JPS6112101B2 - - Google Patents

Info

Publication number
JPS6112101B2
JPS6112101B2 JP55001868A JP186880A JPS6112101B2 JP S6112101 B2 JPS6112101 B2 JP S6112101B2 JP 55001868 A JP55001868 A JP 55001868A JP 186880 A JP186880 A JP 186880A JP S6112101 B2 JPS6112101 B2 JP S6112101B2
Authority
JP
Japan
Prior art keywords
engine
cooling water
temperature
cylinder
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55001868A
Other languages
Japanese (ja)
Other versions
JPS56101045A (en
Inventor
Kunihiko Shimoda
Yozo Tosa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP186880A priority Critical patent/JPS56101045A/en
Publication of JPS56101045A publication Critical patent/JPS56101045A/en
Publication of JPS6112101B2 publication Critical patent/JPS6112101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/08Use of engine exhaust gases for pumping cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/15Heat inputs by exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/50Crosshead guiding pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/85Crankshafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の冷却装置に関する。[Detailed description of the invention] The present invention relates to a cooling device for an internal combustion engine.

第1図は従来の内燃機関における冷却装置の1
例を示し、同図において、クランク軸1により駆
動される冷却水ポンプ2を出た冷却水は内燃機関
1Aのシリンダジヤケツト3およびシリンダヘツ
ド4を冷却してシリンダ出口冷却水管5に排出さ
れる。
Figure 1 shows a cooling system for a conventional internal combustion engine.
An example is shown in the figure, in which the cooling water exiting the cooling water pump 2 driven by the crankshaft 1 cools the cylinder jacket 3 and cylinder head 4 of the internal combustion engine 1A, and is discharged into the cylinder outlet cooling water pipe 5. .

シリンダ出口冷却水管路5中には自動水温調整
弁6が設けられ、該調整弁6は、機関1Aの出力
トルクが大きくシリンダ出口冷却水の温度が高い
ときはバイパス通路8を閉じ、冷却水の全量を冷
却水管7を経由してラジエータ9に送給せしめ
る。上記調整弁6を経た高温の冷却水は、ラジエ
ータ9において、クランク軸1により駆動される
フアン10の風により降温せしめられた後戻り管
11を経て冷却水ポンプ2に吸い込まれる。
An automatic water temperature adjustment valve 6 is provided in the cylinder outlet cooling water pipe 5, and this adjustment valve 6 closes the bypass passage 8 when the output torque of the engine 1A is large and the temperature of the cylinder exit cooling water is high. The entire amount is sent to the radiator 9 via the cooling water pipe 7. The high-temperature cooling water that has passed through the regulating valve 6 is sucked into the cooling water pump 2 through a return pipe 11 in which the temperature is lowered by the wind from a fan 10 driven by the crankshaft 1 in the radiator 9 .

一方、機関1Aの出力トルクが小さくシリンダ
出口の冷却水温度が低いときは、上記自動水温調
整弁6により冷却水管7への冷却水の流れが止め
られ、冷却水の全量がバイパス通路8および冷却
水戻り管11を経由して直接冷却水ポンプ2に吸
い込まれる。
On the other hand, when the output torque of the engine 1A is small and the cooling water temperature at the cylinder outlet is low, the automatic water temperature adjustment valve 6 stops the flow of cooling water to the cooling water pipe 7, and the entire amount of cooling water is transferred to the bypass passage 8 and the cooling water. The water is drawn directly into the cooling water pump 2 via the water return pipe 11.

上記機関は以上の作用により、機関1Aの出力
トルクの大小によらずシリンダ出口の冷却水温度
をほぼ一定に保持せしめられて正常な運転がなさ
れる。
Due to the above-described actions, the engine can operate normally by keeping the temperature of the cooling water at the cylinder outlet substantially constant regardless of the magnitude of the output torque of the engine 1A.

しかしながら、上記従来の冷却装置において
は、次のような不具合点があつた。
However, the conventional cooling device described above has the following drawbacks.

上記においては、ラジエーター9にて冷却水温
度を下げるためのフアン10をクランク軸イによ
り駆動している。このフアン駆動馬力は機関1A
最高回転時には機関出力の4ないし5%になり、
その分だけ機関1Aの軸出力が減少している。ま
たフアン10をクランク軸1により駆動している
ため、該フアン10は機関出力トルクの大少によ
らず、機関1Aの回転速度に対応した回転速度で
駆動されることとなる。
In the above, the fan 10 for lowering the temperature of the cooling water in the radiator 9 is driven by the crankshaft I. This fan drive horsepower is engine 1A
At maximum speed, it becomes 4 to 5% of the engine output,
The shaft output of the engine 1A is reduced by that amount. Further, since the fan 10 is driven by the crankshaft 1, the fan 10 is driven at a rotation speed corresponding to the rotation speed of the engine 1A, regardless of the magnitude of the engine output torque.

