JPS6112018B2 - - Google Patents

Info

Publication number
JPS6112018B2
JPS6112018B2 JP14399282A JP14399282A JPS6112018B2 JP S6112018 B2 JPS6112018 B2 JP S6112018B2 JP 14399282 A JP14399282 A JP 14399282A JP 14399282 A JP14399282 A JP 14399282A JP S6112018 B2 JPS6112018 B2 JP S6112018B2
Authority
JP
Japan
Prior art keywords
steel
wire
addition
effect
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14399282A
Other languages
Japanese (ja)
Other versions
JPS5935655A (en
Inventor
Masaaki Murakami
Hiroshi Sato
Shinichi Mogami
Iwao Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14399282A priority Critical patent/JPS5935655A/en
Publication of JPS5935655A publication Critical patent/JPS5935655A/en
Publication of JPS6112018B2 publication Critical patent/JPS6112018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ベルトコード、タイヤコード等ゴム
内補強材として用いる高強度で高疲労強度を有す
る高炭素鋼線材に関するものである。 而して本発明は、高炭素鋼線材においてCoと
Niを複合添加することにより、冷間伸線加工後
の疲労特性の優れた極細伸線用高炭素鋼線材を提
供するものである。 ゴム内補強材としての極細線は、溶製→鋼片→
熱間圧延線材→熱処理→伸線→熱処理→メツキ→
伸線の如き工程により所定線径と強度を得る方法
が通常採用されている。 従来、極細仕上り素線の強度を上げるために
は、仕上り線径までの累積減面加工率を上げる方
法あるいは、炭素含有量を増やした高炭素鋼の適
用等が実施されている。しかし、これらの方法は
仕上り線の引張強さは比較的容易に増加出来る
が、高張力化に伴なう靭性値の劣化を避けること
が出来ず、特にスチールコード素線においてもつ
とも重要な特性である疲労強度の大幅な向上が期
待し難く、これがスチールコード素線開発の難点
であつた。 本発明者等は、斯様な問題を解決する目的で、
伸線加工により製造される極細鋼線の機械特性を
究明した結果、伸線材の靭性保持のためには、素
材のフエライト地強化およびパーライト・ラメラ
ー組織の均一性向上が有効であることを知見し、
それに、見合う低合金鋼の開発に成功した。 すなわち、本発明鋼はC:0.60〜0.90%、Si:
0.10〜0.50%、Mn:0.50〜1.00%で、Co:0.30〜
1.00%、Ni:0.05〜0.20%未満、残余はFeおよび
不可避的随伴元素から成り、冷間伸線加工により
極細線とし、引張強さ350Kg/mm2以上で50万回まで
の回転曲げ疲労試験において70Kg/mm2以上の疲労
限を有する極細線用の高炭素鋼線材である。 従来Co添加鋼に関する特許として特公昭46−
6702号公報「高強度鋼線に延伸するに適した鋼」
があり、その発明の目的は高減面冷間伸線加工
と、それに見合う引張強さの向上にあるが、疲労
特性の向上については指向していない。本発明者
等は疲労特性の向上について指向し、含有炭素
量、含有Co量が特公昭46−6702号公報より低い
場合でも顕著な改善効果が認められることを発見
したのみならず、高価な合金元素であるCoの含
有量の一部をNiに置き変えても同効果が維持さ
れることを見出した。 また特公昭46−6702号公報の実施例には、Co
と共にNi量が0.03%含有の成分が記載されている
が、Niはその含有量よりみて意図して添加され
た量ではなく、電気炉溶製鋼の場合などに認めら
れる不可避的に含有されたものと考えられ、本発
明におけるCo−Niの複合添加効果を目的とした
ものではない。さらに本発明者等は試験の結果、
Co−Niの複合効果を得るためには、Ni0.05%以
上が必要であることがわかつた。尚、これまで冷
間伸線加工後の回転曲げ疲労試験での疲労限が、
70Kg/mm2以上を満足する鋼についての報告は全く
ない。 本発明者等は、冷間伸線加工鋼線において、引
張強さの高レベル維持と共に疲労特性の大幅改善
のためには、Co、Niの複合添加が有効であるこ
とを見出した。次にCo、Niの複合添加による作
用について述べる。添加されたCoはフエライト
中に固溶し、パーライト組織内のフエライト中過
飽和C量を下げると共に、パーライトの成長を促
がすものであり、これによつて、フエライト地の
靭性向上とパーライトラメラー組織の均一性向上
が得られ、冷間伸線における加工性が著しく改善
される。 また、Niはフエライト中に固溶し、Coと共に
フエライト地の靭性を向上される。特にCoと共
にNiを微量含有することによつて伸線材の靭性
は大幅に向上することが認められた。そしてNi
含有量が0.20%未満であれば、Coとほゞ同様な
効果を有し、かつパーライト・ラメラー組織の均
一性を損なわないことがわかつた。特に本発明者
等の試験において判明したことであるが、Coと
Niの複合添加において、Co量が1%以下の場
合、Ni量0.05〜0.20%未満の複合添加効果が大き
く、一方、Co量1.0%を超える場合は、Coの添加
効果は認められるものの、Niの複合添加効果は
明確に認められなかつた。 以上述べた如く、CoとNiは共にフエライト地
の靭性向上に対して効果を有し、CoとNiの複合
添加により疲労特性向上の相乗効果が期待出来、
高価なCoの一部をNi添加で置換出来ることがわ
かつた。 以下本発明で規定する各元素の含有量の限定理
由について更に説明する。 一般に伸線加工鋼線の引張強さは炭素含有量と
共に増加するので、炭素含有量は出来るだけ増量
することが望ましい。したがつてゴム補強用極細
鋼線としては炭素量0.60%以上が必要とされて用
いられる。一方、炭素含有量が0.90%を越すと初
折セメンタイトが粒界にネツト状に折出し伸線加
工性を阻害する。 したがつて、炭素含有量の範囲を0.60〜0.90%
とした。Mnはパテンテイング処理時の焼入性確
保の面から0.50%以上を必要とし、伸線加工性阻
害の面より、1.00%以下に定めた。Siはフエライ
ト地強化の効果のため0.10%以上を必要とするが
0.50%を超えると意味がない。 高炭素鋼において、フエライト地の強化とラメ
ラーパーライトの均一化による伸線材の靭性向上
には、少なくとも0.3%以上のCoが必要なことが
わかつた。また、Co含有量は、後述のNi添加に
よるCo−Ni複合添加効果においてCo量1.00%を
超えると明確な向上効果は認められなかつたので
Co量の上限を1.00%とした。次にNi含有量はCo
との共存において0.05%以上でCoと同様にフエ
ライト地の靭性を向上させるが、0.20%を超える
とラメラー状パーライト組織の均一性を損なう。
このことからNi含有量の範囲を0.05%〜0.20%未
満とした。 次に本発明による高強度、高疲労特性の極細鋼
線の製造についての実施例を示す。第1表には、
高周波溶解炉で溶製した試験材の化学成分を示し
た。高周波溶製した50Kg鋼塊を120φの鋼片に熱
間鍛造あるいは熱間圧延し、この鋼片を5.5mmφ
の線材に圧延した。この線材を2段階で0.23mmφ
の鋼線に伸線した。各段階の伸線工程の前に線材
または鋼線を連続パテンテイング炉でパテンテイ
ング処理した。 第1のパテンテイング工程は5.5mmφ線材に行
なわれ、1000℃加熱、550℃鉛浴に焼入した。そ
の後1.16mmφあるいは1.64mmφまで乾式伸線し
た。第2のパテンテイング、処理は比較材
SWRH72AおよびSWRH82Aのみ、仕上り線
(0.23φ)での、靭性確保のため1.16φ伸線後、
そして、他は1.64mmφで伸線行なわれ、1000℃加
熱、550℃(一部570℃)鉛浴に焼入した。その
後、0.7mmφまで乾式伸線、さらに仕上り線0.23
mmφまで湿式伸線した。
The present invention relates to a high carbon steel wire rod having high strength and high fatigue strength and used as a reinforcing material in rubber for belt cords, tire cords, etc. Therefore, the present invention has the advantage of combining Co and
