JP2007163390A - Method and device for detecting defect of structure - Google Patents

Method and device for detecting defect of structure Download PDF

Info

Publication number
JP2007163390A
JP2007163390A JP2005362589A JP2005362589A JP2007163390A JP 2007163390 A JP2007163390 A JP 2007163390A JP 2005362589 A JP2005362589 A JP 2005362589A JP 2005362589 A JP2005362589 A JP 2005362589A JP 2007163390 A JP2007163390 A JP 2007163390A
Authority
JP
Japan
Prior art keywords
moving
thermal image
defect
reference signal
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005362589A
Other languages
Japanese (ja)
Other versions
JP4803652B2 (en
Inventor
Kazunari Ishino
和成 石野
Kazuhisa Kabeya
和久 壁矢
Koji Kawashima
浩治 川島
Takahide Sakagami
▲隆▼英 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka University NUC
Original Assignee
JFE Steel Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Osaka University NUC filed Critical JFE Steel Corp
Priority to JP2005362589A priority Critical patent/JP4803652B2/en
Publication of JP2007163390A publication Critical patent/JP2007163390A/en
Application granted granted Critical
Publication of JP4803652B2 publication Critical patent/JP4803652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely detect defects of a large structure from a remote position with a simple device configuration, without having to construct scaffolds for detecting defects, a heating means such as infrared irradiation, and an applying means for a load to a structure, such as an excitation system. <P>SOLUTION: Stress fluctuations are generated, by applying a moving load 7 to the structure 1 of an object to be detected; temperature distribution fluctuation in the structure 4 is generated by the thermoelastic effects or plastic heat generation, depending on the stress fluctuations are measured as a thermal image; the stress fluctuations are grasped, based on the temperature distribution fluctuations; and then defects of the object are detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造物、特に、荷重が移動することによって欠陥が発生する荷役機械や橋梁等の大型鋼構造物における表面亀裂や内部亀裂・腐食などの欠陥を測定対象部位に近づくことなく遠方から検知する構造物の欠陥検出方法および装置に関する。   The present invention provides a structure, in particular, a defect such as a load handling machine or a large steel structure such as a bridge that causes a defect when the load moves, such as surface cracks, internal cracks, and corrosion from a distance without approaching the measurement target site. The present invention relates to a defect detection method and apparatus for a structure to be detected.

橋梁、クレーン、コンベアをはじめとする大型構造物や荷役機械の老朽化が社会問題となっており、この対策に対しては強いニーズがある。効率的な老朽化対策を実施するためには、老朽化度合いを知ることが先決である。このため、対象としている構造物の欠陥を検出する必要があり、その手段として、例えば、カラーチェック、磁紛探傷や超音波探傷などが従来から実施されている。   The aging of large structures such as bridges, cranes and conveyors, and cargo handling machines has become a social problem, and there is a strong need for this countermeasure. In order to implement effective countermeasures against aging, it is first determined to know the degree of aging. For this reason, it is necessary to detect a defect in the target structure, and color check, magnetic flaw detection, ultrasonic flaw detection, and the like have been conventionally performed as means for the detection.

しかしながら、カラーチェック、磁紛探傷や超音波探傷などの手法は、それぞれ必要な処置を施すために測定対象物の近傍まで人が近づかなければ計測ができない。例えば、磁紛探傷においては、検知領域の錆などを落とし計測可能な表面性状にしたうえで、磁界をかける必要がある。このため、大型構造物の場合には検査を行うために足場を組んで高所作業の準備を整え、検査領域に作業員の手が届く状態にしなければ作業が行えない。その結果、欠陥検出費用よりも、足場を組む作業のほうが多くの人手と費用を費やさねばならない。   However, methods such as color check, magnetic flaw detection, and ultrasonic flaw detection cannot be measured unless a person approaches to the vicinity of the measurement object in order to perform necessary treatments. For example, in magnetic flaw detection, it is necessary to apply a magnetic field after removing rust and the like in the detection area to obtain a measurable surface property. For this reason, in the case of a large structure, it is impossible to perform an operation unless a scaffold is assembled for inspection and preparations for work at a high place are made and a worker's hand reaches the inspection area. As a result, the work of building a scaffold has to spend more manpower and money than the cost of detecting defects.

このような状況下において、遠隔計測を実現するため、さらには一度に広範囲の領域を検査できる利便性から、近年、赤外線カメラを用いた赤外線サーモグラフによる手法が提案されている。例えば、トンネル内部のコンクリート壁の亀裂や剥離などを検出する手段として、従来の打音テストによる診断方法に替わって、なんらかの熱源によりトンネル壁面を加熱し、正常部位の温度分布の差から欠陥部位を検出する方法が用いられている。これら赤外線カメラを用いたアクティブな手法の従来技術として、例えば、特許文献1には、コンクリート構造物に赤外線を均一に照射する手段を用いて、温度分布を測定することにより構造物の内部欠陥を検出する方法が開示されている。   Under such circumstances, an infrared thermograph method using an infrared camera has been proposed in recent years in order to realize remote measurement, and for the convenience of inspecting a wide area at a time. For example, as a means of detecting cracks and delamination of concrete walls inside a tunnel, the tunnel wall surface is heated by some heat source instead of the conventional diagnostic method using a hammering test, and the defective part is identified from the difference in temperature distribution of the normal part. A detection method is used. As a prior art of an active method using these infrared cameras, for example, Patent Document 1 discloses that internal defects of a structure are measured by measuring a temperature distribution using means for uniformly irradiating a concrete structure with infrared rays. A method of detecting is disclosed.

また、特許文献2には、鋼構造物を対象として加熱前後における温度分布画像の差画像および健全・非健全のサンプル熱画像の差を用いた欠陥の識別方法が開示されている。   Patent Document 2 discloses a defect identification method using a difference image between temperature distribution images before and after heating and a difference between healthy and unhealthy sample thermal images for a steel structure.

また、別の観点からは、例えば金属材料の加工時に試験片に生じる亀裂を検出する方法として、材料の熱弾性特性を利用して赤外線画像を用いた方法が特許文献3に開示されている。   From another viewpoint, for example, as a method for detecting a crack generated in a test piece during processing of a metal material, a method using an infrared image using a thermoelastic property of the material is disclosed in Patent Document 3.

しかしながら、上記特許文献1,2に記された方法では、加熱のために赤外線照射が前提とされており、この方法ではコンクリートなど比較的熱拡散速度の遅い対象には適用可能であるが、熱拡散速度の速い鋼構造物に対しては、近接距離から赤外線を照射しなければ赤外線カメラで検出できるほどの温度分布を作り出すことが困難である。このため、加熱を行うために測定対象まで近接する手段が必要となり、やはり、上述したカラーチェック、磁紛探傷や超音波探傷などの手法と同様、足場などを組む必要が生じてしまう。   However, the methods described in Patent Documents 1 and 2 are premised on infrared irradiation for heating, and this method can be applied to an object having a relatively low thermal diffusion rate such as concrete. For a steel structure having a high diffusion rate, it is difficult to create a temperature distribution that can be detected by an infrared camera unless infrared rays are irradiated from a close distance. For this reason, means for approaching the measurement object is necessary to perform heating, and it is necessary to assemble a scaffold as well as the above-described methods such as color check, magnetic flaw detection, and ultrasonic flaw detection.

