JPS61122447A - Fluid deflecting device - Google Patents

Fluid deflecting device

Info

Publication number
JPS61122447A
JPS61122447A JP24272384A JP24272384A JPS61122447A JP S61122447 A JPS61122447 A JP S61122447A JP 24272384 A JP24272384 A JP 24272384A JP 24272384 A JP24272384 A JP 24272384A JP S61122447 A JPS61122447 A JP S61122447A
Authority
JP
Japan
Prior art keywords
deflection
fluid
blade
main
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24272384A
Other languages
Japanese (ja)
Inventor
Yoshi Ishihara
石原 好
Tomio Kurihara
栗原 登美雄
Haruaki Suzuki
鈴木 治昭
Junichi Saito
順一 斉藤
Masakazu Nakajima
仲島 正和
Koji Inoue
幸治 井上
Kazuhiro Shimura
一廣 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP24272384A priority Critical patent/JPS61122447A/en
Priority to CN85108349.8A priority patent/CN1004373B/en
Publication of JPS61122447A publication Critical patent/JPS61122447A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/28Details or features not otherwise provided for using the Coanda effect

Landscapes

  • Air-Flow Control Members (AREA)
  • Duct Arrangements (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

PURPOSE:To bring about the Coanda phenomenon and to lengthen the reach of the blown fluid by forming deflecting passages curved in the same direction between the main deflecting blade and the curved wall surface of the outlet and between the main deflecting blade and the auxiliary deflecting blade. CONSTITUTION:A main deflecting blade 24 and an auxiliary deflecting blade 25 which are linked with each other are disposed in a fluid outlet 5 to change the blowing direction of the fluid, and a first deflecting passage 32 is formed between the main deflecting blade 24 and the curved wall surface 31 of the outlet 5. Further, a second deflecting passage 33 is formed between the main deflecting blade 24 and the auxiliary deflecting blade 25. When both the blades 24, 25 are inclined, the Coanda phenomenon is brought about not only in the first deflecting passage 32 but also in the second deflecting passage 33. As a result, the blowing direction of the fluid can greatly be changed relative to the axis of flow without causing the first deflecting passage 32 to be as large as the case in the conventional device. Thereby, a large amount of the fluid can be blown to a larger distance with less noise.

Description

【発明の詳細な説明】 何)産業上の利用分野 本発明は天井埋込温空気調和機の空気吹出部に用いられ
る流体偏向装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention: Field of the Invention The present invention relates to a fluid deflection device used in an air blowing section of a ceiling-mounted hot air conditioner.

(覧)従来の技術 ]アンダ効果を利用して流体吹出口からの流体の吹出方
向を広角度に、且つ、任意の方向に偏向させる装置が特
公昭59−18614号公報で提示されている。
(See) Prior Art] Japanese Patent Publication No. 59-18614 discloses a device that utilizes the under effect to deflect the direction of fluid discharge from a fluid outlet over a wide angle and in any direction.

かかる装置は、流体吹出口内に吹出し流体の吹出し方向
を可変する一枚の偏向翼を設けるとともに、この流体吹
出口の一方の内壁に凸壁端を形成し、この凸壁端と偏向
翼との間に偏向助長用流路を形成し、他方の内壁に流れ
軸に対し内方に傾斜した角度で曲げられた端壁を形成し
たもので、吹出方向を大きく変える際、偏向翼の偏向角
を大きくして偏向助長用流路の流量を多くし、偏向を助
長するようKしている。
In this device, a single deflection blade is provided in the fluid outlet to change the blowing direction of the fluid to be blown out, and a convex wall end is formed on one inner wall of the fluid outlet, and the convex wall end and the deflection vane are connected to each other. A deflection-enhancing flow path is formed between them, and an end wall is formed on the other inner wall that is bent at an angle inward with respect to the flow axis.When changing the blowing direction significantly, the deflection angle of the deflection blade is is increased to increase the flow rate of the deflection-promoting flow path, and K is set to promote deflection.

