JPS61120448A - High-withstanding-voltage semiconductor integrated circuit - Google Patents

High-withstanding-voltage semiconductor integrated circuit

Info

Publication number
JPS61120448A
JPS61120448A JP24211484A JP24211484A JPS61120448A JP S61120448 A JPS61120448 A JP S61120448A JP 24211484 A JP24211484 A JP 24211484A JP 24211484 A JP24211484 A JP 24211484A JP S61120448 A JPS61120448 A JP S61120448A
Authority
JP
Japan
Prior art keywords
oxide film
depletion layer
semiconductor integrated
integrated circuit
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24211484A
Other languages
Japanese (ja)
Inventor
Shigeharu Yamamura
山村 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24211484A priority Critical patent/JPS61120448A/en
Publication of JPS61120448A publication Critical patent/JPS61120448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the concentration of the surface electric field at the interface of an oxide film and to obtain a compact, high withstanding voltage IC, by bending the edge of a depletion layer on the low concentration side to the side of an IC substrate in the IC having a planar structure, and forming the thick oxide film on the depletion layer region. CONSTITUTION:When the potential of a wiring metal 1 on the high concentration side at a P-N junction 5 is lower than that of a wiring 2 on the lower concentration side, a depletion layer 6 is yielded. Before the depletion layer 6 reaches a planar surface, the layer 6 reaches an oxide film 4, which is formed so as to form an obtuse angle with the depletion layer 6, at the lower side from the surface and at the side of a substrate 8. The layer 6 is bent to the substrate 8 at the interface of the film 4. The surface electric field of the oxide film interface 4 is alleviated. The oxide film 4 is formed so as to form an acute angle with a surface 7 on the upper side of the surface 7. Therefore, the distance between the substrate 8 and the wiring metal 1 becomes large. The concentration of the electric field at the tip of the wiring 1 is alleviated by only extending the wiring 1 to the region of the oxide film 4. In this constitution, the high withstanding voltage IC with small sizes can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プレーナー構造で特に高耐圧化に勝れた半導
体集積回路の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a semiconductor integrated circuit which has a planar structure and is particularly excellent in achieving high withstand voltage.

〔従来の技術〕[Conventional technology]

従来、プレーナー構造の高耐圧半導体集積回路を第2図
により説明する。なお、以下の説明ではN形半導体基板
にP膨拡散層を形成した場合で説明する。尚、P形半導
体基板にN形波散層を形成する場合も同様である。
A conventional high voltage semiconductor integrated circuit having a planar structure will be explained with reference to FIG. In the following explanation, a case will be explained in which a P expansion diffusion layer is formed on an N-type semiconductor substrate. The same applies to the case where an N-type wave diffusion layer is formed on a P-type semiconductor substrate.

第2図において、1,2は配線金属、3は酸化膜、5は
PN接合、6,9は空乏層領域、7はプレーナー表面、
8は半導体集積回路基板の一部を示す。ここで第2図の
記号で、第1図と同じ構成要素は同一記号で示しである
In FIG. 2, 1 and 2 are wiring metals, 3 is an oxide film, 5 is a PN junction, 6 and 9 are depletion layer regions, 7 is a planar surface,
8 shows a part of the semiconductor integrated circuit board. Here, the same components as in FIG. 1 are indicated by the same symbols as in FIG. 2.

この第2図において、PN接合の高濃度側配線金属1の
電位VpがPN接合の低濃度側配線金属2の電位vNよ
シも低い場合に、PN接合5は逆バイアス状態となり、
図に示すような空乏層領域6が生じる。この空乏層領域
6がプレーナー表面7に達する箇所で電界集中を生じ、
PN接合の降伏電圧が制限される。
In FIG. 2, when the potential Vp of the high-concentration wiring metal 1 of the PN junction is lower than the potential vN of the low-concentration wiring metal 2 of the PN junction, the PN junction 5 is in a reverse bias state.
A depletion layer region 6 as shown in the figure is generated. An electric field is concentrated at the point where this depletion layer region 6 reaches the planar surface 7,
The breakdown voltage of the PN junction is limited.

これを防止するため、第2図に示すように、PN接合の
高濃度側配線金属1をPN接合5及び空乏層領域6を覆
うように延長し、新たな空乏層領域9t−形成すること
で、プレーナー表面7での電界集中が緩和でき、PN接
合の降伏電圧を増加させる構造となっている。
In order to prevent this, as shown in FIG. 2, the wiring metal 1 on the high concentration side of the PN junction is extended to cover the PN junction 5 and the depletion layer region 6, and a new depletion layer region 9t- is formed. , the structure is such that electric field concentration on the planar surface 7 can be relaxed and the breakdown voltage of the PN junction can be increased.