上記特許文献3は、金属材料のプレスやパンチなどの加工時の塑性変形に伴って発生する亀裂を検出すために赤外線カメラで熱画像を撮像し、それを利用するものであるが、この技術を大型構造物の欠陥検出に適用する場合には、積極的に荷重負荷変動を生じさせるための大がかりな加振装置を別途用意する必要があるばかりか、特許文献3の場合とは異なりその際の荷重は当然のことながら構造物にさらなるダメージを与えない範囲の荷重でなければならないため、温度変化は微小であり、その温度変化を熱画像でとらえるためには、複数の熱画像データを使う煩雑な操作を行わざるを得ず装置が複雑になるとともに、遠隔からかつ広範囲の領域の欠陥を検出することは困難である。
特開2003−185608号公報 特開2004−37201号公報 特開平10−82726号公報
In the above-mentioned Patent Document 3, a thermal image is taken with an infrared camera in order to detect a crack generated in association with plastic deformation during processing such as pressing or punching a metal material, and this technique is used. Is applied to the detection of defects in large structures, it is not only necessary to separately prepare a large-scale vibration device for positively causing load load fluctuations. Naturally, the load must be in a range that does not cause further damage to the structure, so the temperature change is very small. To capture the temperature change with a thermal image, use multiple thermal image data. A complicated operation is unavoidable, and the apparatus becomes complicated, and it is difficult to detect defects in a wide range from a remote location.
JP 2003-185608 A Japanese Patent Application Laid-Open No. 2004-37201 JP-A-10-82726

本発明はかかる事情に鑑みてなされたものであって、橋梁や各種荷役機械などの大型の構造物であっても、その表面亀裂等の欠陥を、欠陥検出作業用の足場を組むことなく、赤外線照射等の加熱手段を必要とせずに、かつ加振装置などの構造物への荷重負荷の付与手段を必要とせずに、簡単な装置構成によって、遠隔位置から容易かつ確実に検出することができる構造物の欠陥検出方法および装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and even for large structures such as bridges and various cargo handling machines, defects such as surface cracks can be formed without assembling a scaffold for defect detection work. It is possible to detect easily and reliably from a remote location with a simple device configuration without the need for heating means such as infrared irradiation and without the need for applying load load to structures such as vibration devices. An object of the present invention is to provide a defect detection method and apparatus for a structure.

本発明者らは、上記課題を解決すべく検討を重ねた結果、橋梁やクレーン等の荷役機械のような大型構造物において、実使用時に与えられる移動荷重により応力を付与すれば、熱弾性効果または塑性発熱に基づく温度変動を大きくすることができ、赤外線カメラによる熱画像を用いて遠隔位置から容易かつ確実に欠陥を検出することができることを見出した。   As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have a thermoelastic effect if a stress is applied by a moving load applied during actual use in a large structure such as a cargo handling machine such as a bridge or a crane. Alternatively, the present inventors have found that temperature fluctuations based on plastic heat generation can be increased, and defects can be easily and reliably detected from a remote location using a thermal image from an infrared camera.

本発明は、このような知見に基づいてなされたものであり、以下の(1)〜(13)を提供する。   This invention is made | formed based on such knowledge, and provides the following (1)-(13).

(1)検出対象となる構造物に移動荷重を与えることにより応力変動を生じさせ、この応力変動による熱弾性効果または塑性発熱により前記構造物に生じた温度分布変動を熱画像として計測し、この温度分布変動に基づいて応力変動を把握し、当該測定対象物の欠陥を検出することを特徴とする構造物の欠陥検出方法。   (1) A stress variation is generated by applying a moving load to the structure to be detected, and a temperature distribution variation generated in the structure due to a thermoelastic effect or plastic heat generation due to the stress variation is measured as a thermal image. A defect detection method for a structure characterized by grasping a stress fluctuation based on a temperature distribution fluctuation and detecting a defect of the measurement object.

(2)移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を熱画像と同時に取り込み、移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする(1)に記載の構造物の欠陥検出方法。   (2) The moving amount or moving speed of a moving object that causes a moving load, or information correlated with the moving amount or moving speed is captured at the same time as the thermal image, and the moving amount or moving speed of the moving object, or the moving amount or moving speed. The defect detection method for a structure according to (1), wherein a defect of the structure is detected by using a thermal image that varies in synchronization with the information having a correlation with the reference signal as a reference signal.

(3)前記移動荷重を生じさせる移動物体画像を同時に前記熱画像に取り込み、この熱画像内から移動物体の移動量または移動速度を推定し、これを参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする(1)に記載の構造物の欠陥検出方法。   (3) The moving object image that causes the moving load is simultaneously captured in the thermal image, the moving amount or moving speed of the moving object is estimated from the thermal image, and this is used as a reference signal to synchronize with this. The defect detection method for a structure according to (1), wherein a defect of the structure is detected by using a thermal image that fluctuates in this manner.

(4)前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的なピーク値を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする(2)または(3)に記載の構造物の欠陥検出方法。   (4) Capture the reference signal and the thermal image, and detect a structural defect in the thermal image by finding a local peak value of the temperature change that is correlated with the reference signal in the thermal image. (2) or the defect detection method for a structure according to (3).

(5)前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的でかつ急峻な温度変化部分を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする(2)または(3)に記載の構造物の欠陥検出方法。   (5) Taking in the reference signal and the thermal image, and finding a local and steep temperature change portion of the temperature change that is correlated with the reference signal in the thermal image, thereby causing a defect in the structure in the thermal image. The defect detection method for a structure according to (2) or (3), wherein the defect is detected.

(6)前記移動荷重は、前記構造物に沿って移動することを特徴とする(1)〜(5)のいずれかに記載の構造物の欠陥検出方法。   (6) The structure defect detection method according to any one of (1) to (5), wherein the moving load moves along the structure.

(7)前記構造物は、橋梁または荷役機械であることを特徴とする(1)〜(6)のいずれかに記載の構造物の欠陥検出方法。   (7) The structure defect detection method according to any one of (1) to (6), wherein the structure is a bridge or a cargo handling machine.