し→ 発明が解決しようとする問題点 上述の従来装置では偏向助長用流路を広くとると、この
流路な流れる吹出し流体の流速が遅くなり凸壁端に沿っ
て流れにくくなり【コアンダ効果が発揮されなくなる為
、偏向助長用流路をかなり狭くしなければならず、流体
抵抗が増え【吹出流量が減ると共に騒音が高くなる問題
点を有していた。
→ Problems to be Solved by the Invention In the conventional device described above, when the deflection-enhancing flow path is made wide, the flow velocity of the blowing fluid flowing through this flow path slows down, making it difficult to flow along the edges of the convex wall [Coanda effect] Since the deflection-enhancing flow path has to be made considerably narrower, fluid resistance increases [and the problem is that the blowout flow rate decreases and the noise increases.

本発明はかかる問題点を解決すると共に吹出し流体の到
達距離を長くとれる流体偏向装置を提供するものである
The present invention solves these problems and provides a fluid deflection device that can extend the reach of the blown fluid.

(ホ)問題点を解決するための手段 本発明装置は、流体吹出口内に吹出し流体の吹出し方向
を可変する主偏向翼と補助偏向翼とを連動可能に設け、
主偏向翼と吹出口の曲壁面との間及び主偏向翼と補助偏
向翼との間に夫々同じ向きく湾曲する偏向流路を形成し
たものである。
(e) Means for solving the problem The device of the present invention is provided with a main deflection vane and an auxiliary deflection vane that change the blowing direction of the blowing fluid in a fluid blowout port so as to be interlocked with each other.
Deflection flow paths curved in the same direction are formed between the main deflection blade and the curved wall surface of the air outlet, and between the main deflection blade and the auxiliary deflection blade.

((ホ)作用 主偏向翼と補助偏向翼とを傾けて主偏向翼の吹出側下端
を吹出口の曲壁面へ近づけるととくより主偏向翼と曲壁
面とで形成された第1の偏向流路から流速が速まった吹
出し流体が曲壁面に沿りて吹き出されると共に主偏向翼
と補助偏向翼とで形成された第2の偏向流路から吹き出
される流体は補助偏向翼により湾曲されて主偏向翼に沿
って吹き出される。即ち、コアンダ効果によって主偏向
翼に沿つ【吹き出される第2の偏向流路からの吹)  
     出し流体は”ア7ダ効果によ°て曲壁面に沿
°て吹き出される流体に吸引されて到達距離の長いシャ
ープな流れとなって略水平方向に吹き出される。
((E) Operation When the main deflection vane and the auxiliary deflection vane are tilted to bring the lower end of the main deflection vane on the outlet side closer to the curved wall surface of the outlet, the first deflection flow formed by the main deflection vane and the curved wall surface is particularly The blown fluid with increased flow velocity is blown out from the channel along the curved wall surface, and the fluid blown out from the second deflection channel formed by the main deflection vane and the auxiliary deflection vane is curved by the auxiliary deflection vane. In other words, the air is blown out along the main deflection blade due to the Coanda effect.
The discharged fluid is attracted by the fluid blown out along the curved wall surface due to the "adapter effect" and is blown out in a substantially horizontal direction in a sharp flow with a long reach.

又、主偏向翼と補助偏向翼とを下方向に向けると、第1
の偏向流路から吹き出される流体は主偏向翼に沿って略
真下方向に吹き出されると共に第2の偏向流路から吹き
出される流体は補助偏向翼により湾曲されて主偏向翼に
沿って吹き出される。
Also, when the main deflection wing and the auxiliary deflection wing are directed downward, the first
The fluid blown out from the second deflection channel is blown out substantially directly downward along the main deflection blade, and the fluid blown out from the second deflection channel is curved by the auxiliary deflection blade and blown out along the main deflection blade. be done.

即ち、コアンダ効果によって主偏向翼に沿って吹き出さ
れる第2の偏向流路からの吹出し流体が第1の偏向流路
からの吹出し流体を吸引して到達距離の長いシャープな
流れとなって略真下方向に吹き出される。
That is, due to the Coanda effect, the fluid blown out from the second deflection channel along the main deflection blade attracts the fluid blown out from the first deflection channel, forming a sharp flow with a long reach. It is blown out directly downwards.