The composite addition of Ni provides a high carbon steel wire rod for ultra-fine wire drawing that has excellent fatigue properties after cold wire drawing. The ultra-fine wire used as a reinforcing material inside the rubber is produced by melting→steel billet→
Hot rolled wire → heat treatment → wire drawing → heat treatment → plating →
A method of obtaining a predetermined wire diameter and strength through a process such as wire drawing is usually employed. Conventionally, in order to increase the strength of ultra-fine finished strands, methods have been implemented such as increasing the cumulative area reduction rate up to the finished wire diameter or using high carbon steel with increased carbon content. However, although these methods can relatively easily increase the tensile strength of the finished wire, they cannot avoid deterioration of the toughness value that accompanies higher tensile strength, which is particularly important for steel cord wire. It was difficult to expect a significant improvement in fatigue strength, and this was a difficult point in the development of steel cord strands. In order to solve such problems, the present inventors,
As a result of investigating the mechanical properties of ultra-fine steel wire produced by wire drawing, we found that strengthening the ferrite base of the material and improving the uniformity of the pearlite lamellar structure are effective ways to maintain the toughness of the drawn wire material. ,
In addition, we succeeded in developing a low-alloy steel that meets this need. That is, the steel of the present invention has C: 0.60 to 0.90% and Si:
0.10~0.50%, Mn: 0.50~1.00%, Co: 0.30~
1.00%, Ni: less than 0.05 to 0.20%, the remainder consists of Fe and unavoidable accompanying elements, made into an ultra-fine wire by cold wire drawing, and subjected to a rotary bending fatigue test up to 500,000 times with a tensile strength of 350 Kg/mm 2 or more It is a high carbon steel wire rod for ultra-fine wires with a fatigue limit of 70Kg/mm 2 or more. Patent Publication No. 1977- as a patent on conventional Co-added steel
Publication No. 6702 "Steel suitable for drawing into high strength steel wire"
The purpose of the invention is to achieve high area reduction cold wire drawing and to improve the tensile strength correspondingly, but it is not directed to improving fatigue properties. The present inventors aimed at improving fatigue properties, and not only discovered that a remarkable improvement effect was observed even when the content of carbon and Co content was lower than that disclosed in Japanese Patent Publication No. 46-6702, but also It was found that the same effect was maintained even if part of the content of the element Co was replaced with Ni. In addition, in the example of Japanese Patent Publication No. 46-6702, Co
In addition, a component containing 0.03% Ni is listed, but judging from the content, Ni is not intentionally added, but is unavoidably included, such as in the case of electric furnace molten steel. Therefore, the effect of the combined addition of Co-Ni in the present invention is not intended. Furthermore, the inventors found that as a result of the test,
It was found that 0.05% or more of Ni is required to obtain the combined effect of Co-Ni. In addition, until now, the fatigue limit in the rotating bending fatigue test after cold wire drawing was
There are no reports on steel that satisfies 70Kg/mm 2 or more. The present inventors have discovered that the combined addition of Co and Ni is effective in maintaining a high level of tensile strength and significantly improving fatigue properties in cold drawn steel wire. Next, we will discuss the effect of combined addition of Co and Ni. The added Co dissolves in the ferrite, reduces the amount of supersaturated C in the ferrite in the pearlite structure, and promotes the growth of pearlite, thereby improving the toughness of the ferrite base and forming a pearlite lamellar structure. This results in improved uniformity and significantly improved workability in cold wire drawing. In addition, Ni dissolves in solid solution in ferrite, and together with Co, improves the toughness of the ferrite base. In particular, it was found that the toughness of the drawn wire material was significantly improved by containing a small amount of Ni together with Co. And Ni