(8)検出対象となる構造物に移動物体により移動荷重が与えられている状態で前記構造物を撮影する赤外線カメラと、前記赤外線カメラによって撮影した熱画像における温度分布変動から熱弾性効果または塑性発熱に基づいて前記構造物の撮影部位の応力変動を算出し、算出した応力変動から前記構造物の欠陥を検出する情報処理部とを具備することを特徴とする構造物の欠陥検出装置。   (8) An infrared camera that photographs the structure in a state where a moving load is applied to the structure to be detected by a moving object, and a thermoelastic effect or plasticity from a temperature distribution variation in a thermal image captured by the infrared camera. An apparatus for detecting a defect in a structure, comprising: an information processing unit that calculates a stress fluctuation of an imaging region of the structure based on heat generation, and detects a defect of the structure from the calculated stress fluctuation.

(9)前記情報処理部は、移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を熱画像と同時に取り込み、移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする(8)に記載の構造物の欠陥検出装置。   (9) The information processing unit captures, together with the thermal image, the moving amount or moving speed of the moving object that generates the moving load, or information correlated with the moving amount or moving speed, and the moving amount or moving speed of the moving object; Alternatively, the structure described in (8) is characterized in that a defect of a structure is detected using a thermal image that varies in synchronization with information having a correlation with a moving amount or a moving speed as a reference signal. Defect detection device.

(10)前記移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を検出するセンサをさらに具備することを特徴とする(9)に記載の構造物の欠陥検出装置。   (10) The structure according to (9), further comprising a sensor that detects a movement amount or movement speed of the moving object that generates the moving load, or information correlated with the movement amount or movement speed. Defect detection device.

(11)前記情報処理部は、前記移動荷重を生じさせる移動物体画像を同時に前記熱画像に取り込み、この熱画像内から移動物体の移動量または移動速度を推定し、これを参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする(9)に記載の構造物の欠陥検出装置。   (11) The information processing unit simultaneously captures the moving object image causing the moving load into the thermal image, estimates the moving amount or moving speed of the moving object from the thermal image, and uses this as a reference signal The defect detection device for a structure according to (9), wherein a defect in the structure is detected using a thermal image that fluctuates in synchronization with the above.

(12)前記情報処理部は、前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的なピーク値を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする(9)〜(11)のいずれかに記載の構造物の欠陥検出装置。   (12) The information processing unit captures the reference signal and the thermal image, finds a local peak value of the temperature change that is correlated with the reference signal in the thermal image, and thereby the structure in the thermal image. The defect detection apparatus for a structure according to any one of (9) to (11), wherein the defect is detected.

(13)前記情報処理部は、前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的でかつ急峻な温度変化部分を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする(9)〜(11)のいずれかに記載の構造物の欠陥検出装置。   (13) The information processing unit takes in the reference signal and the thermal image, and finds a local and steep temperature change portion of the temperature change that is correlated with the reference signal in the thermal image. The defect detection device for a structure according to any one of (9) to (11), wherein a defect of the structure inside is detected.

本発明によれば、移動荷重を検出対象の構造物に付与して応力変動を生じさせ、この応力変動による熱弾性効果または塑性発熱により前記構造物に生じた温度分布変動を熱画像として計測し、これに基づいて当該測定対象物の欠陥を検出するので、欠陥検出作業用の足場を組むことなく、赤外線照射等の加熱手段を必要とせずに欠陥を測定することができ、しかも静止状態の荷重負荷よりも応力変動を大きくすることができ、より高精度で欠陥の検出を行うことができる。また、本発明が対象としている橋梁やクレーン等の荷役機械のような大型構造物では、もともと移動荷重が予定されており、その予定されている移動荷重を用いて応力変動を生じさせるので、加振装置等の特別な荷重負荷付与手段を必要とせずに、簡単な装置構成によって構造物の欠陥を検出することができる。   According to the present invention, a moving load is applied to a structure to be detected to cause a stress fluctuation, and a temperature distribution fluctuation generated in the structure due to a thermoelastic effect or plastic heat generation due to the stress fluctuation is measured as a thermal image. Based on this, since the defect of the object to be measured is detected, it is possible to measure the defect without the need for a heating means such as infrared irradiation without forming a scaffold for defect detection work, and in a stationary state. The stress fluctuation can be made larger than the load load, and the defect can be detected with higher accuracy. In addition, a moving load is originally planned for a large structure such as a bridge or crane, which is the subject of the present invention, and stress fluctuations are generated using the planned moving load. Without requiring special load application means such as a vibration device, a defect in the structure can be detected with a simple device configuration.

従来、構造物の熱弾性効果等は、応力状態を可視化する手段としては用いられてきたが、構造物の欠陥検出に用いられていなかった、特に大型鋼構造物の欠陥検出に関しては、荷重負荷変動を与えたとしても、それによる温度変化が微小であるため、熱画像として捕らえられなかった。これに対して、本発明のように移動荷重を付与することにより、近年の赤外線カメラの性能向上と相俟って鋼構造物のような熱拡散性の良い金属に対しても熱弾性効果等を利用して欠陥を検出することが可能となった。   Conventionally, the thermoelastic effect of structures has been used as a means of visualizing the stress state, but has not been used for detecting defects in structures, especially for detecting defects in large steel structures. Even if a change was given, the temperature change caused by the change was so small that it could not be captured as a thermal image. On the other hand, by applying a moving load as in the present invention, a thermoelastic effect, etc. for a metal having a good thermal diffusibility such as a steel structure in combination with a recent improvement in the performance of an infrared camera. It became possible to detect defects using.

以下、添付図面を参照して、本発明の実施形態について具体的に説明する。
図1は、本発明の第1の実施形態に係る方法によって天井クレーンの欠陥を検出する状態を示す模式図である。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a state in which a defect of an overhead crane is detected by the method according to the first embodiment of the present invention.

天井クレーン1は、クレーン台車7が走行するガーダ4を有しており、このガーダ4は、建屋6に敷設されたガーダ走行用レール5に沿って移動可能となっている。クレーン台車7は荷物8を吊した状態で、ガーダ4の上をその長手方向に沿って移動する。地上にはガーダ4の熱画像を撮影するための赤外線カメラ9が配置され、赤外線カメラ9からの情報は、情報処理部10に取り込まれ、そこで欠陥を検出するための所定の処理が行われる。   The overhead crane 1 has a girder 4 on which a crane carriage 7 travels. The girder 4 is movable along a girder traveling rail 5 laid on a building 6. The crane carriage 7 moves on the girder 4 along its longitudinal direction with the load 8 suspended. An infrared camera 9 for taking a thermal image of the girder 4 is arranged on the ground, and information from the infrared camera 9 is taken into the information processing unit 10 where predetermined processing for detecting defects is performed.