(へ)実施例 第1図は本発明装置を組み込んだ天井埋込型空気調和機
の斜視図、第2図は天井へ埋込んだ状態を示す天井埋込
型空気調和機の縦断面図、第3図(イ)(ロ)は第2図
のA部の異なる状態を示す拡大断面図であり、内壁に断
熱材(1)を貼着した板金製のユニット本体(2)と、
中央に吸込グリル(3)を、外周部の4辺に後述する流
体偏向装置(4)付きの吹出口(5)(6)T7+(8
1を設けた通風化粧パネル(9)とから天井埋込型空気
調和機の外装ケーシングが構成されている。
(F) Embodiment FIG. 1 is a perspective view of a ceiling-embedded air conditioner incorporating the device of the present invention, and FIG. 2 is a longitudinal cross-sectional view of the ceiling-embedded air conditioner showing a state embedded in the ceiling. FIGS. 3(A) and 3(B) are enlarged sectional views showing different states of part A in FIG. 2;
A suction grill (3) is placed in the center, and air outlets (5) (6) T7+(8) with a fluid deflection device (4), which will be described later, are placed on the four sides of the outer periphery.
The exterior casing of the ceiling-embedded air conditioner is composed of the ventilation decorative panel (9) provided with the ventilation panel (9).

a[は吸込グリル(3)からエアフィルター(111を
介して室内空気をターボファン(13に吸入案内するノ
ズル口、0はノズル板α4に支持脚(151で取り付け
られた7アン用モータ、cLeはノズル口σαの外周に
沿って配設された環状のドレンパン、aηはドレンパン
化とスペーサ0秒との間に挾持されターボファン(Iz
を取り囲むように配設された環状の熱交換器、a9(1
1はユニット本体(2)を天井板(イ)の天井穴0から
天井空間の内に押し込んで天井梁@へ吊り下げ固定する
為の吊りボルトである、。
a[ is a nozzle port that inhales and guides indoor air from the suction grille (3) through an air filter (111) to a turbo fan (13), 0 is a 7-amp motor attached to the support leg (151) on the nozzle plate α4, is an annular drain pan disposed along the outer periphery of the nozzle opening σα, and aη is a turbo fan (Iz
An annular heat exchanger, a9 (1
1 is a hanging bolt for pushing the unit body (2) into the ceiling space through the ceiling hole 0 of the ceiling board (A) and suspending it from the ceiling beam @.

前述の流体偏向装置(4)はブーメラン形状の主偏向翼
c!4)と、三日月形状の補助偏向X(25)と、第4
図に示すようKこの両偏向翼を連動させる一対の連動具
(イ)とから構成されており、連動具■にはブーメラン
形状の凹部(5)と三日月形状の凹部側とこの両部に跨
がる連接部翰とが一体に形成されている。
The aforementioned fluid deflection device (4) is a boomerang-shaped main deflection wing c! 4), a crescent-shaped auxiliary deflection X (25), and a fourth
As shown in the figure, it is composed of a pair of interlocking tools (A) that interlock these two deflection blades, and the interlocking tool (■) has a boomerang-shaped recess (5), a crescent-shaped recess side, and a pair of interlocking tools (A) that straddle these two parts. A connecting part holder and a connecting part holder are integrally formed.

而して、左右対称の一対の連動具節と、長尺な同一長さ
の主偏向翼Q4と補助偏向翼器とを揃え、主偏向翼(支
))の左右両端を一方の凹部@に1補助偏向翼■の左右
両端を他方の凹部@に夫々嵌合させて接着剤で固着する
ことにより流体偏向装置(4)は組み立てられ、左右一
対の連動具■から外方へ一体く突出する回動軸(至)を
吹出口(51(6)(7)(81の夫々の両側壁で回動
自在に支持させることにより第3図(イ)(CI) K
、示すように取り付けられる。
Then, align the pair of left-right symmetrical interlocking joints, the long main deflection wing Q4 and the auxiliary deflection wing of the same length, and place both left and right ends of the main deflection wing (support) into one recess @. The fluid deflection device (4) is assembled by fitting the left and right ends of the 1 auxiliary deflection blade ■ into the other recess @ and fixing them with adhesive, and projects outward from the pair of left and right interlocking tools ■. By rotatably supporting the rotation shaft (to) on both side walls of the air outlet (51 (6), (7), (81)),
, mounted as shown.