これは、フィールド・プレート効果と一般に呼ばれてい
る。
This is commonly referred to as the field plate effect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の構造は、PN接合の高濃度側配線金属を
PN接合を覆うように延長し、その寸法はPN接合に印
加される逆電圧に比例して大きくしなければならず、当
然、PN接合の高濃度側配線金属とPN接合の低濃度側
配線金属間の距離は半導体集積回路の設計基準によって
定まる寸法を必要とするため、おのずと高耐圧半導体集
積回路の寸法が大きくなり、チップ・サイズの増大、し
いては歩留りの低下に結びつく欠点を有していた。
In the conventional structure described above, the wiring metal on the high concentration side of the PN junction is extended to cover the PN junction, and its size must be increased in proportion to the reverse voltage applied to the PN junction. The distance between the high-concentration wiring metal of the junction and the low-concentration wiring metal of the PN junction requires a dimension determined by the design standards of semiconductor integrated circuits, which naturally increases the dimensions of high-voltage semiconductor integrated circuits and increases the chip size. However, this method has the disadvantage that it leads to an increase in the yield rate and a decrease in the yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はプレーナー構造を有する高耐圧半導体集積回路
において、低濃度側空乏層領域がプレーナー表面に達す
る前に、その空乏層領域を含む低濃度側半導体領域を含
む低濃度側半導体領域を、酸化膜に、その酸化膜と空乏
層領域が鈍角をなすように置換し、かつその酸化膜をプ
レーナー表面より上ではプレーナー表面と鋭角をなすよ
うに形成し、PN接合の高濃度側配線金属をプレーナー
表面と鋭角をなす酸化膜の領域まで延長したことを特徴
とする高耐圧半導体集積回路である。
The present invention provides a high breakdown voltage semiconductor integrated circuit having a planar structure, in which a low concentration semiconductor region including a low concentration semiconductor region including the depletion layer region is covered with an oxide film before the low concentration side depletion layer region reaches the planar surface. Then, the oxide film and the depletion layer region are replaced so that they form an obtuse angle, and the oxide film is formed above the planar surface to form an acute angle with the planar surface, and the wiring metal on the high concentration side of the PN junction is placed on the planar surface. This is a high-voltage semiconductor integrated circuit characterized by extending to an oxide film region that forms an acute angle with the oxide film.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示すプレーナー構造の高耐
圧半導体集積回路の構造図である。
FIG. 1 is a structural diagram of a high voltage semiconductor integrated circuit having a planar structure showing an embodiment of the present invention.

第1図において、1.2は配線金属、3,4は酸化膜、
5はPN接合、6は空乏層領域、7はプレーナー表面、
8は半導体集積回路基板の一部を示す。
In Figure 1, 1.2 is a wiring metal, 3 and 4 are oxide films,
5 is a PN junction, 6 is a depletion layer region, 7 is a planar surface,
8 shows a part of the semiconductor integrated circuit board.

この第1図において、PN接合の高濃度側配線金属1の
電位VpがPN接合の低濃度側配線金属2の電位VNよ
りも低い場合に、PN接合5は逆バイアス状態となり、
図に示すような空乏層領域6が生じる。
In FIG. 1, when the potential Vp of the high-concentration wiring metal 1 of the PN junction is lower than the potential VN of the low-concentration wiring metal 2 of the PN junction, the PN junction 5 is in a reverse bias state.
A depletion layer region 6 as shown in the figure is generated.

この空乏層領域6はプレーナー表面7に達する前に、プ
レーナー表面7よシ下側でかつ半導体集積回路基板8側
に、空乏層領域6と鈍角をなすように形成された酸化膜
4に達する。
Before reaching the planar surface 7, the depletion layer region 6 reaches an oxide film 4 formed below the planar surface 7 and on the semiconductor integrated circuit substrate 8 side so as to form an obtuse angle with the depletion layer region 6.

この空乏層領域6と鈍角をなすように形成された酸化膜
4により、空乏層領域6は図に示すように酸化膜4界面
で半導体集積回路基板8側に曲げられる。これは一種の
ベベル構造と考えられ、酸化膜4界面の表面電界が緩和
される。
Due to the oxide film 4 formed to form an obtuse angle with the depletion layer region 6, the depletion layer region 6 is bent toward the semiconductor integrated circuit substrate 8 at the interface of the oxide film 4, as shown in the figure. This is considered to be a kind of bevel structure, and the surface electric field at the interface of the oxide film 4 is relaxed.

又、酸化膜4はプレーナー表面7より上側でかつ半導体
集積回路表面側では、プレーナー表面7と鋭角をなすよ
うに形成されているため、半導体集積回路基板8とPN
接合の高濃度側配線金属1との距離が大きくなり、この
高濃度側配線金属1をプレーナー表面7と鋭角をなすよ
うに形成された酸化膜4の領域まで延長するだけで、こ
の高濃度側配線金属1の先端での電界集中が緩和される
Further, since the oxide film 4 is formed above the planar surface 7 and on the semiconductor integrated circuit surface side to form an acute angle with the planar surface 7, the semiconductor integrated circuit substrate 8 and the PN
The distance between the junction and the wiring metal 1 on the high concentration side increases, and by simply extending the wiring metal 1 on the high concentration side to the area of the oxide film 4 formed at an acute angle with the planar surface 7, the wiring metal 1 on the high concentration side Electric field concentration at the tip of the wiring metal 1 is alleviated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による構造とすることによ
り、低濃度側空乏層領域は半導体集積回路基板側に曲が
9、その空乏層領域上の酸化膜も厚く形成されるため、
酸化膜界面の表面電界集中が防止できる。
As explained above, with the structure according to the present invention, the low concentration side depletion layer region has a curve 9 on the semiconductor integrated circuit substrate side, and the oxide film on the depletion layer region is also formed thickly.
Surface electric field concentration at the oxide film interface can be prevented.