実際の天井クレーン1のガーダ4における欠陥検出に際しては、まず、赤外線カメラを、ガーダ4までの距離が所定の距離、例えば約10〜20mになるように地上にセットし、荷重8を吊した状態のクレーン台車7をクレーン稼動時と同じようにガーダ4上を横行させる。これにより、ガーダ4には、応力変動が発生し、これに伴う熱弾性効果または塑性発熱により、わずかであるが温度分布変動が生じる。赤外線カメラ9は、この際のガーダ4の熱画像を撮影し、その情報を情報処理部10に送信する。情報処理部10ではその情報がパソコン11に取り込まれ、赤外線カメラ9により撮影したガーダ4上の熱画像計測面3における温度分布変動から熱弾性効果または塑性発熱に基づいて前記構造物の撮影部位の応力変動を算出し、その結果に基づいて欠陥Sの大きさおよび位置を検出し、その際の欠陥検出画面が表示部(ディスプレー)12に表示される。欠陥Sが大きいか、または応力集中が十分であれば、以上の構成によりリアルタイムの熱画像から温度変動箇所として現れる亀裂等の欠陥の検出が可能である。欠陥検出箇所が遠方の場合には、望遠レンズを使用する。   When detecting a defect in the girder 4 of the actual overhead crane 1, first, the infrared camera is set on the ground so that the distance to the girder 4 is a predetermined distance, for example, about 10 to 20 m, and the load 8 is suspended. The crane cart 7 is moved over the girder 4 in the same manner as when the crane is operated. As a result, a stress fluctuation occurs in the girder 4 and a slight temperature distribution fluctuation occurs due to the thermoelastic effect or plastic heat generation associated therewith. The infrared camera 9 takes a thermal image of the girder 4 at this time and transmits the information to the information processing unit 10. In the information processing unit 10, the information is taken into the personal computer 11, and based on the thermoelastic effect or plastic heat generation from the temperature distribution variation on the thermal image measurement surface 3 on the girder 4 photographed by the infrared camera 9, the imaging part of the structure is photographed. The stress variation is calculated, the size and position of the defect S are detected based on the result, and a defect detection screen at that time is displayed on the display unit (display) 12. If the defect S is large or the stress concentration is sufficient, it is possible to detect a defect such as a crack that appears as a temperature fluctuation portion from a real-time thermal image by the above configuration. If the defect detection location is far away, a telephoto lens is used.

このように移動荷重を付与することにより、静止状態の荷重負荷よりも応力変動を大きくすることができ、それにともなって温度変化を大きくすることができるので、熱弾性効果または塑性発熱を利用して亀裂等の欠陥を精度良く把握することができる。また、本発明が対象としている橋梁やクレーン等の荷役機械のような大型構造物では、もともと移動荷重が予定されており、その予定されている移動荷重を用いて応力変動を生じさせるので、加振装置等の特別な荷重負荷付与手段を必要とせずに、簡単な装置構成によって構造物の欠陥を検出することができる。   By applying the moving load in this way, the stress fluctuation can be increased more than the stationary load load, and the temperature change can be increased accordingly, so the thermoelastic effect or plastic heat generation is utilized. It is possible to accurately grasp defects such as cracks. In addition, a moving load is originally planned for a large structure such as a bridge or crane, which is the subject of the present invention, and stress fluctuations are generated using the planned moving load. Without requiring special load application means such as a vibration device, a defect in the structure can be detected with a simple device configuration.

しかし、初期亀裂の場合や移動荷重が比較的軽い場合には、上記構成のみでは明確に欠陥に基づく温度分布変化が認識され難い場合もある。そこで、以下の第2実施形態および第3の実施形態は、そのような場合にも温度変動個所(すなわち欠陥発生個所)と正常部位の差を明確にして欠陥を検出できる方法を示す。   However, in the case of an initial crack or when the moving load is relatively light, it may be difficult to clearly recognize a temperature distribution change based on a defect only with the above configuration. Therefore, the second and third embodiments below show a method in which a defect can be detected by clarifying the difference between a temperature fluctuation portion (that is, a defect occurrence portion) and a normal portion even in such a case.

第2の実施形態では、図2に示すように、クレーン台車7にレーザ変位計13を設け、さらにガーダ4の端部に反射板14を設け、反射板14で反射させたレーザからレーザ変位計13により検出した検出信号を情報処理部10に設けたLock-in processor15に送信し、この検出信号から得られるクレーン台車7の移動量または移動速度を熱画像と同時にパソコン11に取り込み、これを参照信号として、これに同期して変動する熱画像を取り出すとともに表示部(ディスプレー)12に表示する。Lock-in processor15においては、参照信号と熱画像情報(温度データ)との関係が図3に示すようになっており、熱画像情報を参照信号に同期させて計測することにより、温度変動の振幅および位相のずれをもとに欠陥を検出するものであり、これにより、参照信号と相関のない温度変動による影響を小さくすることができる。したがって、参照信号およびLock-in processor15を用いることにより信号のS/N比を向上させることができる。   In the second embodiment, as shown in FIG. 2, a laser displacement meter 13 is provided on the crane carriage 7, a reflecting plate 14 is provided on the end of the girder 4, and a laser displacement meter is reflected from the laser reflected by the reflecting plate 14. The detection signal detected by 13 is transmitted to the lock-in processor 15 provided in the information processing unit 10, and the movement amount or movement speed of the crane carriage 7 obtained from this detection signal is taken into the personal computer 11 at the same time as the thermal image. As a signal, a thermal image that fluctuates in synchronization with this is taken out and displayed on the display unit (display) 12. In the lock-in processor 15, the relationship between the reference signal and the thermal image information (temperature data) is as shown in FIG. 3. By measuring the thermal image information in synchronization with the reference signal, the temperature fluctuation amplitude In addition, the defect is detected based on the phase shift, and this can reduce the influence of the temperature fluctuation that has no correlation with the reference signal. Therefore, the S / N ratio of the signal can be improved by using the reference signal and the lock-in processor 15.

第3の実施形態では、図4に示すように、移動荷重変動を生じさせる移動物体としてのクレーン台車7を熱画像計測面3′に含め(すなわち、赤外線カメラ9の撮影画像にクレーン台車7の車輪を取り込む)、画像内の移動物体データから移動量または移動速度を推定し、これを参照信号とし、これに同期して変動する熱画像を取り出す。この場合には、情報処理部10では、赤外線カメラ9の熱画像信号がパソコン11に取り込まれるとともに、移動物体であるクレーン台車7の車輪の移動量または移動速度を算出し、信号合成部16にてこれらの信号を合成する。そしてパソコン11で処理された熱画像情報と、信号合成部16で合成された合成信号とがLock-in processor15で画像処理され、その画像が表示部(ディスプレー)12に表示される。   In the third embodiment, as shown in FIG. 4, the crane carriage 7 as a moving object that causes the movement load fluctuation is included in the thermal image measurement surface 3 ′ (that is, the image of the crane carriage 7 is included in the photographed image of the infrared camera 9. A wheel is taken in), a moving amount or moving speed is estimated from moving object data in the image, and this is used as a reference signal, and a thermal image that fluctuates in synchronization with this is taken out. In this case, the information processing unit 10 captures the thermal image signal of the infrared camera 9 into the personal computer 11, calculates the moving amount or moving speed of the wheel of the crane carriage 7 that is a moving object, and sends it to the signal combining unit 16. To synthesize these signals. The thermal image information processed by the personal computer 11 and the combined signal combined by the signal combining unit 16 are image-processed by the lock-in processor 15 and the image is displayed on the display unit (display) 12.