かかる取り付けにより、主偏向翼Q4とこれと対向する
吹出口(51+63(71(81の曲壁面Gυとの間及
び主偏向翼@と補助偏向翼(ハ)との間に夫々同じ向き
に湾曲する偏向流路国(至)が形成される。(財)は補
助偏向翼■に吹出し流体を滑らかに案内する段差壁面で
ある。
With this installation, a curved wall is formed in the same direction between the main deflection vane Q4 and the curved wall surface Gυ of the opposite air outlet (51+63(71(81)) and between the main deflection vane @ and the auxiliary deflection vane (c). A deflection flow path is formed. (F) is a stepped wall surface that smoothly guides the blown fluid to the auxiliary deflection vane (■).

以上の如く構成されており、吸込グリル(3)からノズ
ル口ααを経てターボファンa3内に吸入された室内空
気はターボファンα2から全周方向へ吐出され、熱交換
器αDを通過する際に冷房時には冷却され、暖房時には
加熱される。
The structure is as described above, and the indoor air sucked into the turbo fan a3 from the suction grille (3) through the nozzle port αα is discharged from the turbo fan α2 in the circumferential direction, and when passing through the heat exchanger αD. It is cooled when cooling, and heated when heating.

而して冷房運転時には第3図印の如く、流れ軸に対しθ
!が50°に、なるように傾けて主偏向翼c24)の吹
出側下端(ハ)を曲壁面C311に近づけると、主偏向
翼@と曲壁面C31)との間の第1の偏向流路C33か
ら流速が速まった吹出流F、がコアンダ現象により曲壁
面01)忙沿って吹き出されると共に吹出流F。
Therefore, during cooling operation, as shown in Figure 3, the angle is θ with respect to the flow axis.
! When the lower end (C) of the main deflection blade C24) on the blow-off side approaches the curved wall surface C311 by tilting the main deflection blade C24) at an angle of 50°, the first deflection flow path C33 between the main deflection blade @ and the curved wall surface C31) The outlet flow F, whose flow velocity has increased, is blown out along the curved wall surface 01) due to the Coanda phenomenon, and the outlet flow F.

は主偏向翼Q4の内側壁面(至)で曲げられて吹出流F
is bent by the inner wall surface (to) of the main deflection blade Q4 and the blowout flow F
.

にコアンダ効果で吸引される。又、主偏向翼(財)と補
助偏向翼内との間の第2の偏向流路(ハ)を流れる吹出
流F、は主偏向翼(財)の湾曲状の外側壁面6ηにコア
ンダ現象により沿って吹き出されると共に吹出流F4は
補助偏向翼(ハ)で湾曲されながら吹出流F、にコアン
ダ効果で吸引される。しかも主偏向翼124の流入端(
至)で分配される吹出流F1及びF。
is attracted by the Coanda effect. In addition, the blowout flow F flowing through the second deflection flow path (c) between the main deflection blade and the auxiliary deflection blade is caused by the Coanda phenomenon on the curved outer wall surface 6η of the main deflection blade. At the same time, the blowout flow F4 is bent by the auxiliary deflection blade (c) and sucked into the blowout flow F by the Coanda effect. Moreover, the inflow end of the main deflection blade 124 (
(to) the outlet flows F1 and F.

は吹出流F3及びF4より流量が多く主流となり、吹出
流F4を吸引した吹出流F3は吹出流F、と共に主流で
ある吹出流F1にコアンダ効果で吸引されて合流され、
吹出流F、の流れとなる。
has a larger flow rate than the outlet flows F3 and F4, and becomes the mainstream, and the outlet flow F3, which has sucked the outlet flow F4, is attracted and merges with the outlet flow F1, which is the mainstream, together with the outlet flow F, by the Coanda effect,
The flow becomes the blowout flow F.

第5図k)はこの冷房運転時における室内の温度分布状
態を示したもので、吹出流F、が到達距離の長いシャー
プな流れとなって天井板■の壁面に、    沿って略
水平方向に吹き出された後、冷気が徐々に床面ellへ
降下して室内が略均−に冷房されることがわかる。
Figure 5k) shows the indoor temperature distribution state during this cooling operation, where the airflow F becomes a sharp flow with a long reach and flows almost horizontally along the wall surface of the ceiling panel ■. It can be seen that after being blown out, the cold air gradually descends to the floor surface, cooling the room almost evenly.