It was found that when the content is less than 0.20%, it has almost the same effect as Co and does not impair the uniformity of the pearlite lamellar structure. In particular, it was found in the tests conducted by the present inventors that Co and
In the composite addition of Ni, when the Co amount is 1% or less, the composite addition effect is large when the Ni amount is less than 0.05 to 0.20%, while when the Co amount exceeds 1.0%, although the effect of Co addition is recognized, the Ni The effect of the combined addition of was not clearly observed. As mentioned above, both Co and Ni have an effect on improving the toughness of ferrite, and the combined addition of Co and Ni can be expected to have a synergistic effect on improving fatigue properties.
It was found that part of the expensive Co could be replaced by adding Ni. The reason for limiting the content of each element defined in the present invention will be further explained below. Generally, the tensile strength of a wire-drawn steel wire increases with the carbon content, so it is desirable to increase the carbon content as much as possible. Therefore, ultrafine steel wire for rubber reinforcement needs to have a carbon content of 0.60% or more. On the other hand, if the carbon content exceeds 0.90%, primary cementite precipitates in the form of a net at the grain boundaries, inhibiting wire drawability. Therefore, carbon content ranges from 0.60 to 0.90%
And so. Mn is required to be at least 0.50% in order to ensure hardenability during the patenting process, and set at 1.00% or less in view of inhibiting wire drawability. Si requires 0.10% or more to strengthen the ferrite ground.
It is meaningless if it exceeds 0.50%. In high carbon steel, it was found that at least 0.3% Co is required to improve the toughness of drawn wire materials by strengthening the ferrite base and making the lamellar pearlite uniform. In addition, regarding the Co content, no clear improvement effect was observed when the Co content exceeded 1.00% in the Co-Ni composite addition effect due to Ni addition, which will be described later.
The upper limit of Co amount was set to 1.00%. Next, the Ni content is Co
Coexistence with 0.05% or more improves the toughness of the ferrite base like Co, but if it exceeds 0.20%, the uniformity of the lamellar pearlite structure is impaired.
From this, the range of Ni content was set as 0.05% to less than 0.20%. Next, an example of manufacturing an ultra-fine steel wire with high strength and high fatigue properties according to the present invention will be shown. In Table 1,
The chemical composition of the test material melted in a high-frequency melting furnace is shown. A 50Kg steel ingot produced by induction welding is hot forged or hot rolled into a 120φ steel billet, and this steel billet is made into a 5.5mmφ
It was rolled into a wire rod. This wire is 0.23mmφ in two steps.
The steel wire was drawn. Before each stage of the wire drawing process, the wire rod or steel wire was patented in a continuous patenting furnace. The first patenting process was performed on a 5.5 mmφ wire rod, which was heated at 1000°C and quenched in a lead bath at 550°C. After that, it was dry drawn to 1.16mmφ or 1.64mmφ. Second patenting and treatment are comparative materials
For SWRH72A and SWRH82A only, after drawing the finished wire (0.23φ) to 1.16φ to ensure toughness,
The other wires were drawn to a diameter of 1.64 mm, heated to 1000°C, and quenched in a lead bath at 550°C (partially 570°C). After that, dry wire drawing to 0.7mmφ and then finished wire to 0.23
Wet wire drawing to mmφ.