荷重の移動量と荷重が通過する際の構造体の応力変動には相関があるため、実施形態2および3のように参照信号を基準として熱画像データを同期加算あるいは参照信号との相互相関をとることにより、移動荷重による応力変動を参照信号なしの場合に比べて精度良く計測することができる。   Since there is a correlation between the amount of movement of the load and the stress fluctuation of the structure when the load passes, the thermal image data is synchronously added based on the reference signal as in the second and third embodiments, or the cross-correlation with the reference signal is performed. As a result, the stress fluctuation due to the moving load can be measured with higher accuracy than in the case without the reference signal.

測定対象である構造物が橋梁のような場合には、橋梁を通過する車と測定部の間の距離と相関のある情報を知り得る手段を用いて、測定部と移動荷重源との距離または速度情報を熱画像と同時に取り込むことが考えられる。例えば、測定部近傍に騒音計や振動計などを設置し、車両が測定部の上部に接近して通過するときの音や振動の情報を求めたり、あるいは、例えばGPSや超音波距離計などを搭載して車両側の位置情報を求めること、あるいは、CCDカメラなどにより測定対象と車両を同時に撮影してその画像から車両の位置を知ることを挙げることができる。   When the structure to be measured is a bridge, the distance between the measurement unit and the moving load source or a means to obtain information correlated with the distance between the vehicle passing through the bridge and the measurement unit It is conceivable to capture speed information at the same time as the thermal image. For example, a noise meter or a vibration meter is installed near the measurement unit, and information on sound and vibration when the vehicle passes close to the upper part of the measurement unit is obtained, or for example, a GPS or an ultrasonic distance meter is used. The position information on the vehicle side can be obtained, or the measurement object and the vehicle can be simultaneously photographed by a CCD camera or the like to know the position of the vehicle from the image.

また、図2、4に示した上記第2または第3の実施形態のように熱画像と相関のある参照信号を用いる場合には、例えば図5に示す方法で測定対象の亀裂欠陥部分の判定を行うことができる。すなわち、図5の(a)に示す測定対象の熱画像の空間的変化と時間的変化から、移動荷重にともなって局所的に温度変化が急峻に変化している箇所を見出し、この箇所を亀裂先端とみなすことによる方法を用いることができる。この場合に、図5の(a)に示す矢印の部分の応力分布は図5の(b)に示すようになる。また、前記矢印の部分の応力分布の時間的変化は図5の(c)に示すようになる。   In addition, when a reference signal correlated with a thermal image is used as in the second or third embodiment shown in FIGS. 2 and 4, the crack defect portion to be measured is determined by the method shown in FIG. 5, for example. It can be performed. That is, from a spatial change and a temporal change of the thermal image of the measurement target shown in FIG. 5A, a spot where the temperature change locally changes sharply with the moving load is found, and this spot is cracked. A method by considering it as a tip can be used. In this case, the stress distribution at the arrow indicated by (a) in FIG. 5 is as shown in (b) in FIG. Further, the temporal change in the stress distribution at the arrow portion is as shown in FIG.

また、図6に示すように、移動荷重にともなって局所的に温度変化がピーク値を示している部分を見出し、この箇所を亀裂先端とみなすことによる方法を用いることもできる。すなわち、図6の(a)に示す測定対象の熱画像において、矢印の部分の熱画像の変化からその部分の応力分布の時間的変化は図6の(b)に示すようになり、そのピーク部分Pが図6の(a)の亀裂先端Kに対応する。   Further, as shown in FIG. 6, it is also possible to use a method in which a portion where the temperature change locally shows a peak value with a moving load is found and this portion is regarded as a crack tip. That is, in the thermal image of the measurement target shown in FIG. 6A, the temporal change in the stress distribution of the portion from the change in the thermal image of the arrow portion is as shown in FIG. The portion P corresponds to the crack tip K in FIG.

構造物の亀裂は部材同士の溶接部などあらかじめ発生箇所が概略予測可能な部分に発生しやすい。したがって、予想される亀裂の発生箇所を中心にその周辺部位において、移動荷重にともなって変化する温度分布の時間変化データから最も変化量の大きな部分、または急峻に変化する部分を見出せば、亀裂の部位が特定できる。なお、図5,6ともに応力値データは画像の局所的なデータを代表例として掲載したが、解析過程では当然のことながら熱画像全領域の応力分布の時間的変化を評価する。   A crack in a structure is likely to occur in a portion where the occurrence location can be roughly predicted in advance, such as a welded portion between members. Therefore, if the portion with the largest amount of change or the portion that changes sharply is found from the time change data of the temperature distribution that changes with the moving load at the surrounding portion around the expected crack occurrence location, The site can be identified. In FIGS. 5 and 6, the stress value data includes local data of the image as a representative example, but in the analysis process, the temporal change of the stress distribution in the entire region of the thermal image is naturally evaluated.

ただし、周辺外乱の影響により移動荷重とは無関係に温度変化することも考えられるので、上述したように、移動荷重と相関のある信号を同時に計測して、この参照信号との相関をとる、あるいはこの参照信号と同期加算処理をすることが好ましい。これにより、亀裂検出精度を向上させることが可能である。   However, since it is also possible that the temperature changes regardless of the moving load due to the influence of the peripheral disturbance, as described above, a signal correlated with the moving load is measured at the same time and correlated with this reference signal, or It is preferable to perform synchronous addition processing with this reference signal. Thereby, it is possible to improve the crack detection accuracy.

このような参照信号を用いた場合の欠陥判定フローを図7に示す。センサがある場合には、熱画像にセンサにより計測した荷重の移動量を取り込む(C1)。一方、センサを用いない場合には、移動荷重の車輪の回転等から荷重の移動量を推定する(C2)。そして、このようにして把握される荷重移動量を参照信号とする(S1)、次いで、参照信号と熱画像を同期加算するか、または参照信号と熱画像の相互相関をとる(S2)。次いで、急峻な温度(応力)変化、または温度(応力)のピーク値を熱画像の空間変化と時間的変化から検出し、これを亀裂端部と判断する(S3)。なお、図7において、移動量の代わりに移動速度を用いてもよい。   FIG. 7 shows a defect determination flow when such a reference signal is used. If there is a sensor, the movement amount of the load measured by the sensor is taken into the thermal image (C1). On the other hand, when the sensor is not used, the moving amount of the load is estimated from the rotation of the wheel of the moving load (C2). Then, the load movement amount grasped in this way is used as a reference signal (S1), and then the reference signal and the thermal image are synchronously added, or the cross correlation between the reference signal and the thermal image is obtained (S2). Next, a steep temperature (stress) change or a peak value of temperature (stress) is detected from a spatial change and a temporal change of the thermal image, and this is determined as a crack end (S3). In FIG. 7, a moving speed may be used instead of the moving amount.