次に、暖房運転時には第3図(ロ)の如く、流れ軸に対
しθ2が15°になるように主偏向翼(2)を補助偏向
翼(ハ)と共に下方向に向けると、主偏向翼(ハ)と曲
壁面C311との間の第1の偏向流路G3を流れる一部
の吹出流F、は曲壁面Gl)で曲げられると共に他の吹
出流F、は主偏向翼(財)の内側壁面(ト)に沿って略
真下方向に吹き出される。又、第2の偏向流路(至)を
流れる吹出流F、は主偏向翼@の湾曲状の外側壁面r3
?)にコアンダ現象により沿って吹き出されると共沈吹
出流F、は補助偏向翼内で湾曲されなから吹出流F、に
コアンダ効果で吸引される。しかも主偏向翼(ハ)の流
入端(至)で分配される吹出流F。
Next, during heating operation, as shown in Figure 3 (b), if the main deflection blade (2) is turned downward along with the auxiliary deflection blade (c) so that θ2 is 15 degrees with respect to the flow axis, the main deflection blade (C) A part of the blowout flow F flowing through the first deflection flow path G3 between the curved wall surface C311 is bent by the curved wall surface Gl), and another blowout flow F is of the main deflection blade (goods). It is blown out along the inner wall surface (G) in a substantially downward direction. Moreover, the blowout flow F flowing through the second deflection flow path (toward) is caused by the curved outer wall surface r3 of the main deflection blade @.
? ) is blown out along the Coanda effect due to the Coanda effect, the coprecipitated blowout flow F is not curved within the auxiliary deflection vane and is then sucked into the blowout flow F due to the Coanda effect. Moreover, the blowout flow F is distributed at the inflow end (to) of the main deflection blade (c).

及びF、は吹出流F6及びF、より流量が多く主流とな
り、吹出流F、を吸引した主流である吹出流F、は吹出
流F、とF、とをコアンダ効果で吸引して合流させ、吹
出流F1゜の流れとなる。
and F, which has a larger flow rate than the outlet flows F6 and F, becomes the mainstream, and the outlet flow F, which is the main stream that sucks the outlet flow F, attracts the outlet streams F and F by the Coanda effect and merges them, The blowout flow is F1°.

第5図(ロ)はこの暖房運転時における室内の温度分布
状態を示したもので、吹出流F1゜が到達距離の長いシ
ャープな流れとなって床面(至)へ到達し、その後は暖
気がドラフト効果で徐々に上昇して室内が略均−に暖房
されることがわかる。
Figure 5 (b) shows the indoor temperature distribution state during this heating operation, in which the air outlet flow F1° becomes a sharp flow with a long reach and reaches the floor surface (to), after which warm air It can be seen that the temperature rises gradually due to the draft effect, and the room is heated approximately evenly.

(ト)発明の効果 本発明によれば、流体吹出口内に吹出し流体の吹出し方
向を可変する主偏向翼と補助偏向翼とを連動可能に設け
、主偏向翼と吹出口の曲壁面との間に第1の偏向流路を
形成すると共に主偏向翼と補助偏向翼との間にも第2の
偏向流路を形成するようにしたので、この両翼を偏向さ
せると第1の偏向流路のみならず第2の偏向流路でもコ
アンダ効果が有効に作用する為に第1の偏向流路を従来
装置はどに狭くしなくても流体の吹出し方向を流れ軸に
対して大きく変えることができ、低騒音のもとで多量の
且つ到達距離の長い吹出流を得ることができる。
(G) Effects of the Invention According to the present invention, a main deflection vane and an auxiliary deflection vane that change the blowing direction of the fluid to be blown out are provided in the fluid outlet so as to be interlockable, and the main deflection vane and the curved wall surface of the outlet are connected to each other. Since the first deflection flow path is formed between the main deflection blade and the auxiliary deflection blade, and the second deflection flow path is also formed between the main deflection blade and the auxiliary deflection blade, when the two blades are deflected, the first deflection flow path is formed. In addition, since the Coanda effect effectively acts on the second deflection flow path, conventional devices can greatly change the fluid blowout direction with respect to the flow axis without narrowing the first deflection flow path. It is possible to obtain a large amount of air flow with a long reach and low noise.

又、両偏向翼を流れ軸方向く向けると第2の偏向流路で
コアンダ効果が有効に作用して第1の偏向流路からの吹
出し流体を吸引し、流れ軸方向に到達距離の長いシャー
プな流れとなって吹き出させることができる。
In addition, when both deflection vanes are oriented in the flow axis direction, the Coanda effect effectively acts in the second deflection flow path, sucking the fluid blown from the first deflection flow path, and creating a sharp blade with a long reach in the flow axis direction. It can be made to blow out in a flow.

