JPS61122517A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPS61122517A
JPS61122517A JP24489684A JP24489684A JPS61122517A JP S61122517 A JPS61122517 A JP S61122517A JP 24489684 A JP24489684 A JP 24489684A JP 24489684 A JP24489684 A JP 24489684A JP S61122517 A JPS61122517 A JP S61122517A
Authority
JP
Japan
Prior art keywords
shaft
rotation
magnetic bodies
contact wheel
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24489684A
Other languages
Japanese (ja)
Inventor
Ichiro Ando
安東 一郎
Takefumi Kurosaki
黒崎 武文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP24489684A priority Critical patent/JPS61122517A/en
Publication of JPS61122517A publication Critical patent/JPS61122517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To simplify structure, to minimize the influence of backlash, and to improve measurement precision and resolution by converting the rotation of a contact wheel into the rotation of a shaft perpendicular to said wheel and providing numbers of magnetic bodies at the outer periphery of the shaft. CONSTITUTION:A bevel gear 6 fixed coaxially with the contact wheel 1 which profiles a necessary route on a drawing such as a map and another bevel gear 7 engaging said gear are used in combination to convert the rotation of the contact wheel 1 into the rotation of the shaft 8 perpendicular to the contact wheel 1. Many magnetic bodies 9 are provided at axially different positions of the outer periphery of the shaft 8 where the radial phase shifts by, for example, 40 deg., and magnetic sensors 10 corresponding to the magnetic bodies 9 are arranged closely along the shaft 8, thereby counting an AND result among outputs of the respective sensors 10. The resolution is determined by the diameter of the shaft 8 and the phase pitch of the magnetic bodies 9, but the pitch is selected relatively freely by varying the length of the shaft properly, so an encoder is increased in resolution greatly which the size except the length is held constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリ・エノコーダ、殊に回転体の回転量検
出の分解能を向上したエンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary encoder, and particularly to an encoder with improved resolution for detecting the amount of rotation of a rotating body.

(従来技術) 従来9回転体の回転量をディジタル量に変換し距離9回
転角等を計数するロータリ・エンコーダが広く使用され
ている。
(Prior Art) Conventionally, a rotary encoder that converts the amount of rotation of a nine-rotating body into a digital amount and counts distance, nine rotation angles, etc. has been widely used.

このようなエンコーダは2例えばIE Z 囚(at及
び(blに示す如く接触輪1を地図等の所望の経路に沿
って回転移動せしめその回転量を前記接触輪1と一体の
中間歯車2及びこれと噛み合う減速歯車3を介して前記
歯車3と一体のエンコード用円板4に伝達し前記円板4
0周縁に所要のピッチpを隔して設けた多数の磁性体或
はスリット若しくはマークを磁気センサ或は発光素子と
受光素子とを組み合わせた光学セ/す5を用いてカウン
トすることによって前記接触輪の回転量から地図上の距
離等を計測するものである。
Such an encoder rotates the contact wheel 1 along a desired path such as a map as shown in 2, for example, IE Z (at and (bl), and calculates the amount of rotation by an intermediate gear 2 integral with the contact wheel 1 and the The signal is transmitted to the encoding disc 4 integrated with the gear 3 through the reduction gear 3 that meshes with the disc 4.
The contact is detected by counting a large number of magnetic bodies, slits, or marks provided at a required pitch p on the periphery using a magnetic sensor or an optical sensor 5 that combines a light-emitting element and a light-receiving element. It measures distances on a map based on the amount of rotation of the wheel.

しかしながら上述の如きエンコーダの読取精度を向上せ
んとすれば前記エンコード用円板4上のマークのピッチ
pの密度に解読限界があることから前記円板4を大直径
のものとしてマーク数音増大させるか或は前記円板4を
小直径且つマーク数を減少すると共にその回転速度を犬
きく設定する必要がありいづれの場合にも多数の歯車を
組み合わせなければならない為構造複雑にしてしかも歯
車のバックラッシュの影響が累積し測定精度にバラツキ
を生ずるという欠陥があり、この欠陥はペン型エンコー
ダの場合殊に著しいものであっto (発明の目的) 本発明は上述した如きエンコーダの欠陥を除去すべくな
されたものであって、構造簡単にしてバックラッシュの
影響を極小とすることによって迎1定精度のバラツキを
減少し、しかも分解能を向上したエンコーダを提供する
ことを目的とする。
However, in order to improve the reading accuracy of the encoder as described above, since there is a reading limit in the density of the pitch p of the marks on the encoding disk 4, the disk 4 should be made with a large diameter to increase the number of marks. Alternatively, it is necessary to make the disc 4 small in diameter and reduce the number of marks, and to set its rotational speed sharply. In either case, a large number of gears must be combined, making the structure complex and the back of the gears. There is a defect in that the effects of rush accumulate and cause variations in measurement accuracy, and this defect is particularly severe in the case of a pen-type encoder. The object of the present invention is to provide an encoder which has a simplified structure and minimizes the influence of backlash, thereby reducing variations in constant accuracy and improving resolution.