これらの方法により、特に大型構造物の欠陥を検出するために、従来、例えば、周辺に足場を組む、検査ロボットを使う、昇降装置付き作業用自動車を使う等により、測定対象の近くまでアクセスすることによって実施されていた欠陥検出作業が、赤外線カメラ(場合によっては、望遠レンズを使用する)と比較的簡易な情報処理部等とを用いることにより、測定対象の近くまでアクセスすることなく遠方から実施できることになる。このため、検査の準備に要する費用が大幅に低減されるだけでなく、検査時間も大幅に短縮することができる。したがって、構造物が荷役機械の場合には、検査のための稼動停止時間を短縮することができる。また、橋梁などであれば、車の通過によって発生する荷重変動に伴う温度分布変動を熱画像で捕らえることで、橋脚や橋桁の欠陥を検出することが可能になる。   In order to detect defects in large structures by these methods, access to the vicinity of the object to be measured is conventionally performed by, for example, building a scaffold around the periphery, using an inspection robot, or using a work vehicle with a lifting device. By using an infrared camera (in some cases, using a telephoto lens) and a relatively simple information processing unit, etc., the defect detection work that has been carried out can be performed from a distance without accessing the vicinity of the measurement object. It can be implemented. For this reason, not only the cost required for the preparation for the inspection is greatly reduced, but also the inspection time can be greatly shortened. Therefore, when the structure is a cargo handling machine, the operation stop time for inspection can be shortened. Further, in the case of a bridge or the like, it is possible to detect a defect in a bridge pier or a bridge girder by capturing a temperature distribution variation accompanying a load variation caused by passing of a vehicle with a thermal image.

本発明は、橋梁や荷役機械等の大型構造物に生じた亀裂等の欠陥の検出に極めて有効である。   The present invention is extremely effective in detecting defects such as cracks generated in large structures such as bridges and cargo handling machines.

本発明の第1の実施形態に係る方法によって天井クレーンの欠陥を検出する状態を示す模式図。The schematic diagram which shows the state which detects the defect of an overhead crane with the method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る方法によって天井クレーンの欠陥を検出する状態を示す模式図。The schematic diagram which shows the state which detects the defect of an overhead crane by the method which concerns on the 2nd Embodiment of this invention. Lock-in processorにおける参照信号と熱画像情報(温度データ)の関係を示す図。The figure which shows the relationship between the reference signal and thermal image information (temperature data) in Lock-in processor. 本発明の第3の実施形態に係る方法によって天井クレーンの欠陥を検出する状態を示す模式図。The schematic diagram which shows the state which detects the defect of an overhead crane with the method which concerns on the 3rd Embodiment of this invention. 熱画像と相関のある参照信号を用いる場合における測定対象の亀裂欠陥部分の判定を行う方法の一例を示す図。The figure which shows an example of the method of determining the crack defect part of the measuring object in the case of using the reference signal correlated with a thermal image. 熱画像と相関のある参照信号を用いる場合における測定対象の亀裂欠陥部分の判定を行う方法の他の例を示す図。The figure which shows the other example of the method of determining the crack defect part of the measuring object in the case of using the reference signal correlated with a thermal image. 熱画像と相関のある参照信号を用いた場合の欠陥判定フローを示すフローチャート。The flowchart which shows the defect determination flow at the time of using the reference signal correlated with a thermal image.

符号の説明Explanation of symbols

1;天井クレーン
2;欠陥
3;熱画像計測面
4;ガーダ
5;レール
7;クレーン台車(移動荷重)
8;荷物
9;赤外線カメラ
10;情報処理部
11;パソコン
12;表示部
13;レーザ変位計
14;反射板
15;Lock-in processor
16;信号合成部
DESCRIPTION OF SYMBOLS 1; Overhead crane 2; Defect 3; Thermal image measurement surface 4; Girder 5; Rail 7; Crane truck (moving load)
8; Baggage 9; Infrared camera 10; Information processing unit 11; Personal computer 12; Display unit 13; Laser displacement meter 14;
16: Signal synthesis unit

Claims (13)