しかも、主偏向翼をブーメラン形状に、補助偏向翼を三
日月形状にすることにより、主偏向翼で第1と第2の偏
向流路を流れる流体分配量が変わり、この両偏向翼を偏
向させると第1の偏向流路が主流となり、流れ軸方向に
向けると第2の偏向流路が主流となる為、両偏向翼を小
さく偏向するだけで流体の吹出し方向を大きく偏向する
ことができる。
Moreover, by making the main deflection vane into a boomerang shape and the auxiliary deflection vane into a crescent shape, the amount of fluid flowing through the first and second deflection channels in the main deflection vane changes, and when both deflection vanes are deflected, The first deflection flow path becomes the main stream, and when oriented in the direction of the flow axis, the second deflection flow path becomes the main flow, so the direction of fluid blowout can be greatly deflected by simply deflecting both deflection blades a small amount.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は本発明装
置を組み込んだ天井埋込型空気調和機の斜視図、第2図
は天井へ埋込んだ状態を示す天井埋込型空気調和機の縦
断面図、第3図(イ)(口1は第2図のA部の異なる状
態を示す拡大断面図、第4図は本発明装置の要部分解斜
視図、第5図0)(口1は冷房と暖房運転時における室
内の温度分布状態図である。 +51(61(71(81・・・吹出口、 Q4・・・
主偏向翼、 (5)・・・補助偏向翼、 Gυ・・・曲
壁面、 C321(ハ)・・・偏向流路。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 靜 夫 第3 (イ) 5(6,78)
The drawings show embodiments of the present invention. Figure 1 is a perspective view of a ceiling-mounted air conditioner incorporating the device of the present invention, and Figure 2 is a perspective view of a ceiling-mounted air conditioner installed in the ceiling. A vertical cross-sectional view of the harmonizer, FIG. 3 (a) (portion 1 is an enlarged cross-sectional view showing a different state of section A in FIG. 2, FIG. 4 is an exploded perspective view of the main part of the device of the present invention, FIG. 5 ) (Port 1 is an indoor temperature distribution diagram during cooling and heating operation. +51 (61 (71 (81... air outlet, Q4...
Main deflection wing, (5)... Auxiliary deflection wing, Gυ... Curved wall surface, C321(c)... Deflection flow path. Applicant: Sanyo Electric Co., Ltd. and 1 other representative: Patent attorney: Shizuo Sano No. 3 (A) 5 (6,78)

Claims (2)

【特許請求の範囲】[Claims] (1)流体吹出口内に吹出し流体の吹出し方向を可変す
る主偏向翼と補助偏向翼とを連動可能に設け、主偏向翼
と吹出口の曲壁面との間及び主偏向翼と補助偏向翼との
間に夫々同じ向きに湾曲する偏向流路を形成してなる流
体偏向装置。
(1) A main deflection vane and an auxiliary deflection vane that change the direction of the blowout fluid are provided in the fluid outlet so as to be interlocked, and between the main deflection vane and the curved wall surface of the outlet, and between the main deflection vane and the auxiliary deflection vane. A fluid deflection device formed by forming deflection flow paths curved in the same direction between the two.
(2)主偏向翼をブーメラン形状に、補助偏向翼を三日
月形状にした特許請求の範囲第1項記載の流体偏向装置
(2) The fluid deflection device according to claim 1, wherein the main deflection blade has a boomerang shape and the auxiliary deflection blade has a crescent shape.
JP24272384A 1984-11-16 1984-11-16 Fluid deflecting device Pending JPS61122447A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24272384A JPS61122447A (en) 1984-11-16 1984-11-16 Fluid deflecting device
CN85108349.8A CN1004373B (en) 1984-11-16 1985-11-11 Air deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24272384A JPS61122447A (en) 1984-11-16 1984-11-16 Fluid deflecting device

Publications (1)

Publication Number Publication Date
JPS61122447A true JPS61122447A (en) 1986-06-10

Family

ID=17093286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24272384A Pending JPS61122447A (en) 1984-11-16 1984-11-16 Fluid deflecting device