(発明の概要) 上述の目的を達成する為1本発明に於いては、、l  
  接触軸の回転金これと直交する軸の回転に変換し該
軸の外周に半径方向に関する位相並びに軸方向に関する
位置を異ならしめて多数の磁性体或は光学的マークを付
しこれらを夫々個別のセものである。
(Summary of the invention) In order to achieve the above-mentioned object, in the present invention, l
The rotation of the contact shaft is converted into the rotation of an axis perpendicular to the rotation of the contact shaft, and a large number of magnetic or optical marks are attached to the outer periphery of the shaft with different radial phases and axial positions, and each of these marks is marked individually. It is something.

(実施例) 以下9本発明を図面に示した実施例によって詳細に説明
する。
(Examples) The present invention will be described in detail below using nine examples shown in the drawings.

第1図(al及び(blは夫々本発明に係るエンコーダ
の原理を説明する側面囚及び平面図である。
FIG. 1 (al and (bl) are a side view and a plan view, respectively, illustrating the principle of the encoder according to the present invention.

本図に於いて地図等の図上の所要経路1@う接触軸1に
同軸固定し念傘歯車6とこれと噛み合う他の傘歯車7と
を組み合わせて前記接触軸1の回転をこれと直交する軸
8の回転に変換する。前記軸8の外周にはその半径方向
の位相が例えば6°ずつ異なる位置であって軸方向の位
置も異なる位置に磁性体9,9.・・・・・・を多数設
けると共に前記軸8に沿って前記磁性体9,9.・・・
・・に夫々対応する磁気セ/すのアレイ1Ot−近接配
置し、前記各センサ1oの出方の論理和をカウントする
よう構成する。
In this figure, the rotation of the contact shaft 1 is made perpendicular to the required path 1 on a map or other diagram by combining a bevel gear 6 that is coaxially fixed to the contact shaft 1 and another bevel gear 7 that meshes with it. The rotation of the axis 8 is converted into the rotation of the axis 8. On the outer periphery of the shaft 8, magnetic bodies 9, 9 . ... are provided along the axis 8, and the magnetic bodies 9, 9. ...
. . . An array 1Ot of magnetic cells corresponding to the respective sensors 1O is arranged close to each other, and the logical sum of the outputs of the respective sensors 1o is counted.

斯くすることによって前記接触幅10回転量を前記軸8
に付した磁性体9,9.・・・・・・全検知したカウン
ト数によって表示することが可能になる。而してその分
解能は前記軸8の直径と前記磁性体の位相ピッチによっ
て決定することになるが、このピッチは前記軸の長さを
適宜伸縮することによって比較的自由に選択し得るので
このエンコーダはその長さ以外のサイズを一定としたま
まで分解能全大幅に増大することができる。又2回転軸
t−直交させる為の礪械要素としては一組の傘歯車のみ
で足りるからバックラッシュの影榊は最小限に押得るの
で測定精度全低下させることもない。
By doing this, the contact width 10 rotation amount is reduced to the shaft 8.
Magnetic material 9, 9. ...It becomes possible to display the total number of detected counts. The resolution is determined by the diameter of the shaft 8 and the phase pitch of the magnetic material, but this pitch can be relatively freely selected by appropriately expanding or contracting the length of the shaft, so this encoder The total resolution can be greatly increased while keeping all other dimensions constant except for its length. In addition, since only one set of bevel gears is sufficient as a mechanical element for making the two rotational axes t perpendicular to each other, the effects of backlash can be kept to a minimum, so that the measurement accuracy does not deteriorate at all.

本発明に係るロータリ・エンコーダはその全体的サイズ
を極力小ならしめる為、以下の如く構成してもよい。
In order to minimize the overall size of the rotary encoder according to the present invention, it may be configured as follows.

