発生し、該第2の単安定マルチバイブレー
タ9は供給される信号の立下がりで第2図(d)に示す
パルス信号を発生する。該2つの単安定マルチバイブレ
ータ8.9の出力パルスはカウンタ10に供給されるが
、該カウンタ10は、第1の単安定マルチバイブレータ
8からのパルスによってそれまでのカウント値がクリア
されると同時にクロック信号のカウントを開始し、第2
の単安定マルチバイブレータ9からのパルス信号によっ
てそのカウントを停止する。該カウンタ10のカウント
値は、ラッチ回路12によってラッチされるが、該ラッ
チされたカウント値は、圧縮から引張りまでの荷重の1
周期の半分の時間に発生したクロック信号の数であり、
該荷重の変化の周波数に対応している。該ラッチ回路1
2にラッチされた値は第1と第2のコンパレータ13゜
14に供給される。
In the configuration described above, compressive and tensile loads are periodically applied to the sample 1 by the load applying device 2, and the signal shown in FIG. 2(a) corresponding to this periodic change is generated. It is obtained from the load applying machine 2. FIG. 2(a)
The signal shown in FIG. 2 is amplified and then supplied to the comparator 7 to obtain the signal shown in FIG. 2(b). The output signal of the comparator 7 is supplied to the first and second monostable multivibrators 8°9, and the first monostable multivibrator 8 changes as shown in FIG. 2(C) at the rising edge of the supplied signal. The second monostable multivibrator 9 generates the pulse signal shown in FIG. 2(d) at the falling edge of the supplied signal. The output pulses of the two monostable multivibrators 8.9 are supplied to a counter 10, which is cleared at the same time by the pulses from the first monostable multivibrator 8. Start counting the clock signal and start counting the second clock signal.
The counting is stopped by a pulse signal from the monostable multivibrator 9. The count value of the counter 10 is latched by a latch circuit 12, and the latched count value is 1 of the load from compression to tension.
is the number of clock signals that occur during half the period,
It corresponds to the frequency of the change in the load. The latch circuit 1
The value latched to 2 is supplied to the first and second comparators 13 and 14.

該第1のコンパレータ13は上限の周波数に対応した値
と該ランチ回路12にラッチされた値とを比較しており
、該ラッチされた値が該上限の周波数に対応した値以下
の時、第2図(e)に示すハイレベル信号を発生する。
The first comparator 13 compares the value corresponding to the upper limit frequency with the value latched by the launch circuit 12, and when the latched value is less than the value corresponding to the upper limit frequency, the first comparator 13 compares the value corresponding to the upper limit frequency with the value latched by the launch circuit 12. A high level signal shown in FIG. 2(e) is generated.

該第2のコンパレータ14は下限の周波数に対応した値
と該ラッチ回路12にラッチされた値とを比較しており
、該ラッチされた値が該下限の周波数に対応した値以上
の時、第2図(f)に示すハイレベル信号を発生する。
The second comparator 14 compares the value corresponding to the lower limit frequency with the value latched by the latch circuit 12, and when the latched value is greater than or equal to the value corresponding to the lower limit frequency, the second comparator 14 compares the value corresponding to the lower limit frequency with the value latched by the latch circuit 12. A high level signal shown in FIG. 2(f) is generated.

該第2図(e)と第2図(f)に示す信号はアンド回路
15に供給され、該アンド回路15からは第2図(Q)
に示す信号が得られる。該アンド回路15からの信号は
アンド回路16.17に供給される。該アンド回路16
には第1の単安定マルチバイブレータ8からのパルス信
号も供給されており、該アンド回路15からハイレベル
信号が供給された時、すなわち、荷重の変化の周波数が
所定の範囲内の時、圧縮開始のパルス信号がA−D変換
器5に供給され、その時スキャナ3h1らの映像信号は
、圧縮時信号としてサンプリングされディジタル信号に
変換されてデータ処理装置に供給される。一方、該アン
ド回路17には第2の単安定マルチバイブレータ9から
のパルス信号も供給されており、該アンド回路15から
ハイレベル信号が供給された時、すなわち、荷重の変化
の周波数が所定の範囲内の時、引張り開始のパルス信号
がA−D変換器5に供給され、その時スキャナ3からの
映像信号は、引張り時信号としてサンプリングされディ
ジタル信号に変換されてデータ処理装置18に供給され
る。該圧縮時信号と引張り時信号は試料表面の位置に応
じてメモリ1つに記憶され、試料表面のスキャナ3によ
る多数回の走査に基づいた多数のデータはメモリ19内
で積算される。この所定回の積算が終了した後、該デー
タ処理装置18は試料各部毎に圧縮時信号と引張り時信
号との信号強度の差を求め、この差の信号を映像表示袋
!20に供給することから、該表示装置には試料の応力
分布が表示されることになる。
The signals shown in FIG. 2(e) and FIG. 2(f) are supplied to an AND circuit 15, and the signals shown in FIG. 2(Q) are supplied from the AND circuit 15.
The signal shown is obtained. The signal from the AND circuit 15 is supplied to AND circuits 16 and 17. The AND circuit 16
is also supplied with a pulse signal from the first monostable multivibrator 8, and when a high level signal is supplied from the AND circuit 15, that is, when the frequency of load change is within a predetermined range, compression is performed. A starting pulse signal is supplied to the A-D converter 5, and at this time, the image signals from the scanner 3h1 are sampled as compression signals, converted to digital signals, and supplied to the data processing device. On the other hand, the AND circuit 17 is also supplied with a pulse signal from the second monostable multivibrator 9, and when the high level signal is supplied from the AND circuit 15, that is, the frequency of the load change reaches a predetermined value. When within the range, a pulse signal for starting tension is supplied to the A-D converter 5, and at that time, the video signal from the scanner 3 is sampled as a tension signal, converted to a digital signal, and supplied to the data processing device 18. . The compression signal and the tension signal are stored in one memory according to the position on the sample surface, and a large amount of data based on multiple scans of the sample surface by the scanner 3 is integrated in the memory 19. After completing this predetermined number of integrations, the data processing device 18 determines the difference in signal strength between the compression signal and the tension signal for each part of the sample, and displays this difference signal as a video display bag! 20, the stress distribution of the sample is displayed on the display device.