従つて機関1Aの出力トルクが小さくシリンダ
出口の冷却水温度が低いとき、即ち自動水温整弁
6によりラジエーター9への冷却水の流れが止め
られているときでもフアン10が無駄に駆動され
ていることとなる。このため機関1Aの低トルク
時においてフアン駆動馬力に相当する動力損失が
あると共に、フアン10から不要な騒音が発せら
れる。
Therefore, even when the output torque of the engine 1A is small and the cooling water temperature at the cylinder outlet is low, that is, even when the flow of cooling water to the radiator 9 is stopped by the automatic water temperature regulating valve 6, the fan 10 is driven uselessly. It happens. Therefore, when the engine 1A has a low torque, there is a power loss equivalent to the fan driving horsepower, and the fan 10 generates unnecessary noise.

本発明は上記に鑑みなされたもので、所要時に
のみフアンを駆動することによりフアンを駆動す
るための動力の損失を低減すると共に特に機関の
低トルク時におけるフアンの騒音を低減すること
を目的とする。
The present invention has been made in view of the above, and an object of the present invention is to reduce the loss of power for driving the fan by driving the fan only when necessary, and to reduce the noise of the fan especially when the engine has low torque. do.

以下第2図を参照して本発明の一実施例につき
説明すると、1は内燃機関1Aのクランク軸、2
は該クランク軸1により直結駆動される冷却水ポ
ンプ、3はシリンダジヤケツト、4はシリンダヘ
ツド、5はシリンダヘツド出口の冷却水管、6は
自動水温調整弁、9はラジエータ、10はラジエ
ータのフアン、11はラジエータ9と冷却水ポン
プ2の吸込口とを接続する冷却水管、8は自動水
温調整弁6と冷却水管11とを接続するバイパス
管、15は排気通路であり、これらの構成は従来
のものと同様である。
An embodiment of the present invention will be described below with reference to FIG. 2. Reference numeral 1 indicates a crankshaft of an internal combustion engine 1A;
3 is a cylinder jacket, 4 is a cylinder head, 5 is a cooling water pipe at the outlet of the cylinder head, 6 is an automatic water temperature adjustment valve, 9 is a radiator, and 10 is a radiator fan. , 11 is a cooling water pipe that connects the radiator 9 and the suction port of the cooling water pump 2, 8 is a bypass pipe that connects the automatic water temperature adjustment valve 6 and the cooling water pipe 11, and 15 is an exhaust passage. It is similar to that of .

100は公知のスターリング機関で、該スター
リング機関100のクランク軸12は上記フアン
10に連結されている。13は高温シリンダ、1
4は低温シリンダである。
100 is a known Stirling engine, and a crankshaft 12 of the Stirling engine 100 is connected to the fan 10. 13 is a high temperature cylinder, 1
4 is a low temperature cylinder.

21,22は上記高温シリンダ13と低温シリ
ンダ14を接続する作動ガス管路で、該管路2
1,22中には加熱器16、蓄熱器17及び冷却
器18が配設されている。
21 and 22 are working gas pipes connecting the high temperature cylinder 13 and the low temperature cylinder 14;
A heater 16, a heat accumulator 17, and a cooler 18 are disposed in the heaters 1 and 22.

上記加熱器16は機関1Aの排気通路15中に
臨み、機関1Aからの排気と上記作動ガスとを熱
交換するものであり、また上記冷却器18は機関
出口の冷却水管5中に臨み、機関1Aのシリンダ
ヘツド4から排出された冷却水と上記作動ガスと
を熱交換するものである。19はスターリング機
関100のクランク軸12に固定された水力ター
ビンで、上記調節弁6とラジエータ9の冷却水入
口との間の冷却管路7中に設けられて該管路7中
を流れる冷却水により駆動される。
The heater 16 faces into the exhaust passage 15 of the engine 1A and exchanges heat between the exhaust gas from the engine 1A and the working gas, and the cooler 18 faces into the cooling water pipe 5 at the engine outlet and is used to exchange heat between the exhaust gas from the engine 1A and the working gas. This is to exchange heat between the cooling water discharged from the 1A cylinder head 4 and the working gas. Reference numeral 19 denotes a hydraulic turbine fixed to the crankshaft 12 of the Stirling engine 100, which is installed in the cooling pipe 7 between the control valve 6 and the cooling water inlet of the radiator 9, and is configured to cool water flowing through the pipe 7. Driven by