【表】 第2表には各試験材の0.23mmφ仕上り線での機
械的性質を示した。また、第1図に、0.23mmφ線
での引張強さに対する絞り値を、第2図に、各試
料の引張強さに対する回転曲げ疲労試験における
50万回疲労限を示した。尚、回転曲げ疲労試験に
よるS−N曲線の例を第3図示した。
[Table] Table 2 shows the mechanical properties of each test material at the 0.23mmφ finished line. In addition, Fig. 1 shows the aperture value for the tensile strength at the 0.23 mmφ line, and Fig. 2 shows the aperture value for the tensile strength of each sample in the rotating bending fatigue test.
It showed a fatigue limit of 500,000 cycles. Incidentally, an example of the S-N curve obtained by the rotating bending fatigue test is shown in Fig. 3.

【表】 本発明鋼は0.23mmφ仕上り線段階で第2表、第
1図にみられる様に、炭素含有量0.6%C、0.7%
C、0.8%C材において引張強さがそれぞれ350、
380、390Kg/mm2以上の高レベルにありながら、絞
り、捻回値等の靭性値は、既存の比較鋼
(SWRH72A、SWRH72A、SWRH72A)の引張強
さがそれぞれ270、300、320Kg/mm2レベル材と同等
にあり、特に疲労特性は第2図、第3図にみられ
る様に著しく高位にあるのが特徴である。 すなわち、本発明鋼は引張強さ:350Kg/mm2
上、絞り:30%以上、捻回値:160回以上で、特
に回転曲げ疲労試験の疲労限で70Kg/mm2以上であ
り比較鋼SWRH62A、SWRH72Aおよび
SWRH82Aの疲労限45、50および59Kg/mm2に比し
て大幅な向上が認められる。 さらに実施例における添加合金成分の効果につ
いて述べる。 比較鋼であるCo単独添加材(0.8%Co〜試料
No.S−3)に比して、本発明鋼のNiを0.08%およ
び0.18%添加したもの(試料No.S−4およびS−
5)は、絞り、捻回値の靭性値および疲労限が、
さらに向上することが認められ、Coに対するNi
添加の明らかな複合効果が認められた。一方、本
発明鋼(試料No.S−5)と比較鋼(試料No.S−
6)を比較して、Ni量を0.65%と増量しても、機
械的性質の向上効果はほとんどなく、むしろ低下
の傾向が認められ、Ni添加量0.20%未満が添加の
上限であることを示すものである。 次に、比較鋼(試料No.S−7)は、Co添加量
を2%まで増量した場合であるが、得られる機械
的特性においてCo添加の大幅増量にみあう向上
は得られなかつた。さらに比較鋼(試料No.S−
8)は2%CoにさらにNiを添加したものである
が、機械的特性は上述の比較鋼(試料No.S−
7)と同レベルにあり、先に示した0.8%Coに対
するNi添加材(試料No.S−4およびS−5)に
おけると同様のCo−Ni複合添加効果は認められ
ず、Co−Niの複合添加効果におけるCo量の有効
上限(1.00%Co)の存在を示すものである。 以上詳述した如く、本発明による線材は、Co
とNiの複合添加効果により、極細鋼線において
極めて優れた靭性および疲労特性を有している。 極細鋼線において、絞り、捻回値等の靭性値が
優れていることは、スチールコード撚り加工性の
良好なることを意味し、また引張強さに対して、
疲労特性が高位であることは、タイヤおよびゴム
ホース内スチールコードの耐久性向上は勿論コー
ド構成の簡素化等が図り得るものであり、スチー
ルコード用素材として本発明材は工業的に極めて
有用である。
[Table] As shown in Table 2 and Figure 1, the steel of the present invention has a carbon content of 0.6%C and 0.7% at the 0.23mmφ finishing line stage.
The tensile strength of C and 0.8% C materials is 350, respectively.
Although the toughness values such as drawing and torsion values are at a high level of 380, 390Kg/mm 2 or more, the tensile strength of existing comparative steels (SWRH72A, SWRH72A, SWRH72A) is 270, 300, 320Kg/mm 2 respectively. It is comparable to level material, and its fatigue properties are particularly high, as shown in Figures 2 and 3. In other words, the steel of the present invention has a tensile strength of 350 Kg/mm 2 or more, a reduction of area of 30% or more, a twist value of 160 times or more, and especially a fatigue limit of 70 Kg/mm 2 or more in a rotary bending fatigue test, compared to the comparative steel SWRH62A. , SWRH72A and