このように、上述した実施例では、試料に印加される荷
重変化の1周期毎に周波数に対応した半周期の時間を検
知し、この検知信号が所定範囲の時、次の1周期の量温
度信号のサンプリングを行うように構成しており、予め
定められた周波数で試料に荷重が印加された状態におけ
る温度信号のみを選択的に得ることができ、表示装置に
は試料の正確な応力分布画像が表示される。尚、本発明
はこの実施例に限定されることなく幾多の変形が可能で
ある。例えば、試料の温度信号を連続的にA−D変換し
て時刻と共にメモリに記憶し、一方、試料に印加される
荷重変化の周波数を検知し、所定の周波数範囲となって
いるときの時刻を検知して記憶しておき、一連の測定が
終了した後、記憶されている全温度信号から該荷重変化
が所定の周波数範囲となった時刻の温度信号のみを取り
出し、所望のデータ処理を行うように構成しても良い。
In this way, in the above-mentioned embodiment, a half-cycle time corresponding to the frequency is detected every cycle of the load change applied to the sample, and when this detection signal is within a predetermined range, the amount temperature of the next cycle is detected. It is configured to perform signal sampling, and can selectively obtain only the temperature signal when a load is applied to the sample at a predetermined frequency, and the display shows an accurate stress distribution image of the sample. is displayed. Note that the present invention is not limited to this embodiment and can be modified in many ways. For example, the temperature signal of a sample is continuously A-D converted and stored in memory along with the time, while the frequency of load changes applied to the sample is detected and the time when the frequency falls within a predetermined frequency range is recorded. After the series of measurements is completed, only the temperature signal at the time when the load change falls within a predetermined frequency range is extracted from all the stored temperature signals, and the desired data processing is performed. It may be configured as follows.

又、試料に印加する荷重は、圧縮と引張りを周期的に行
うものに限定されず、圧縮と無荷重、あるいは無荷重と
引張りを周期的に試料に印加するようにしても良い。
Further, the load applied to the sample is not limited to periodic compression and tension, but may be such that compression and no load, or no load and tension are applied to the sample periodically.

[効果] 以上詳述した如く、本発明においては、試料へ印加され
る荷重の周波数を監視し、所定の周波数のときの温度信
号のみによって応力分布画像を得るように構成している
ため、正確な画像を(qることができる。
[Effects] As detailed above, in the present invention, the frequency of the load applied to the sample is monitored and a stress distribution image is obtained only from the temperature signal at a predetermined frequency, so that accurate You can (q) an image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は第1図に
示した実施例の動作を説明するために用いた信号波形図
である。 1・・・試料     2・・・荷重印加機3・・・ス
キャナ   4・・・増幅器5・・・A−D変換器 6・・・増幅器    7・・・コンパレータ8.9・
・・単安定マルチバイブレータ10・・・カウンタ 11・・・クロック信号発生器 12・・・ラッチ回路 13.14・・・コンパレータ 15.16.17・・・アンド回路 18・・・データ処理装置
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a signal waveform diagram used to explain the operation of the embodiment shown in FIG. 1... Sample 2... Load applying device 3... Scanner 4... Amplifier 5... A-D converter 6... Amplifier 7... Comparator 8.9.
... Monostable multivibrator 10 ... Counter 11 ... Clock signal generator 12 ... Latch circuit 13.14 ... Comparator 15.16.17 ... AND circuit 18 ... Data processing device