上記装置において、内燃機関1Aが運転される
と、スターリング機関100の高温シリンダ13
に出入りする作動ガスは加熱器16において機関
1Aからの排気により加熱され、また低温シリン
ダ14に出入りする作動ガスは冷却器18におい
て機関から排出された冷却水により冷却される。
内燃機関1Aの出力トルクが大きくなると排気通
路15を流れる排気の温度Te及び冷却水管5を
流れる冷却水の温度Tcが上昇する。そしてシリ
ンダヘツド4出口の冷却水温度Tcが一定値を超
えると、自動水温調整弁6が開き、冷却水が冷却
水管7を流れはじめる。
In the above device, when the internal combustion engine 1A is operated, the high temperature cylinder 13 of the Stirling engine 100
The working gas flowing in and out of the low temperature cylinder 14 is heated in the heater 16 by the exhaust gas from the engine 1A, and the working gas flowing in and out of the low temperature cylinder 14 is cooled in the cooler 18 by cooling water discharged from the engine.
When the output torque of the internal combustion engine 1A increases, the temperature Te of the exhaust gas flowing through the exhaust passage 15 and the temperature Tc of the cooling water flowing through the cooling water pipe 5 rise. When the cooling water temperature Tc at the outlet of the cylinder head 4 exceeds a certain value, the automatic water temperature adjustment valve 6 opens and the cooling water begins to flow through the cooling water pipe 7.

その結果、クランク軸12上に設けられた水力
タービン19が回転しはじめ、スターリング機関
100が始動される。
As a result, the hydraulic turbine 19 provided on the crankshaft 12 begins to rotate, and the Stirling engine 100 is started.

この場合排気温度Teの上昇幅が冷却水温度Tc
の上昇よりも大きくなるので温度差Te−Tcが生
じ、高温シリンダ13及び低温シリンダ14がス
ターリング機関として作用し、フアン10に直結
されたクランク軸12が駆動される。
In this case, the increase in the exhaust temperature Te is the cooling water temperature Tc
The temperature difference Te-Tc is generated, and the high-temperature cylinder 13 and the low-temperature cylinder 14 act as a Stirling engine, and the crankshaft 12 directly connected to the fan 10 is driven.

即ち内燃機関1Aの出力トルクが大きいときは
上記排気温度Teが最高で700℃程度になる一方、
上記シリンダヘツド出口の冷却水温度Tcはたか
だか100℃であるのでスターリング機関100の
作動ガスには温度差Te−Tcが生ずる。従つて高
温シリンダ13及び低温シリンダ14はスターリ
ング機関として作用しクランク軸12を回転さ
せ、これと同軸のフアン10が回転駆動される。
That is, when the output torque of the internal combustion engine 1A is large, the exhaust temperature Te mentioned above reaches a maximum of about 700°C;
Since the cooling water temperature Tc at the cylinder head outlet is at most 100°C, a temperature difference Te-Tc occurs in the working gas of the Stirling engine 100. Therefore, the high temperature cylinder 13 and the low temperature cylinder 14 act as a Stirling engine to rotate the crankshaft 12, and the fan 10 coaxial therewith is driven to rotate.

一般に上記排気の持つ全熱量は、内燃機関1A
の軸出力と同程度であり、また従来のスターリン
グ機関の熱効率は35%にも達しているので、内燃
機関の軸出力の4ないし5%程度に相当するフア
ン10の駆動馬力を比較的容易に得ることができ
る。内燃機関1Aの出力トルクが小さいときは、
シリンダヘツド出口の冷却水温度Tcが低くな
り、自動水温調整弁6が冷却水管7への冷却水の
流れを止めるので、スターリング機関100は始
動せず、かつ排気温度Teも下がるので、温度差
Te−Tcが小さくなり、スターリング機関100
は自動的に停止する。
Generally, the total heat amount of the above exhaust gas is 1 A of internal combustion engine.
The shaft output of a conventional Stirling engine is about the same as that of the engine, and the thermal efficiency of a conventional Stirling engine is as high as 35%. Obtainable. When the output torque of the internal combustion engine 1A is small,
Since the cooling water temperature Tc at the cylinder head outlet becomes low and the automatic water temperature adjustment valve 6 stops the flow of cooling water to the cooling water pipe 7, the Stirling engine 100 does not start, and the exhaust temperature Te also decreases, resulting in a temperature difference.
Te−Tc becomes smaller, Stirling engine 100
will stop automatically.