A significant improvement is observed compared to the fatigue limits of SWRH82A of 45, 50 and 59Kg/ mm2 . Furthermore, effects of added alloy components in Examples will be described. Comparative steel with single Co additive (0.8% Co ~ sample
No.S-3), steels of the present invention with 0.08% and 0.18% Ni added (sample Nos.S-4 and S-3).
5) The toughness value and fatigue limit of the drawing area, torsion value,
Further improvement was observed, and Ni vs. Co
A clear combined effect of the addition was observed. On the other hand, the invention steel (sample No.S-5) and the comparison steel (sample No.S-5)
6), even if the amount of Ni was increased to 0.65%, there was almost no effect of improving the mechanical properties, and in fact, a tendency to decrease was observed, indicating that the upper limit of Ni addition is less than 0.20%. It shows. Next, in the comparative steel (Sample No. S-7), the amount of Co added was increased to 2%, but no improvement in mechanical properties commensurate with the large increase in the amount of Co added was obtained. Furthermore, comparative steel (sample No.S−
8) is made by adding Ni to 2% Co, but its mechanical properties are better than that of the comparative steel mentioned above (sample No.S-
7), and the same Co-Ni composite addition effect as in the Ni-added materials for 0.8% Co (sample Nos. S-4 and S-5) was not observed, and the Co-Ni This indicates the existence of an effective upper limit (1.00% Co) for the amount of Co in the composite addition effect. As detailed above, the wire rod according to the present invention is made of Co
Due to the combined effect of the addition of Ni and Ni, the ultra-fine steel wire has extremely excellent toughness and fatigue properties. In ultra-fine steel wire, excellent toughness values such as reduction of area and torsion value mean that steel cord twisting workability is good, and in terms of tensile strength,
The high fatigue properties not only improve the durability of steel cords in tires and rubber hoses, but also simplify the cord structure, and the material of the present invention is industrially extremely useful as a material for steel cords. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明鋼および従来鋼の0.23mmφ伸
線仕上り線の引張強さに対する絞り値を示すグラ
フ、第2図は、各サンプルの引張強さに対する回
転曲げ疲労試験の50万回疲労限を示すグラフ、第
3図は、S−N曲線図の例を示すグラフである。
Figure 1 is a graph showing the aperture value versus tensile strength of 0.23 mmφ finished wire drawn wire of the present invention steel and conventional steel. Figure 2 is a graph showing the tensile strength of each sample versus 500,000 cycles of rotary bending fatigue test. FIG. 3 is a graph showing an example of an SN curve diagram.