Country Status (2)

Country Link
JP (1) JPS61122447A (en)
CN (1) CN1004373B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328911U (en) * 1989-08-01 1991-03-22
US5577958A (en) * 1994-09-26 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Wind direction adjusting device
US6843716B2 (en) * 2001-06-27 2005-01-18 Crf Societa Consortile Per Azioni Air distribution system for a motor vehicle
WO2011004186A3 (en) * 2009-07-06 2011-07-07 Aesir Limited Craft and method for assembling craft with controlled spin
JP2013178074A (en) * 2011-12-28 2013-09-09 Daikin Industries Ltd Air conditioner indoor unit
EP3680573A4 (en) * 2017-09-06 2021-07-21 LG Electronics Inc. Ceiling-type indoor unit of air conditioner
EP3686506A4 (en) * 2017-09-20 2021-07-28 LG Electronics Inc. Ceiling-type indoor unit of air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134407B (en) * 2015-08-20 2017-08-01 南京航空航天大学 Venturi offset fluidic vectoring nozzle and control method with VTOL function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618108A (en) * 1979-07-24 1981-02-20 Matsushita Electric Ind Co Ltd Controlling device for direction of flow
JPS5627851A (en) * 1979-08-10 1981-03-18 Matsushita Electric Ind Co Ltd Fluid jet device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618108A (en) * 1979-07-24 1981-02-20 Matsushita Electric Ind Co Ltd Controlling device for direction of flow
JPS5627851A (en) * 1979-08-10 1981-03-18 Matsushita Electric Ind Co Ltd Fluid jet device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328911U (en) * 1989-08-01 1991-03-22
US5577958A (en) * 1994-09-26 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Wind direction adjusting device
US6843716B2 (en) * 2001-06-27 2005-01-18 Crf Societa Consortile Per Azioni Air distribution system for a motor vehicle
WO2011004186A3 (en) * 2009-07-06 2011-07-07 Aesir Limited Craft and method for assembling craft with controlled spin
US9162764B2 (en) 2009-07-06 2015-10-20 Aesir Limited Craft and method for assembling craft with controlled spin
JP2013178074A (en) * 2011-12-28 2013-09-09 Daikin Industries Ltd Air conditioner indoor unit
US9777940B2 (en) 2011-12-28 2017-10-03 Daikin Industries, Ltd. Airflow direction control device of air conditioning indoor unit
EP3680573A4 (en) * 2017-09-06 2021-07-21 LG Electronics Inc. Ceiling-type indoor unit of air conditioner
EP3686506A4 (en) * 2017-09-20 2021-07-28 LG Electronics Inc. Ceiling-type indoor unit of air conditioner

Also Published As

Publication number Publication date
CN85108349A (en) 1986-08-20
CN1004373B (en) 1989-05-31

Similar Documents

Publication Publication Date Title
EP1326054B1 (en) Decorative panel for air conditioning system, air outlet unit, and air conditioning system
EP3412979B1 (en) Air-conditioning device
KR20070112333A (en) Air conditioner comprising cross-flow fan
KR102313905B1 (en) air guide for ceiling type air conditioner and ceiling type air conditioner having the same
EP1310743B1 (en) Decorative panel and diffuser unit of air conditioner, and air conditioner
JPS61122447A (en) Fluid deflecting device
JP7232986B2 (en) ceiling embedded air conditioner
WO2018010340A1 (en) Wall-mounted air conditioner indoor unit
JPS61256125A (en) Indoor unit of air conditioner
JPH07110154A (en) Air supply device
JP3081476B2 (en) Blow direction controller
JPS5918614B2 (en) fluid deflection device
JP3758592B2 (en) Recessed ceiling air conditioner
CN207936253U (en) Air conditioner room unit
JP3661250B2 (en) Blower circuit of separate type air conditioner
JPH06159783A (en) Blowoff chamber
JPS6211268B2 (en)
JP2016132991A (en) Blower
JP3178579B2 (en) Air conditioner
JP2516786Y2 (en) Ceiling-mounted air conditioner
JP2706383B2 (en) Ceiling-mounted air conditioner
JPS6335298Y2 (en)
JPS6329146A (en) Air conditioner built-in ceiling
JPH0835719A (en) Air conditioner
JPH0972300A (en) Blower