尚上記冷却器18は、冷却水ポンプ2の吸込口
に通ずる冷却水管11中または、冷却水ポンプ2
とシリンダジヤケツト3との間の冷却水管路20
中に設けてもよい。この場合は冷却水温度Tcが
上記第1実施例の場合よりも低くなるので、Te
−Tcが大きくなり、スターリング機関100の
熱効率が上昇する。
The cooler 18 is installed in the cooling water pipe 11 leading to the suction port of the cooling water pump 2 or in the cooling water pipe 11 leading to the suction port of the cooling water pump 2
and the cylinder jacket 3.
It may be provided inside. In this case, the cooling water temperature Tc is lower than in the first embodiment, so Te
- Tc increases, and the thermal efficiency of the Stirling engine 100 increases.

本発明は上記のように構成されており、本発明
によれば、内燃機関の排気の熱量によりスターリ
ング機関を駆動し該スターリング機関の出力軸に
冷却用フアンを直結駆動するので、従来のものの
ように、内燃機関の出力の一部で冷却用フアンを
駆動する必要はなく、フアンの駆動動力は機関の
排気熱量にてまかなわれる。従つて内燃機関の有
効軸出力が増大し、その分だけ機関の燃料消費率
を低減することができる。
The present invention is constructed as described above, and according to the present invention, the Stirling engine is driven by the amount of heat of the exhaust gas of the internal combustion engine, and the cooling fan is directly connected to the output shaft of the Stirling engine, so it is different from the conventional one. In addition, there is no need to use part of the internal combustion engine's output to drive the cooling fan, and the driving power for the fan is covered by the engine's exhaust heat. Therefore, the effective shaft output of the internal combustion engine increases, and the fuel consumption rate of the engine can be reduced accordingly.

また、内燃機関の出力トルクが小さく冷却液の
温度が低いときは、水力タービンが駆動されず、
かつ排気温度も下がるので、スターリング機関は
駆動されず、このためフアンが不要に回転するこ
とがない。即ち、従来のもののように内燃機関の
全運転域においてフアンが運転されることがな
く、機関の出力トルクの高い所要の運転域におい
てのみフアンが運転される。従つて機関の低出力
域における燃料消費率が低減されると共に騒音の
発生が防止される。
Also, when the output torque of the internal combustion engine is small and the coolant temperature is low, the hydraulic turbine is not driven.
Moreover, since the exhaust temperature also decreases, the Stirling engine is not driven, and therefore the fan does not rotate unnecessarily. That is, the fan is not operated in the entire operating range of the internal combustion engine as in the conventional case, but is operated only in the required operating range where the output torque of the engine is high. Therefore, the fuel consumption rate in the low output range of the engine is reduced and the generation of noise is prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の内燃機関用冷却装置の一例を示
す系統図、第2図は本発明の一実施例を示す第1
図に応答する図である。 1…内燃機関のクランク軸、2…冷却水ポン
プ、1A…内燃機関、100…スターリング機
関、12…スターリング機関のクランク軸、13
…高温シリンダ、14…低温シリンダ、15…排
気通路、16…加熱器、18…冷却器、5,7,
11…冷却水管、9…ラジエータ、10…冷却フ
アン、21,22…作動ガス通路。
FIG. 1 is a system diagram showing an example of a conventional internal combustion engine cooling device, and FIG. 2 is a system diagram showing an example of a conventional internal combustion engine cooling device.
FIG. DESCRIPTION OF SYMBOLS 1... Crankshaft of internal combustion engine, 2... Cooling water pump, 1A... Internal combustion engine, 100... Stirling engine, 12... Crankshaft of Stirling engine, 13
...High temperature cylinder, 14...Low temperature cylinder, 15...Exhaust passage, 16...Heater, 18...Cooler, 5, 7,
11...Cooling water pipe, 9...Radiator, 10...Cooling fan, 21, 22...Working gas passage.