Claims (1)

【特許請求の範囲】 1 C:0.60〜0.90% Si:0.10〜0.50% Mn:0.50〜1.00% Co:0.30〜1.00% Ni:0.05〜0.20%未満 および残余は鉄と不可避的随伴元素から成り、冷
間伸線加工後の疲労特性が優れていることを特徴
とする、極細伸線用高炭素鋼線材。
[Claims] 1 C: 0.60 to 0.90% Si: 0.10 to 0.50% Mn: 0.50 to 1.00% Co: 0.30 to 1.00% Ni: 0.05 to less than 0.20% and the remainder consists of iron and inevitable accompanying elements, A high carbon steel wire rod for ultra-fine wire drawing that is characterized by excellent fatigue properties after cold wire drawing.
JP14399282A 1982-08-21 1982-08-21 High-carbon steel wire rod for hyperfine drawn wire Granted JPS5935655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14399282A JPS5935655A (en) 1982-08-21 1982-08-21 High-carbon steel wire rod for hyperfine drawn wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14399282A JPS5935655A (en) 1982-08-21 1982-08-21 High-carbon steel wire rod for hyperfine drawn wire

Publications (2)

Publication Number Publication Date
JPS5935655A JPS5935655A (en) 1984-02-27
JPS6112018B2 true JPS6112018B2 (en) 1986-04-05

Family

ID=15351786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14399282A Granted JPS5935655A (en) 1982-08-21 1982-08-21 High-carbon steel wire rod for hyperfine drawn wire

Country Status (1)

Country Link
JP (1) JPS5935655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569735U (en) * 1992-02-21 1993-09-21 株式会社エンプラス Liquid crystal display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711111B2 (en) * 1988-08-20 1995-02-08 金井 宏之 Steel cord and tire
FR2995250B1 (en) * 2012-09-07 2016-04-01 Michelin & Cie HIGH TREFILITY STEEL WIRE COMPRISING AN IN-MASS CARBON RATE INCLUDING BETWEEN 0.6% AND 0.74% TERMINALS INCLUDED
FR2995231B1 (en) 2012-09-07 2014-08-29 Michelin & Cie TREFILING PROCESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569735U (en) * 1992-02-21 1993-09-21 株式会社エンプラス Liquid crystal display

Also Published As

Publication number Publication date
JPS5935655A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
JP2735647B2 (en) High strength and high ductility steel wire and method for producing high strength and high ductility extra fine steel wire
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
JP2000355736A (en) High carbon steel wire excellent in longitudinal cracking resistance, steel for high carbon steel wire and its production
JP4638602B2 (en) High fatigue strength wire for steel wire, steel wire and manufacturing method thereof
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JPH0853737A (en) High strength and high toughness hot-dip plated steel wire and its production
JP3237305B2 (en) High carbon steel wire for high strength and high ductility steel wire
JPS6112018B2 (en)
JP2742440B2 (en) High strength and high ductility steel wire
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP2001220649A (en) High strength extra-fine steel wire excellent in ductility and fatigue characteristic
JPH062039A (en) Production of extra fine wire of medium carbon steel
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3250247B2 (en) Manufacturing method of high carbon steel wire for wire drawing
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JPH08295932A (en) High strength steel wire excellent in fatigue characteristic
JP2767620B2 (en) Manufacturing method of ultra-fine high-tensile steel wire with excellent toughness
JP3971034B2 (en) Hot rolled wire rod for high carbon steel wire with excellent longitudinal crack resistance and wire drawing
JPH04346619A (en) Manufacture of ultrahigh tensile strength steel wire excellent in ductility
JP2993748B2 (en) High strength and high ductility ultrafine steel wire and method for producing the same