検出対象となる構造物に移動荷重を与えることにより応力変動を生じさせ、この応力変動による熱弾性効果または塑性発熱により前記構造物に生じた温度分布変動を熱画像として計測し、この温度分布変動に基づいて応力変動を把握し、当該測定対象物の欠陥を検出することを特徴とする構造物の欠陥検出方法。   Stress fluctuation is caused by applying a moving load to the structure to be detected, and the temperature distribution fluctuation generated in the structure due to the thermoelastic effect or plastic heat generation due to this stress fluctuation is measured as a thermal image, and this temperature distribution fluctuation is measured. A defect detection method for a structure characterized by grasping stress fluctuation based on the above and detecting a defect of the measurement object. 移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を熱画像と同時に取り込み、移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする請求項1に記載の構造物の欠陥検出方法。   Information that correlates with the moving amount or moving speed of the moving object, or the moving amount or moving speed that causes the moving load is acquired simultaneously with the thermal image, and the moving amount or moving speed of the moving object, or the correlation with the moving amount or moving speed is correlated. 2. The defect detection method for a structure according to claim 1, wherein a defect of the structure is detected using a thermal image that changes in synchronization with a certain signal as a reference signal. 前記移動荷重を生じさせる移動物体画像を同時に前記熱画像に取り込み、この熱画像内から移動物体の移動量または移動速度を推定し、これを参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする請求項1に記載の構造物の欠陥検出方法。   The moving object image that causes the moving load is simultaneously captured in the thermal image, the moving amount or moving speed of the moving object is estimated from the thermal image, and this is used as a reference signal. 2. The structure defect detection method according to claim 1, wherein a defect of the structure is detected using a thermal image. 前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的なピーク値を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする請求項2または請求項3に記載の構造物の欠陥検出方法。   Incorporating the reference signal and the thermal image, and detecting a local peak value of a temperature change that is correlated with the reference signal in the thermal image, thereby detecting a structural defect in the thermal image. A method for detecting a defect in a structure according to claim 2 or claim 3. 前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的でかつ急峻な温度変化部分を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする請求項2または請求項3に記載の構造物の欠陥検出方法。   Capturing the reference signal and the thermal image, and detecting a local and steep temperature change portion of the temperature change that is correlated with the reference signal and detects a structural defect in the thermal image. The defect detection method for a structure according to claim 2 or 3, wherein the defect is detected. 前記移動荷重は、前記構造物に沿って移動することを特徴とする請求項1から請求項5のいずれか1項に記載の構造物の欠陥検出方法。   6. The structure defect detection method according to claim 1, wherein the moving load moves along the structure. 前記構造物は、橋梁または荷役機械であることを特徴とする請求項1から請求項6のいずれか1項に記載の構造物の欠陥検出方法。   The structure defect detection method according to any one of claims 1 to 6, wherein the structure is a bridge or a cargo handling machine. 検出対象となる構造物に移動物体により移動荷重が与えられている状態で前記構造物を撮影する赤外線カメラと、
前記赤外線カメラによって撮影した熱画像における温度分布変動から熱弾性効果または塑性発熱に基づいて前記構造物の撮影部位の応力変動を算出し、算出した応力変動から前記構造物の欠陥を検出する情報処理部と
を具備することを特徴とする構造物の欠陥検出装置。
An infrared camera for photographing the structure in a state where a moving load is applied to the structure to be detected by the moving object;
Information processing for calculating a stress fluctuation of a photographing part of the structure based on a thermoelastic effect or plastic heat generation from a temperature distribution fluctuation in a thermal image photographed by the infrared camera, and detecting a defect of the structure from the calculated stress fluctuation And a defect detecting device for a structure.
前記情報処理部は、移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を熱画像と同時に取り込み、移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする請求項8に記載の構造物の欠陥検出装置。   The information processing unit captures, together with the thermal image, a moving amount or moving speed of a moving object that causes a moving load, or information correlated with the moving amount or moving speed, and the moving amount or moving speed of the moving object, or the moving amount. 9. The defect of the structure according to claim 8, wherein the defect of the structure is detected by using a thermal image that varies in synchronization with information having a correlation with the moving speed as a reference signal. Detection device. 前記移動荷重を生じさせる移動物体の移動量もしくは移動速度、または移動量もしくは移動速度と相関のある情報を検出するセンサをさらに具備することを特徴とする請求項9に記載の構造物の欠陥検出装置。   The defect detection of a structure according to claim 9, further comprising a sensor that detects a movement amount or movement speed of the moving object that generates the moving load, or information correlated with the movement amount or movement speed. apparatus. 前記情報処理部は、前記移動荷重を生じさせる移動物体画像を同時に前記熱画像に取り込み、この熱画像内から移動物体の移動量または移動速度を推定し、これを参照信号とすることによって、これと同期して変動する熱画像を用いて構造物の欠陥を検出することを特徴とする請求項9に記載の構造物の欠陥検出装置。   The information processing unit simultaneously captures the moving object image causing the moving load into the thermal image, estimates the moving amount or moving speed of the moving object from the thermal image, and uses this as a reference signal. The structure defect detection device according to claim 9, wherein a defect of the structure is detected using a thermal image that varies in synchronization with the structure. 前記情報処理部は、前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的なピーク値を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする請求項9から請求項11のいずれか1項に記載の構造物の欠陥検出装置。   The information processing unit takes in the reference signal and the thermal image, finds a local peak value of a temperature change that is correlated with the reference signal in the thermal image, and thereby detects a structural defect in the thermal image. The structure defect detection apparatus according to claim 9, wherein the structure defect detection apparatus detects the structure defect. 前記情報処理部は、前記参照信号と前記熱画像を取り込み、この熱画像において参照信号と相関がありかつ温度変化の局所的でかつ急峻な温度変化部分を見出すことにより、前記熱画像内の構造物の欠陥を検出することを特徴とする請求項9から請求項11のいずれか1項に記載の構造物の欠陥検出装置。   The information processing unit captures the reference signal and the thermal image, finds a local and steep temperature change portion of the temperature change that is correlated with the reference signal in the thermal image, and thereby creates a structure in the thermal image. The defect detection device for a structure according to any one of claims 9 to 11, wherein a defect of the object is detected.
JP2005362589A 2005-12-16 2005-12-16 Structure defect detection method and apparatus Active JP4803652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362589A JP4803652B2 (en) 2005-12-16 2005-12-16 Structure defect detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362589A JP4803652B2 (en) 2005-12-16 2005-12-16 Structure defect detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2007163390A true JP2007163390A (en) 2007-06-28
JP4803652B2 JP4803652B2 (en) 2011-10-26

Family

ID=38246446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362589A Active JP4803652B2 (en) 2005-12-16 2005-12-16 Structure defect detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4803652B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
WO2009037914A1 (en) * 2007-09-21 2009-03-26 National Institute Of Advanced Industrial Science And Technology Method and system for detecting defect of structure
JP2009092644A (en) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology Method and system for detecting defect of structure
CN102012313A (en) * 2010-10-29 2011-04-13 中国一冶集团有限公司 Method for carrying out load test on bridge support frame by prefabricated parts moved through tractive walking
KR101194023B1 (en) * 2008-10-21 2012-10-24 니시니혼 고소쿠도로 엔지니어링 시코쿠 가부시키가이샤 Infrared thermal image analyzer
JP2013083640A (en) * 2011-09-29 2013-05-09 Jfe Steel Corp Apparatus and method for diagnosing crack of crane
JP2016173235A (en) * 2015-03-16 2016-09-29 株式会社タダノ Load-carrying capacity performance testing car
WO2017141294A1 (en) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 Stress distribution measurement method and stress distribution measurement system
JP2018054604A (en) * 2016-09-14 2018-04-05 ザ・ボーイング・カンパニーThe Boeing Company Nondestructive evaluation of railroad rails, wheels and axles
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
JP2018081076A (en) * 2016-08-23 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company System and method for nondestructive evaluation of test object
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method
KR20180089712A (en) * 2017-02-01 2018-08-09 이근호 Apparatus and system for measuring structure displacement using image
WO2018159003A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Monitoring system
WO2020136831A1 (en) * 2018-12-27 2020-07-02 日本電気株式会社 Measurement device
WO2021002122A1 (en) * 2019-07-03 2021-01-07 パナソニックIpマネジメント株式会社 Stress distribution image processing device
WO2023190394A1 (en) * 2022-03-31 2023-10-05 日本ゼオン株式会社 Method and system for measuring damage of building caused by earthquake
KR102594016B1 (en) * 2023-02-23 2023-10-26 (주)다음기술단 Facility maintenance system that performs condition evaluation of manned monitoring facilities and unmanned monitoring facilities