Claims (1)

【特許請求の範囲】[Claims] 1 低温シリンダと高温シリンダとを接続する作
動ガス管路中に、該作動ガスと内熱機関から排出
された排気とを熱交換して該作動ガスを昇温せし
める加熱器並びに該加熱器よりも低温シリンダ寄
りに上記作動ガスと上記機関の冷却液とを熱交換
して該作動ガスを降温せしめる冷却器をそれぞれ
設置して成るスターリング機関の出力軸を、上記
機関の冷却水を冷却するラジエータの冷却フアン
に連結したことを特徴とする内燃機関の冷却装
置。
1. A heater for exchanging heat between the working gas and the exhaust gas discharged from the internal heat engine to raise the temperature of the working gas in the working gas pipe connecting the low-temperature cylinder and the high-temperature cylinder; The output shaft of a Stirling engine is connected to a radiator that cools the engine's cooling water by connecting the output shaft of a Stirling engine, which is equipped with a cooler that lowers the temperature of the working gas by exchanging heat between the working gas and the engine's cooling fluid near the low-temperature cylinder. A cooling device for an internal combustion engine, characterized in that it is connected to a cooling fan.
JP186880A 1980-01-11 1980-01-11 Cooling system for internal combustion engine Granted JPS56101045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP186880A JPS56101045A (en) 1980-01-11 1980-01-11 Cooling system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP186880A JPS56101045A (en) 1980-01-11 1980-01-11 Cooling system for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS56101045A JPS56101045A (en) 1981-08-13
JPS6112101B2 true JPS6112101B2 (en) 1986-04-07

Family

ID=11513519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP186880A Granted JPS56101045A (en) 1980-01-11 1980-01-11 Cooling system for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS56101045A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106538U (en) * 1982-01-12 1983-07-20 アイシン精機株式会社 Heat pump auxiliary equipment configuration
JPH0632354A (en) * 1992-07-06 1994-02-08 Kazuhiko Ida Can for drinking water
JP2006283699A (en) * 2005-04-01 2006-10-19 Toyota Motor Corp Heat energy recovery device
GB2437309B (en) * 2006-04-22 2011-09-14 Ford Global Tech Llc A cooling system for an engine
US7891186B1 (en) * 2010-01-12 2011-02-22 Primlani Indru J System and method of waste heat recovery and utilization
US9021800B2 (en) * 2011-03-22 2015-05-05 The Boeing Company Heat exchanger and associated method employing a stirling engine
CN105201683B (en) * 2015-11-05 2017-01-25 北京航空航天大学 Low-quality engine waste heat recovery device
CN107218112A (en) * 2017-07-25 2017-09-29 江西清华泰豪三波电机有限公司 The radiator and engine system of engine exhaust driving
CN111828168B (en) * 2020-06-30 2022-05-10 泉州台商投资区工长信息技术有限公司 Stirling type turbocharger

Also Published As

Publication number Publication date
JPS56101045A (en) 1981-08-13

Similar Documents

Publication Publication Date Title
JP2712711B2 (en) Method and apparatus for cooling internal combustion engine
RU2762076C1 (en) Temperature control system of hybrid engine of heavy-load automobile and control method thereof
US6955141B2 (en) Engine cooling system
JP2553300B2 (en) Cooling device for internal combustion engine
KR101394051B1 (en) Engine cooling system for vehicle and control method in the same
US4164660A (en) Plant for the production of electrical energy and heat
KR20190045592A (en) Engine cooling system having egr cooler
JP4288200B2 (en) Internal combustion engine with high and low temperature cooling system
JP4445676B2 (en) Diesel engine with turbocharger
KR101734769B1 (en) Hybrid intercooler system for controlling oil temperature and method for controlling the same
JPS6112101B2 (en)
US6712028B1 (en) Engine cooling system with water pump recirculation bypass control
US3797562A (en) Cooling systems of supercharged diesel engines
JP2712720B2 (en) Cooling method of internal combustion engine
JP3891233B2 (en) Oil temperature control device for internal combustion engine
JP2002138835A (en) Cooling system for liquid-cooling internal combustion heat engine
JPS6114588Y2 (en)
KR100346480B1 (en) Cooling apparatus for water-cooled engine to shorten warm-up time
JP3713720B2 (en) Intake air temperature control device for internal combustion engine for vehicle
SU861675A1 (en) I.c. engine liquid cooling system
JP2734695B2 (en) Internal combustion engine cooling system
KR19980053771U (en) Air supply chiller of turbocharged engine
JPS6210425Y2 (en)
JPS6244118Y2 (en)
CN210370885U (en) Vehicle engine cooling system and vehicle engine