即ち、第3図に示すように前記接触軸1の中心部に凹陥
を設は核部を内歯傘歯車19としこれと@8に固定する
歯車7とを噛み合わせるようにしてもよい。斯くするこ
とによって前記接触軸1の回転面と前記軸8の中心線と
を極力近接せしめエンコーダ全体の直径を小さくするこ
とが可能となる。
That is, as shown in FIG. 3, a recess may be provided in the center of the contact shaft 1, and the core portion may be an internal bevel gear 19, which meshes with the gear 7 fixed to @8. By doing so, it is possible to bring the rotating surface of the contact shaft 1 and the center line of the shaft 8 as close as possible, thereby reducing the diameter of the entire encoder.

以上前記接触軸1と前記軸8との回転軸が互に直交して
いる場合についてのみ説明したが必ずしも直交させる必
要はなく使用目的によっては両回転軸の交角が90度よ
り鈍角であってもよい。このような場合には回転軸の方
向変換は第4図に示す如くフレキ7ブルφシヤフト1キ
を用いることも可能でありこの場合にはバックラッシュ
等の機械的誤差は一層減少し測定精度向上(資するであ
ろうことは自明である。
The above description has only been made on the case where the rotational axes of the contact shaft 1 and the shaft 8 are orthogonal to each other, but they do not necessarily have to be orthogonal to each other, and depending on the purpose of use, the intersection angle between the two rotational axes may be more obtuse than 90 degrees. good. In such cases, it is also possible to change the direction of the rotating shaft by using a flexible 7-bull φ shaft as shown in Figure 4. In this case, mechanical errors such as backlash are further reduced and measurement accuracy is improved. (It is obvious that this will help.

又、上述の実施例に於いては磁性体と磁気センサの組み
合わせについてのみ説明したがこれを光学的セッサに置
換可能であることは云うまでもない故煩雑を避ける為詳
述を省略した。
Further, in the above-described embodiment, only the combination of the magnetic body and the magnetic sensor was described, but it goes without saying that this can be replaced with an optical sensor, so a detailed description is omitted to avoid complexity.

閘、前記軸の周辺に付着する磁性体等のマークの構成に
ついては軸上の位置全符号化し得る長さとなるよう変化
を与えれば検出素子の数を減すことも可能である。
It is also possible to reduce the number of detection elements by changing the structure of the mark, such as a lock or a magnetic material attached around the shaft, to a length that can encode the entire position on the shaft.

(発明の効果) 本発明は以上説明した如く構成するので従来のロータリ
・エンコーダの如く磁性体或は光学マーク等のビーチを
考慮する必要が殆んどなくなる為接触輪と二/コード部
との間に介在する中間部材の回転速度の増減等について
格別の工夫を要しないから構造が単純になり従って小型
化が容易となるのみならず機械的ガタに基因する測定精
度のバラツキも最小限に押え得ると共に磁気式は光学セ
/すの数を増加するだけでその分解能を大幅に向上する
効果がある。
(Effects of the Invention) Since the present invention is constructed as described above, there is almost no need to consider the beaches of magnetic materials or optical marks as in conventional rotary encoders, so that Since no special measures are required to increase or decrease the rotational speed of the intervening intermediate member, the structure is simple, which not only facilitates miniaturization, but also minimizes variations in measurement accuracy due to mechanical play. At the same time, the magnetic type has the effect of greatly improving its resolution simply by increasing the number of optical cells.

同9本発明に係るロータリ・エンコーダは従来のそれに
比し多数の磁気或は光学セ/す全必要とするのでコスト
が上昇するようKも思われるがこのようなセンサは今日
のIC製造技術を以ってすれば1個裂遺するも多数アレ
イ状に製造するもコストは殆んど変らないので機構の単
純化によって充分吸収可能である。
9 The rotary encoder according to the present invention requires a larger number of magnetic or optical sensors than the conventional one, so it seems likely that the cost will increase. Therefore, whether one piece is torn or a large number of pieces are manufactured in an array, the cost is almost the same and can be absorbed by simplifying the mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