これにより、高耐圧半導体集積回路を形成するために、
PN接合の高濃度側配線金属をプレーナー表面での電界
集中緩和のために、フィールド・プレート効果を持たせ
るように大きくする必要がなく、小さい寸法で高耐圧半
導体集積回路が得られ、チップサイズの縮小、歩留りの
向上を図ることができる効果がある・
As a result, in order to form a high voltage semiconductor integrated circuit,
In order to alleviate the concentration of electric field on the planar surface, the wiring metal on the high concentration side of the PN junction does not need to be made large enough to have a field plate effect, and a high breakdown voltage semiconductor integrated circuit can be obtained with a small size, reducing the chip size. It has the effect of reducing size and improving yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高耐圧半導体集積回路の構造図、第2
図は従来の高耐圧半導体集積回路の構造図である。 1.2・・・配線金属、3,4・・・酸化膜、5・・・
PN接合、6.9・・・空乏層領域、7・・・プレーナ
ー表面、8・・・半導体集積回路基板の一部 特許出願人  日本電気株式会社 6:空乏眉預域 7ニプレーナiシ;ζ1面 第2図
Fig. 1 is a structural diagram of a high voltage semiconductor integrated circuit according to the present invention;
The figure is a structural diagram of a conventional high voltage semiconductor integrated circuit. 1.2... Wiring metal, 3,4... Oxide film, 5...
PN junction, 6.9... Depletion layer region, 7... Planar surface, 8... Partial patent applicant for semiconductor integrated circuit board NEC Corporation 6: Depletion layer region 7 Ni planar i; ζ1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)プレーナー構造を有する高耐圧半導体集積回路に
おいて、低濃度側空乏層領域が高耐圧半導体集積回路の
プレーナー表面に達する前に、その空乏層領域を含む低
濃度側半導体領域を、酸化膜に、その酸化膜と空乏層領
域が鈍角をなすように置換し、かつその酸化膜をプレー
ナー表面より上ではプレーナー表面と鋭角をなすように
形成し、PN接合の高濃度側配線金属をプレーナー表面
と鋭角をなす酸化膜の領域まで延長したことを特徴とす
る高耐圧半導体集積回路。
(1) In a high voltage semiconductor integrated circuit having a planar structure, before the low concentration depletion layer region reaches the planar surface of the high voltage semiconductor integrated circuit, the low concentration semiconductor region including the depletion layer region is formed into an oxide film. , the oxide film and the depletion layer region are replaced so that they form an obtuse angle, and the oxide film is formed above the planar surface to form an acute angle with the planar surface, and the wiring metal on the high concentration side of the PN junction is formed with the planar surface. A high-voltage semiconductor integrated circuit characterized by an oxide film extending into an acute-angled region.
JP24211484A 1984-11-16 1984-11-16 High-withstanding-voltage semiconductor integrated circuit Pending JPS61120448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24211484A JPS61120448A (en) 1984-11-16 1984-11-16 High-withstanding-voltage semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24211484A JPS61120448A (en) 1984-11-16 1984-11-16 High-withstanding-voltage semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61120448A true JPS61120448A (en) 1986-06-07

Family

ID=17084503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24211484A Pending JPS61120448A (en) 1984-11-16 1984-11-16 High-withstanding-voltage semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61120448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120222A (en) * 1997-03-31 2000-09-19 Makino Milling Machine, Co., Ltd. Machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120222A (en) * 1997-03-31 2000-09-19 Makino Milling Machine, Co., Ltd. Machine tool

Similar Documents

Publication Publication Date Title
GB1465629A (en) Solid state components
JP5656608B2 (en) Semiconductor device
US2945286A (en) Diffusion transistor and method of making it
JPS61120448A (en) High-withstanding-voltage semiconductor integrated circuit
US3465214A (en) High-current integrated-circuit power transistor
US4672415A (en) Power thyristor on a substrate
TWM619800U (en) Semiconductor device and switching power device
GB1576457A (en) Semiconductor devices
JPH04132264A (en) Insulating gate type field effect transistor
JP5300120B2 (en) Thyristor
JP3132521B2 (en) Semiconductor device
JPS62142360A (en) Semiconductor device
JPH02170469A (en) Semiconductor device
JPH06302808A (en) Semiconductor device
JPS60154564A (en) Semiconductor device
JPH0832049A (en) Semiconductor device
JPS61101076A (en) Mosfet
JPS5858774A (en) Schottky barrier-diode
JPS5898966A (en) Input protecting device for semiconductor device
JPS5944869A (en) Semiconductor device
JPS57122568A (en) Semiconductor device
JPS60153157A (en) Bi-polar ic
JPS60154669A (en) Semiconductor device
JPS6020567A (en) Semiconductor device
JPH088419A (en) Semiconductor device