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574989B2 (en) 2017-04-26 2019-09-18 パナソニックIpマネジメント株式会社 Stress measuring apparatus, stress measuring system and stress measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124836A (en) * 1984-11-21 1986-06-12 Jeol Ltd Apparatus for obtaining stress image
JPH09159590A (en) * 1995-12-08 1997-06-20 Jeol Ltd Infrared ray measuring device
JPH10123034A (en) * 1996-10-22 1998-05-15 Nkk Corp Method and equipment for testing metallic material
JP2001059805A (en) * 1999-08-24 2001-03-06 Bridgestone Corp Load moving test apparatus
JP2002082033A (en) * 2000-06-30 2002-03-22 Abe Yorimasa Load movement testing apparatus and method
JP2002214102A (en) * 2001-01-15 2002-07-31 Nikken Kk Load moving test device
EP1526377A1 (en) * 2003-10-21 2005-04-27 Paolo Benedetti Method for detecting defects in substantially wood-like products, particularly panels and the like, and associated apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124836A (en) * 1984-11-21 1986-06-12 Jeol Ltd Apparatus for obtaining stress image
JPH09159590A (en) * 1995-12-08 1997-06-20 Jeol Ltd Infrared ray measuring device
JPH10123034A (en) * 1996-10-22 1998-05-15 Nkk Corp Method and equipment for testing metallic material
JP2001059805A (en) * 1999-08-24 2001-03-06 Bridgestone Corp Load moving test apparatus
JP2002082033A (en) * 2000-06-30 2002-03-22 Abe Yorimasa Load movement testing apparatus and method
JP2002214102A (en) * 2001-01-15 2002-07-31 Nikken Kk Load moving test device
EP1526377A1 (en) * 2003-10-21 2005-04-27 Paolo Benedetti Method for detecting defects in substantially wood-like products, particularly panels and the like, and associated apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
WO2009037914A1 (en) * 2007-09-21 2009-03-26 National Institute Of Advanced Industrial Science And Technology Method and system for detecting defect of structure
JP2009092644A (en) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology Method and system for detecting defect of structure
KR101194023B1 (en) * 2008-10-21 2012-10-24 니시니혼 고소쿠도로 엔지니어링 시코쿠 가부시키가이샤 Infrared thermal image analyzer
US8462990B2 (en) 2008-10-21 2013-06-11 West Nippon Expressway Engineering Shikoku Company Limited Infrared-ray thermal image analyzer
CN102012313A (en) * 2010-10-29 2011-04-13 中国一冶集团有限公司 Method for carrying out load test on bridge support frame by prefabricated parts moved through tractive walking
CN102012313B (en) * 2010-10-29 2012-01-25 中国一冶集团有限公司 Method for carrying out load test on bridge support frame by prefabricated parts moved through tractive walking
JP2013083640A (en) * 2011-09-29 2013-05-09 Jfe Steel Corp Apparatus and method for diagnosing crack of crane
JP2016173235A (en) * 2015-03-16 2016-09-29 株式会社タダノ Load-carrying capacity performance testing car
WO2017141294A1 (en) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 Stress distribution measurement method and stress distribution measurement system
JPWO2017141294A1 (en) * 2016-02-15 2018-12-20 パナソニックIpマネジメント株式会社 Stress distribution measuring method and stress distribution measuring system
JP2018081076A (en) * 2016-08-23 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company System and method for nondestructive evaluation of test object
JP2018054604A (en) * 2016-09-14 2018-04-05 ザ・ボーイング・カンパニーThe Boeing Company Nondestructive evaluation of railroad rails, wheels and axles
JP2022000655A (en) * 2016-09-14 2022-01-04 ザ・ボーイング・カンパニーThe Boeing Company Nondestructive evaluation of railroad rails, wheels and axles
JP7161015B2 (en) 2016-09-14 2022-10-25 ザ・ボーイング・カンパニー Non-destructive evaluation of railroad rails, wheels and axles
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method
KR20180089712A (en) * 2017-02-01 2018-08-09 이근호 Apparatus and system for measuring structure displacement using image
KR101985845B1 (en) * 2017-02-01 2019-06-04 (주)호승이앤씨 Apparatus and system for measuring structure displacement using image
JPWO2018159003A1 (en) * 2017-02-28 2019-12-26 パナソニックIpマネジメント株式会社 Monitoring system
WO2018159003A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Monitoring system
WO2020136831A1 (en) * 2018-12-27 2020-07-02 日本電気株式会社 Measurement device
JPWO2020136831A1 (en) * 2018-12-27 2021-11-11 日本電気株式会社 measuring device
JP7075068B2 (en) 2018-12-27 2022-05-25 日本電気株式会社 measuring device
WO2021002122A1 (en) * 2019-07-03 2021-01-07 パナソニックIpマネジメント株式会社 Stress distribution image processing device
JPWO2021002122A1 (en) * 2019-07-03 2021-01-07
JP7170215B2 (en) 2019-07-03 2022-11-14 パナソニックIpマネジメント株式会社 Stress distribution image processor
US11808657B2 (en) 2019-07-03 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Stress distribution image processing device
WO2023190394A1 (en) * 2022-03-31 2023-10-05 日本ゼオン株式会社 Method and system for measuring damage of building caused by earthquake
KR102594016B1 (en) * 2023-02-23 2023-10-26 (주)다음기술단 Facility maintenance system that performs condition evaluation of manned monitoring facilities and unmanned monitoring facilities

Also Published As

Publication number Publication date
JP4803652B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4803652B2 (en) Structure defect detection method and apparatus
JP4898320B2 (en) Structure defect detection method and apparatus, and cargo handling machine having defect detection function
CN105115976B (en) A kind of rail abrasion defect detecting system and method
RU2549913C2 (en) Thermographic method of control and monitoring device for implementing method
JP6301951B2 (en) Sample inspection method and system using thermography
Hung et al. Review and comparison of shearography and active thermography for nondestructive evaluation
JP5491692B2 (en) System and method for locating fault events in a loaded sample
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
JP5392179B2 (en) Steel plate defect detection method and defect detection system
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
US9816866B2 (en) Method for examination of a sample by means of the heat flow thermography
KR101281582B1 (en) Noncontact imaging method for nondestructive testing
Hwang et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography
JP4367932B2 (en) Method and apparatus for detecting defects in steel structures
Ramzan et al. Pixel frequency based railroad surface flaw detection using active infrared thermography for structural health monitoring
JP2006170684A (en) Method and device for inspecting press failure
JP2019056671A (en) Wall surface damage inspection device
JP2001311709A (en) Structure inspection device and structure inspection method
JP5375239B2 (en) Image processing apparatus, inspection apparatus for long objects, and computer program
JP2001201474A (en) Apparatus for detecting internal defect of structure
JP7410606B1 (en) Non-destructive testing method and non-destructive testing equipment
WO2020246085A1 (en) Inspection assistance system
JP2005127973A (en) Method and device for inspecting surface defect of steel
Tuschl et al. Scanning inductive thermography using a µ-bolometer and a visual camera
JP2023047631A (en) Tunnel soundness determination device and inspection support system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Ref document number: 4803652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250