へ 第1図(at及び(blは夫々本発明に係るロータリ・
エンコーダの基本的構成を示す側面及び平面構成図、第
2図fat及び(blは夫々従来のロータリ・エンコー
ダの構成を説明する構成図及びエノコード部平面149
’ 、 IE 3 o及び筆4図は夫々本発明の異なっ
た実施例を示す側面断面図である。 1・・・・・・・・・回転体(接触輪)、  8・・・
・・・・・・軸。 9・・・・・・・・・磁性体(又は光学的マーク)。 10・・・・・・・・・磁気(又は光学)セ/す。 特許出願人  東洋通信機株式会社 笥 2  図
Figure 1 (at and (bl) respectively indicate the rotary motor according to the present invention.
FIG. 2 is a side view and a plane configuration diagram showing the basic configuration of the encoder, and FIG.
', IE3o and Brush4 are side sectional views showing different embodiments of the present invention. 1...Rotating body (contact ring), 8...
······shaft. 9...Magnetic material (or optical mark). 10...Magnetic (or optical) center. Patent applicant: Toyo Tsushinki Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回転体の回転量を前記回転体と所要角度傾けた軸の回転
量に機械的に変換する機構を備え前記軸の外周に該軸の
半径方向に関する位相と軸方向に関する位置とを異なら
しめて多数の磁性体或は光学的マークを付すと共に該軸
に沿ってこれら磁性体或光学的マークの夫々の位置に対
応する磁気或は光学センサを配置し各センサ出力によっ
て前記回転体の回転量を検出するようにしたことを特徴
とするロータリ・エンコーダ
It is equipped with a mechanism for mechanically converting the amount of rotation of a rotating body into the amount of rotation of a shaft tilted at a required angle with respect to said rotating body. A magnetic material or optical mark is attached, and magnetic or optical sensors corresponding to the respective positions of the magnetic material or optical mark are arranged along the axis, and the amount of rotation of the rotating body is detected by the output of each sensor. A rotary encoder characterized by
JP24489684A 1984-11-20 1984-11-20 Rotary encoder Pending JPS61122517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24489684A JPS61122517A (en) 1984-11-20 1984-11-20 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24489684A JPS61122517A (en) 1984-11-20 1984-11-20 Rotary encoder

Publications (1)

Publication Number Publication Date
JPS61122517A true JPS61122517A (en) 1986-06-10

Family

ID=17125588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24489684A Pending JPS61122517A (en) 1984-11-20 1984-11-20 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS61122517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099203A (en) * 2001-07-31 2014-05-29 Immersion Corp Operation wheel having tactile feedback, and handle system
WO2019231500A1 (en) * 2018-06-01 2019-12-05 Ommo Technologies, Inc. Rotating a permanent magnet in a position detection system
US10704929B1 (en) 2016-02-24 2020-07-07 Ommo Technologies, Inc. Tracking position and movement using a magnetic field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348109A (en) * 1976-08-24 1978-05-01 Yamaha Motor Co Ltd 4-cycle internal combustion chamber
JPS5690214A (en) * 1979-12-24 1981-07-22 Komatsu Ltd Rotary angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348109A (en) * 1976-08-24 1978-05-01 Yamaha Motor Co Ltd 4-cycle internal combustion chamber
JPS5690214A (en) * 1979-12-24 1981-07-22 Komatsu Ltd Rotary angle detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099203A (en) * 2001-07-31 2014-05-29 Immersion Corp Operation wheel having tactile feedback, and handle system
US10704929B1 (en) 2016-02-24 2020-07-07 Ommo Technologies, Inc. Tracking position and movement using a magnetic field
WO2019231500A1 (en) * 2018-06-01 2019-12-05 Ommo Technologies, Inc. Rotating a permanent magnet in a position detection system
CN112219089A (en) * 2018-06-01 2021-01-12 奥莫技术有限公司 Rotating permanent magnet in position detection system
CN112219089B (en) * 2018-06-01 2021-10-29 奥莫技术有限公司 Position detection system and position detection method

Similar Documents

Publication Publication Date Title
CN102472642B (en) Multi-periodic absolute position sensor
JP5863799B2 (en) Magnetic multi-rotation absolute position detector
JP2002513923A (en) Multi-turn encoder
JPWO2003036237A1 (en) Multi-rotation encoder
JP2006119082A (en) Steering angle detecting device
US7710553B2 (en) Imaging optical encoder
CN106767962A (en) Differential type photoelectric encoder and position judging method
JP4750407B2 (en) Optical encoder
JPH0267916A (en) Absolute encoder
JPH0378620A (en) Incremental rotary encoder
JPS61122517A (en) Rotary encoder
JPS63177019A (en) Position sensor
JP4900140B2 (en) Optical encoder
JPH0477245B2 (en)
JP4218290B2 (en) Rotation angle detector
KR100451107B1 (en) Absolute Encoder
WO2006107363A1 (en) Imaging optical encoder
JP2006090982A (en) Rotation angle detector
JPS61235723A (en) Rotary encoder
JP2003202243A (en) Resolver structure and method for outputting multirotary absolute digital signal
JPH0424645B2 (en)
US11162819B2 (en) Low inertia rotary position detector and associated methods
JP2676878B2 (en) Absolute encoder
JPH07181060A (en) Absolute encoder
CA3203870A1 (en) Contactless position sensor comprising a permanent magnet