Claims (3)

【特許請求の範囲】[Claims] (1)被測定試料に周期的な荷重を与える荷重印加手段
と、該荷重が印加されている試料の各部分からの赤外線
を検出する手段と、該試料に加えられる荷重変化に同期
した周期的変化信号から該変化の周波数に対応した信号
を得る手段と、該周期的変化の周波数が所定範囲内の周
波数になったことを検知する手段と、該検知手段からの
信号に基づき該赤外線検出手段からの映像信号をサンプ
リングする手段と、該サンプリングされた信号に基づい
て応力画像を得るためのデータ処理手段とを備えた応力
画像を得る装置。
(1) A load applying means for applying a periodic load to the sample to be measured, a means for detecting infrared rays from each part of the sample to which the load is applied, and a periodic load application method synchronized with changes in the load applied to the sample means for obtaining a signal corresponding to the frequency of the change from the change signal; means for detecting that the frequency of the periodic change falls within a predetermined range; and the infrared detecting means based on the signal from the detection means. 1. An apparatus for obtaining a stress image, comprising means for sampling a video signal from a source, and data processing means for obtaining a stress image based on the sampled signal.
(2)該試料に加えられる荷重の周期的変化の1周期毎
に周波数に対応した信号が得られ、周波数が所定の範囲
内の場合には、次の周期的変化の1周期に映像信号のサ
ンプリングが行われる特許請求の範囲第1項記載の応力
画像を得る装置。
(2) A signal corresponding to the frequency is obtained for each cycle of periodic changes in the load applied to the sample, and if the frequency is within a predetermined range, a video signal is generated in one period of the next periodic change. An apparatus for obtaining a stress image according to claim 1, wherein sampling is performed.
(3)該検出手段からの映像信号は、時刻に応じてメモ
リに記憶され、一方、周期的変化の周波数が所定の範囲
内となった時刻も併せて記憶されており、データ処理手
段は記憶された両信号に基づいて必要データのサンプリ
ングを行うように構成した特許請求の範囲第1項記載の
応力画像を得る装置。
(3) The video signal from the detection means is stored in the memory according to the time, and the time when the frequency of the periodic change falls within a predetermined range is also stored, and the data processing means 2. An apparatus for obtaining a stress image according to claim 1, wherein the apparatus is configured to sample necessary data based on both signals obtained.
JP24678084A 1984-11-21 1984-11-21 Apparatus for obtaining stress image Granted JPS61124836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24678084A JPS61124836A (en) 1984-11-21 1984-11-21 Apparatus for obtaining stress image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24678084A JPS61124836A (en) 1984-11-21 1984-11-21 Apparatus for obtaining stress image

Publications (2)

Publication Number Publication Date
JPS61124836A true JPS61124836A (en) 1986-06-12
JPH0453247B2 JPH0453247B2 (en) 1992-08-26

Family

ID=17153548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24678084A Granted JPS61124836A (en) 1984-11-21 1984-11-21 Apparatus for obtaining stress image

Country Status (1)

Country Link
JP (1) JPS61124836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163390A (en) * 2005-12-16 2007-06-28 Jfe Steel Kk Method and device for detecting defect of structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163390A (en) * 2005-12-16 2007-06-28 Jfe Steel Kk Method and device for detecting defect of structure

Also Published As

Publication number Publication date
JPH0453247B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
EP0065992B1 (en) Stress distribution measuring instrument
JPS61124836A (en) Apparatus for obtaining stress image
JPS6138443A (en) Method for imaging stress distribution
JPH0629834B2 (en) Method of imaging fatigue status of subject
JP3032381B2 (en) Stress imaging system
JPS6097238A (en) Crack measuring apparatus
JPH0396872A (en) Method and device for testing coil
JPS6138442A (en) Method for imaging metal fatigue state
JPS61250532A (en) Automatic phase control method in stress image system
US4236067A (en) Automatic sweep circuit
SU1446549A1 (en) Apparatus for eddy-current inspection
JP2000292448A (en) Simultaneous storage device for image and waveform
JP2999108B2 (en) Method and apparatus for continuous detection of waveform peak of ultrasonic flaw detection signal
JP2741723B2 (en) Material testing machine load measuring device
SU1610423A1 (en) Combined measuring device
SU1474537A1 (en) Method and apparatus for measuring residual and applied stresses in ferromagnetic articles
JPH0898222A (en) Check signal digitizing and display device for television receiver
JPS6142817B2 (en)
JPH07110272A (en) Infrared stress image system
JPH0533333B2 (en)
SU705384A1 (en) Device for checking-up non-linearity of sawtooth voltage
JPH0545956Y2 (en)
JPS61270635A (en) Measuring method for stress image
JPS6246223A (en) Automatic phase adjusting apparatus in stress imaging system
JPS643555A (en) Apparatus for inspecting deterioration of metallic material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term